
 i 

Abstract  
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Joshua E. Temple 

2021 
 

Sterile α-motif and HD domain-containing protein 1 (SAMHD1) is a pivotal 

enzyme that maintains cellular nucleotide homeostasis. SAMHD1 forms a tetramer 

upon binding nucleotides at allosteric sites, activating its triphosphohydrolase 

activity against substrate deoxynucleoside triphosphates (dNTPs). This dNTPase 

activity, in combination with functions in DNA repair, cell cycle regulation, and 

nucleic acid binding, is important to other facets of SAMHD1 biology as a critical 

mediator of antiviral defense, cancer suppression, and immune regulation. An 

array of post-translational modifications on SAMHD1 presents another layer of 

functional regulation, including phosphorylation at T592 that modulates SAMHD1’s 

many functions. Yet, precise mechanisms for SAMHD1 cellular functions remain 

unclear and previous efforts examining structural consequences of T592 

phosphorylation are incomplete. Some clinically-relevant mutations decouple 

SAMHD1’s intertwined activities and allow us to parse the molecular determinants 

of SAMHD1 functions mentioned above. Here I present a structural analysis of 

cancer-associated SAMHD1 mutants that, in combination with functional data, 

show the importance of SAMHD1 dNTPase activity to avoid cancer proliferation. 

Furthermore, I present the first high resolution cryo-electron microscopy (cryo-EM) 

structures of full-length human SAMHD1 and a T592D phosphomimetic which 

reveal little difference and show extreme SAM domain flexibility. Collectively, these 

studies provide deeper insight into determinants of SAMHD1 function.  
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1. Introduction 

1.1 Overview of SAMHD1 structure, activity, and modifications 

Nucleotides represent not only the fundamental monomeric building blocks 

of nucleic acids but also an essential energy source for biological reactions across 

all kingdoms of life. Ribonucleoside triphosphates (rNTPs) fuel RNA synthesis and 

take on roles as biological batteries for kinases, whereas the sole purpose of 

deoxyribonucleoside triphosphates (dNTPs) is to fuel DNA synthesis1. Because 

DNA synthesis is required for replication, the cell cycle is therefore a primary driver 

of, and is highly correlated with, dNTP levels2. Deviation from normal dNTP 

concentrations has been shown to greatly enhance mutation rates and facilitate 

defective DNA replication3. Further, host cells are not alone in usage of cellular 

resources. Obligate DNA-producing viruses must also parasitize host cell dNTP 

pools in order to replicate. Thus, sensing and controlling the balance of this 

common DNA fuel source is essential for maintaining host metabolism while 

simultaneously limiting the replication competency of viruses. 

 

 
Figure 1-1. Domain schematic of human SAMHD1. Cancer mutations relevant to 
this dissertation are noted above. Various sites of modification or of regulatory 
importance as discussed in the body of the text are listed below. The N-terminal 
NLS is boxed. The 451RxL453 cyclin-binding motif is noted. Small red diamonds at 
the N-terminus indicate phosphorylation sites of unknown consequence. GlcNAc, 
N-Acetylglucosamine; Ac, acetylation; SUMO, small ubiquitin-like modifier; Ub, 
ubiquitin; P, phosphorylation. 
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At all points in the cell cycle, dNTP concentrations must be tightly controlled 

through the concerted action of enzymes that detect, synthesize, and/or degrade 

dNTPs4, 5. Multiple cellular enzymes contribute to dNTP pool homeostasis. The 

enzyme ribonucleotide reductase (RNR) senses relative dNTP levels and 

chemically reduces the appropriate rNTPs to make dNTP precursors as needed6. 

Sterile α motif and histidine/aspartate domain containing protein 1 (SAMHD1) 

however is an enzyme that negatively regulates the cellular dNTP pool through its 

triphosphohydrolase activity, among many other independent functions7. 

Triphosphohydrolases cleave dNTP substrates into component 2’-

deoxyribonucleoside (dN) and inorganic triphosphate (TPi) products. This activity 

is essential and has largely been evolutionarily preserved going back to 

prokaryotes, with the earliest example of a SAMHD1 orthologue being found in 

Escherichia coli: the hexameric dGTP triphosphohydrolase (dGTPase) which is 

specific to hydrolyzing dGTP and lacks an N-terminal SAM domain8. SAMHD1 

remains the only known eukaryotic dNTP triphosphohydrolase and instead binds 

all dNTPs at the catalytic site following an elegant nucleotide-coupled activation 

mechanism9-11.  

Domain structure of human SAMHD1 is schematized in Figure 1-1. 

SAMHD1 exists in equilibrium between monomeric/dimeric states and the 

catalytically active homotetramer, a dimer of dimers12, 13. Binding of either GTP9, 

14, 15 (the primary activator due to higher cellular concentrations) or dGTP16-18 at 

allosteric nucleotide binding site 1 (A1) in two monomers induces dimerization. 

Further dNTP binding at allosteric site 2 (A2) in all subunits forms an active 
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tetramer capable of hydrolyzing dNTPs. Thus 8 total allosteric nucleotides act as 

molecular staples, each contacting three monomers, to stabilize an enzymatically-

competent tetramer that binds 4 substrate dNTPs (Figure 1-2). Each substrate 

dNTP is coordinated with metal ions and a combination of histidine and aspartate 

residues in the catalytic site, for which the HD domain and its superfamily are 

named19. 

 

Figure 1-2. Quaternary structure and detailed dNTP-binding interactions of the 
human HD domain. Each subunit is colored separately. Two dimers (A/D and B/C, 
colored gold/wheat and cyan/lavender) come together upon binding GTP or dGTP 
at A1 (orange) and any dNTP at A2 (magenta) to become enzymatically active. 
Once assembled, catalytic site-associated triphosphohydrolase activity cleaves 
any dNTP into its component dN (light gray) and TPi (lime green) products. Each 
nucleotide binding interaction is conserved within the other three subunits of the 
tetramer. 
 

Typical dNTP concentrations can range from ~20-40 nM in differentiated, 

nondividing human macrophages to ~2-5 mM in activated human CD4+ T-cells 

according to a reverse transcriptase-based assay20, 21. Elegantly, the mechanism 

of SAMHD1 nucleotide-induced allosteric activation is fine tuned to parse dNTPase 
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activity between cell types due to a ~2-20 µM nucleotide activation threshold22-24 

essential for maintaining the nM dNTP concentrations in resting CD4+ T-cells and 

macrophages20. Once assembled, tetramer dissociation kinetics are partially 

dependent on dNTP concentration and which dNTP is bound to A2 and can allow 

for a long-lived state on the order of hours23.  

SAMHD1 is expressed in nearly all hematopoietic lineage cells as well as 

many “frontline” immunologically important tissues such as anogenital mucosa, 

among others25. Protein levels are highest in nondividing macrophages, dendritic 

cells, and resting CD4+ T cells while levels are lowest in activated CD4+ T cells 

where DNA polymerases require higher dNTP concentrations25. Type I interferon 

(IFN) stimulation induces expression in microglia, astrocytes, hepatocytes, 

monocytes, 293T cells, and HeLa cells, as reviewed by Coggins et al26. 

Interestingly, SAMHD1 expression is not enhanced by IFN-I in primary 

macrophages, dendritic cells, and CD4+ T cells due to high endogenous 

expression but a reduction in the fraction of phosphorylated SAMHD1 (pSAMHD1) 

is observed in those cell types25, 27-30.  

The presence of a nuclear localization signal (NLS)31, 32 targets SAMHD1 to 

the nucleus, yet protein can be transiently localized or stably maintained in the 

cytosol depending on cell type and environment28, 33-35. Despite the necessity to 

regulate its dNTPase activity for DNA synthesis during cell cycle progression, 

SAMHD1 protein expression level is generally consistent throughout the cell 

cycle36. Regulation is therefore accomplished principally via nucleotide-induced 

allosteric activation and post-translational modification (PTM). SAMHD1 can be 
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highly decorated with various PTMs as noted in Figure 1-1. Some of these PTMs 

minorly modulate SAMHD1 activities. For example, K405 is located in the HD 

domain and acetylation increases dNTPase activity to achieve low dNTP pools and 

aid in the G1/S phase checkpoint transition7. N-Acetylglucosamine (GlcNAc) 

modifications on S93 of the SAM domain enhance tetramer stability and antiviral 

activity against Hepatitis B virus (HBV) in certain metabolic contexts37. Oxidizing 

cellular environments can lead to inhibitory oxidation on surface cysteine residues 

of the HD domain and attenuate dNTPase and antiviral activity38, 39. 

Other modifications take on a more major role in determining SAMHD1 

function and largely localize to the HD domain and C-terminal regulatory domain. 

A very recent report asserts that SUMOylation of SAMHD1 is a major determinant 

of its antiviral activity in non-cycling cells40. Poly-SUMOylation accumulates on 

residues K469 and K622 upon proteasomal inhibition and mono-SUMOylation of 

residues K595 and K622 was observed. Interestingly, K595 is part of the 

592TPQK595 CDK recognition motif necessary for T592 phosphorylation (discussed 

below), and mono-SUMOylation at K595 appears to be necessary for HIV-1 

antiviral activity in non-cycling cells regardless of phosphorylation state40. Residue 

K622 can also be ubiquitinated41 in addition to being mono-/poly-SUMOylated, 

though factors governing regulatory crosstalk between these PTMs are 

unexplored.  

Perhaps most intriguing of SAMHD1 modifications is phosphorylation of 

T592 by CyclinA2-CDK1/2, a kinase complex which recognizes C-terminal cyclin-

binding 451RxL453 and 620LF621 motifs27, 42, 43. This motif is critical for tetramerization 
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since R451 stabilizes negative charge in A1-bound nucleotides, and alteration can 

negatively affect dNTPase activity, phosphorylation, and antiretroviral activity43. 

Phosphorylation is removed by cellular PP2A-B55α phosphatase during mitotic 

exit36. Phosphomimetic mutations such as T592D have been employed 

interchangeably to study the behavior of pSAMHD1 and its ambiguous functions. 

The effects of the T592D mutation were initially proposed to alter the ability of 

SAMHD1 to pack as a tetramer and thereby negatively regulate its dNTPase 

activity42, 44, but other work refuted this model by arguing little change in kcat or Km 

versus WT caused by pSAMHD123, 45. T592D has no significant effect on tetramer 

equilibrium or dNTPase activity of SAMHD1 in vitro and instead has been shown 

to influence tetramer dissociation kinetics or cellular localization.24, 45, 46 This may 

help explain the inability of pSAMHD1 and T592D to restrict retroviruses due to the 

absence of a long-lived, catalytically active tetramer24, 45. Phosphorylation at this 

site is a key PTM exploited to modulate SAMHD1’s function in many biological 

backgrounds as described below.  

1.2 SAMHD1 functions in viral infection 

As an enzyme with a critical function in maintaining one of the most 

fundamental building blocks in the cell, mutations can have a severe effect on 

cellular phenotype and protein function. The first hints of SAMHD1 as a major 

clinical target came with reports of mutations found in a subset of patients with 

Aicardi-Goutières syndrome (AGS), an uncommon genetic encephalopathy that 

phenotypically mimics congenital viral infection and systemic lupus erythematosus 

(SLE)47, 48 A central characteristic of AGS includes aberrant Type I IFN responses 



 7 

and upregulated IFN-stimulated genes (ISGs). This “hyper”-IFN response can be 

attributed to disrupted nucleic acid sensing/editing in the cell, and mutated genes 

include ADAR1, IFIH1, RNASEH2, TREX1, as well as the focus of this work - 

SAMHD147, 48.  

SAMHD1 is perhaps most well-known for restricting replication of human 

immunodeficiency virus 1 (HIV-1) before the reverse transcription step, which 

completes in the nucleus49. Figure 1-3 shows the replication cycle of HIV-1. As a 

monomer or dimer SAMHD1 is capable of binding single stranded nucleic acids, 

and other work has demonstrated specific binding to the HIV-1 long terminal repeat 

(LTR) and interaction with integrated proviral DNA, where it inhibits LTR 

transcription50-52. SAMHD1 may also similarly inhibit the LINE-1 retrotransposon, 

which is known to be independent of dNTPase activity53. However, SAMHD1 has 

been shown to be a general viral restriction factor owing to its dNTPase activity. 

Indeed, depletion of the cellular dNTP fuel required for viral replication is sufficient 

to restrict a striking array of RNA and DNA viruses, including candidates from the 

families Retroviridae, Papillomaviridae, Poxviridae, Picornaviridae, and 

Herpesviridae among others26. Reported AGS mutants are incapable of restricting 

HIV-1 infection save for G209S, whose distinct retention of antiviral activity is 

separate from its aberrant IFN induction in AGS54. 

It is abundantly clear from the list above that SAMHD1 poses a substantial 

block on most viral replication and multiple viruses have co-evolved distinct 

mechanisms of antagonizing the restriction factor. Lentiviruses (e.g. HIV-1 and 

simian immunodeficiency viruses, SIV) are a genus within the family Retroviridae 
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and are uniquely able to infect both non-cycling and cycling cells20. SAMHD1 is 

actively dispensed in cases of SIV and HIV-2 infection with the accessory proteins 

Vpx or Vpr, which act as an adaptor to E3 ligase machinery ultimately resulting in 

ubiquitination and proteasomal degradation. Vpx-mediated antagonism, which 

occurs in the nucleus, is ablated upon mutating the NLS of SAMHD1 and results 

in cytoplasmic localization in which SAMHD1 retains antiviral and dNTPase 

activities55. HIV-1 conspicuously lacks an accessory protein that antagonizes 

SAMHD156. Instead, HIV-1 reverse transcriptase (RT) has evolved to synthesize 

DNA even at low dNTP concentrations found in non-cycling cells like 

macrophages57 and studies have suggested Vpx packaging with HIV-1 

significantly enhances infection of non-cycling cells58, an undesirable tradeoff of 

activating innate cytoplasmic DNA sensors because of elevated viral cDNA that 

can mount an IFN-1-mediated antiviral response59. 

Enteroviruses have been shown to thwart SAMHD1 restriction through 

upregulation of the host protein tripartite motif 21 (TRIM21), which is a component 

of innate immunity that  directly binds and ubiquitinates SAMHD1 for degradation41. 

All Herpesviridae subfamilies encode a protein kinase which uses a unique 

mechanism among SAMHD1-sensitive viruses involving phosphorylation at T592 

to inhibit dNTPase activity and relieve viral restriction60. The importance of the 

T592 regulatory cluster for antiviral activity is evidenced by strong positive 

selection of residues around T592 resulting from ancient evolutionary pressure 

from viruses, which was observed for SAMHD1 homologues from all mammals for 

which genetic data was available61. Even the SAMHD1 orthologue dGTPase is 
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directly targeted and inhibited by an accessory protein named Gp1.2 from the 

Escherichia coli bacteriophage T762. It is clear that throughout evolution viruses 

targeting vastly different organisms must all grapple with HD domain activity to 

efficiently replicate, and poses an interesting scenario in which SAMHD1 dNTPase 

and antiviral activity must be continually adapted and honed while at the same time 

conserving functions that contribute to fundamental cellular maintenance.   

While HIV-1 might be the most researched viral target of SAMHD1, precise 

mechanisms of HIV-1 restriction remain incomplete. As stated above, the suitably 

high dNTP concentrations found in cycling or activated cells render them more 

HIV-permissive. Although pT592, a biomarker for cycling cells, and 

phosphomimetic mutants cannot restrict HIV-1, they still retain dNTPase activity24, 

63. Thus, pT592 is a major determinant for differential HIV-1 restriction competency 

between cell types and activation states63. In non-cycling cells, SAMHD1 has been 

shown to block HIV-1 infection through kinetic suppression of reverse transcription, 

a replicative step requiring consumption of cellular dNTPs for proviral synthesis64, 

65. Vpx-mediated degradation of SAMHD1 in macrophages results in a transient 

spike in dNTP levels which provides evidence that SAMHD1 is indeed catalytically 

active65, 66. Other work demonstrates that the dNTP levels found in non-cycling 

HIV-restrictive cells are however 2-4 orders of magnitude below the threshold of 

SAMHD1 allosteric activation, and the authors raise questions about the relevance 

of dNTPase activity of SAMHD1 for the primary mechanism of HIV restriction in 

non-cycling cells23. Only recently has K595 SUMOylation been shown to be yet 
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another essential component for restriction (in non-cycling cells), irrespective of 

T592 phosphorylation status40.  

Figure 1-3. Basic steps of the HIV-1 replication cycle. Docking and membrane 
fusion of the virus is initiated by Env protein (purple). The viral capsid (green cone) 
is deposited and trafficked to the nucleus as reverse transcription begins. Mostly 
intact capsid is imported through NPCs where it disassembles. Reverse 
transcription completes in the nucleus where the viral cDNA integrates within the 
host genome. Viral genes are then expressed to assemble immature progeny 
virions at the plasma membrane. Full maturation of the virion occurs following 
budding.  

 

How SAMHD1 is activated given low dNTP concentrations in non-cycling 

cells and then accomplishes restriction under the combinatorial influence of 

phosphorylation and SUMOylation remains an open question. Furthermore, how a 

phosphomimetic mutation is unable to restrict HIV-1 infection given a purely kinetic 

effect on tetramer formation is unclear. Some authors have proposed the 

possibility of a distinct mechanism of SAMHD1 activation in non-cycling cells 

redundant and/or independent of nucleotide-induced allostery23. This is supported 



 11 

by data of a SAMHD1 mutant (Y146S/Y154S) that is tetramer-defective in vitro yet 

still able to deplete dNTPs and restrict HIV-1 in macrophages23, 31, 45. Furthermore, 

the ability of pSAMHD1 and phosphomimetics to restrict HIV-1 and deplete cellular 

dNTPs does not always correlate with in vitro dNTPase activity and tetramer 

formation of purified recombinant protein, which probably indicates an 

undiscovered cellular factor contributing to SAMHD1 activation through interaction 

or post-translational modification23, 45.  

Progression of HIV-1 infection is characterized by a shift in preference from 

permissive cycling cells to establish early infection, namely activated CD4+ T-cells, 

to more restrictive non-cycling cells in chronic infection, especially macrophages 

which are thought to be a critical reservoir of latent HIV-1 as CD4+ T-cells are 

depleted; this subject is reviewed by Rodrigues et al67 and the authors highlight 

that not all macrophages are functionally equivalent, often with specific cellular 

functions due to tailored transcriptional programs depending on tissue residency. 

Macrophages also have exclusive cell biological processes during HIV-1 infection 

since the virus buds into a distinct endosomal structure called the virus-containing 

compartment (VCC), not out of the plasma membrane like in other cell types68. 

One novel report even suggests HIV-1 infection of primary macrophages, but not 

CD4+ T-cells, may be stratified by sex. The authors demonstrated that female-

derived macrophages were less susceptible to HIV-1 infection and exhibited lower 

pT592 levels, although this preliminary study needs corroboration with larger 

sample sizes69. Thus, given the intrinsic relationship between SAMHD1 activity 

and cell type/activation state, the potential for major differences in regulation are 
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evident and warrant further detailed analysis of regulatory mechanisms on 

structural, biochemical, and cell biological levels. 

1.3 SAMHD1 is implicated in cancer and innate immune suppression 

Mutants found in diverse cancers also reveal the overarching importance of 

SAMHD1’s role in cellular homeostasis and genetic pathology. A hallmark of 

cancerous cells is an aggressive replicative state in which cells are actively 

consuming dNTPs to fuel DNA synthesis for cell division. It is no surprise then that 

increased dNTP levels (by roughly 6-11 fold70) are a biochemical hallmark of 

cancerous cells, as reviewed by Amie et al1, and atypical dNTP levels correlate 

with tumor formation and genomic instability71, 72. SAMHD1 has been implicated in 

DNA repair processes that also work toward staving off tumorigenesis73, 74, which 

includes ensuring telomere stability75.  

In order to maintain a cancerous cellular state SAMHD1 must be 

deactivated, and SAMHD1 is indeed shown to be down regulated or mutated in 

cases of chronic lymphocytic leukemia (CLL)76, 77, lung cancer78, cutaneous T-cell 

lymphoma (CTCL)79, 80, acute myeloid leukemia (AML)81, colon cancer82, and T-

cell prolymphocytic leukemia83 for example. Searching the SAMHD1 gene in the 

Catalogue Of Somatic Mutations In Cancer (COSMIC), which curates human 

somatic cancer data from publications all over the world, reveals 633 unique 

cancer-associated mutations across 142 publications as of the time of this writing 

in August 2021. COSMIC shows accumulated mutations distributed throughout the 

entire protein length much like for AGS mutations47, 54. It is important to investigate 

the mechanism of SAMHD1 dysfunction in these cancerous backgrounds which 
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can shed light on the protein’s endogenous function and regulation as well as guide 

higher efficacy cancer therapies.  

Immunosuppression is another recently described pillar of SAMHD1 

function. In cases of dsDNA repair via homologous recombination (HR), SAMHD1 

must interact with the protein CtIP (C-terminal binding protein 1 interacting protein) 

to facilitate DNA end resection73. In addition, SAMHD1 aids a separate nuclease, 

Mre11, in processing nascent DNA at stalled replication forks during DNA 

replication which consequently inhibits IFN induction; taken together, these 

functions are dNTPase-independent and help prevent the host from mounting an 

autoimmune response against self-nucleic acids74. SAMHD1 also interacts with 

and negatively regulates immunologically important transcription factors NF-κB 

and IRF7 in addition to interactions with proteins in both immune pathways. By 

inhibiting phosphorylation of the NF-κB inhibitory protein (IκBα) SAMHD1 is able 

to prevent nuclear translocation and therefore activation of the NF-κB signaling 

axis; similarly, SAMHD1 is able to reduce inhibitor-κB kinase ε (IKKε)-mediated 

phosphorylation of IRF7, thus preventing IRF7 dimerization and nuclear entry for 

ISG activation34, 84. NF-κB suppression appears dependent on SAMHD1 dNTPase 

activity in monocyte-derived cells, yet independent of dNTPase activity in dividing 

293T cells34 which further establishes a key missing component in understanding 

activation mechanisms of SAMHD1. Despite being a general antiviral factor (and 

as with any SAMHD1 function) there are caveats – some viruses actually exploit 

SAMHD1 immunosuppressive activity in certain contexts. SAMHD1 dNTPase 

activity is important to suppress NF-κB activation during infection by human 
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cytomegalovirus (a DNA virus)85 much like by Sendai virus (SeV; an RNA virus)34. 

A more recent corollary in SARS-CoV-2 shows genetic loss of SAMHD1, not just 

a lack of dNTPase activity, activates cellular innate immunity which thereby 

suppresses SARS-CoV-2 replication86. SAMHD1 can also support the infection of 

Zika and Chikungunya viruses, although through uninvestigated mechanisms87.  

Taken together, this highlights the incredibly dynamic role of SAMHD1 at 

the crossroads of cellular metabolism, viral infection, cancer, and immunity. 

Characterizing mutants that uncouple SAMHD1’s often-intertwined functions will 

aid in finding missing determinants in SAMHD1 activation and regulation in these 

contexts. As a highly allosteric molecule, not much information is known regarding 

structural differences or altered dynamics induced by PTMs that may help explain 

its functional differences. Furthermore, no structural data exist in the context of the 

full-length human protein. These factors combined serve as the motivation for this 

study.  

1.4 Aims and Scope 

Ultimately this dissertation is a culmination of many projects centered 

around interactions in the molecular arms race between viruses and human 

immunity, otherwise termed the host-virus interface. Some of these initially 

promising projects did not result in fleshed out biological stories yet are detailed as 

appendices below to document significant partial or negative data. These topics 

include stability and binding interactions of the HIV-1 capsid in addition to cryo-EM 

methods development to solve a critical bottleneck in obtaining high resolution 

cryo-EM structures. Here the primary focus however is on investigating structural 
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mechanisms of the protein SAMHD1 function and dysfunction in various contexts. 

The work presented here is aimed at characterizing clinically important SAMHD1 

mutants and addresses basic structural regulation of SAMHD1, with some 

discussion of processing data from challenging crystals. 

Nucleotide-dependent assembly and allosteric activation of SAMHD1 is 

likely the most well-characterized of the protein’s many functions, but that 

represents one small facet of SAMHD1 biology. Because of all the multifaceted 

functions detailed above, SAMHD1 is also interesting from a virology, cancer 

biology, and immunology perspective. Characterizing mutants of SAMHD1 is 

valuable in isolating and understanding determinants for these functions. Despite 

its implication in various cancers, not much literature is devoted to understanding 

the mechanisms of SAMHD1 dysfunction therein.  

Furthermore, zero to little structural information exists for the full-length or 

for post-translationally modified protein, which is important to help solve the puzzle 

of regulation of SAMHD1 activity. All current structural models of human SAMHD1 

lack the N-terminal SAM domain since it is largely dispensable for dNTPase activity 

and retroviral restriction ability32 and the only full-length structure is the mouse 

orthologue88. Previous HD domain crystal structures are unable to resolve density 

beyond residue ~580 for T592E44 or in vitro phosphorylated SAMHD124 despite 

ordered density being observed up to position 599 in non-modified catalytically-

inactive SAMHD1RN (H206R/D207N)17. Combined, these data indicate that the N-

terminal SAM domain and C-terminal regulatory domain are labile. Along with high 

symmetry and mass (~290 kDa) of the tetramer, this makes SAMHD1 a suitable 
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candidate for single particle cryo-EM to parse the distribution of dynamic states 

and resolve structural differences therein. Understanding structural regulation of 

SAMHD1 beyond basic allosteric assembly will provide critical insight into its 

overall behavior. The following studies constitute the first structural 

characterization of novel cancer-causing mutations in the SAMHD1 catalytic core 

using X-ray crystallography and in addition the first cryo-EM structures of human 

SAMHD1 are presented.  
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2. Structural insight into cancer-associated SAMHD1 mutations 

2.1 Introduction  

Here, selected mutations from a panel of recent reports detailing SAMHD1 

mutants associated with CLL and colon cancer are studied to uncover their 

mechanism of dysfunction. These mutations are located in key nucleotide binding 

sites of SAMHD1 (Figure 1-2). Selected CLL mutants include R145Q, Y155C, 

P158S, and R451C which are all located in the A1/A2 binding sites. Two reported 

R366 mutants localize to the catalytic site, R366C and R366H. R366C has been 

reported in CLL89 whereas R366H has been found in colon cancer82, 90. Two other 

CLL mutants, I201N and L244F76, do not reside in positions normally contacting 

bound nucleotides. 

We ultimately focused on these R366 mutations, which are not AGS-

associated and intriguingly can result in different types of cancer depending on the 

mutant side chain identity. As SAMHD1 has a wide range of reported biological 

activities, the contribution of each to overall cancer pathogenesis must be 

evaluated. Our structural work complemented a functional analysis of these 

mutants as part of a collaboration with co-first author Nicole Bowen from the lab of 

Baek Kim, who led the work91. Selected data collected by other authors from this 

manuscript are presented here with attribution to help detail the complete analysis 

of these mutants. We examine stability of the mutant proteins, their ability to 

tetramerize, and their dNTPase activity. We also use X-ray crystallography to 

determine the structure of the R366 mutants and further investigate whether the 

mutants retain dNTPase-independent functions that may be implicated in cancer 
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cell phenotypes. This study suggests that impaired dNTPase activity, not 

dNTPase-independent functions, is a mechanism by which SAMHD1 R366 

mutants can contribute to leukemia and colon cancer proliferation, while many 

other mutations simply result in reduced SAMHD1 protein stability. 

2.2 Results 

2.2.1 Stability and tetramerization of cancer-associated SAMHD1 mutants 

Mutant screening began with Western blotting to analyze protein levels 

following transfection of HEK293T cells. The majority of sampled mutations – 

R145Q, Y155C, P158S, I201N, L244F, and R451C – markedly reduced SAMHD1 

protein levels (Figure 2-1a). Two notable exceptions were R366C and R366H, 

which were both comparable to WT SAMHD1 levels. We tested the thermostability 

of these two mutants after incubation with dGTP using a fluorescence-based 

unfolding assay in which hydrophobic protein cores that are exposed upon thermal 

denaturation interact with a fluorescent dye and increase its fluorescence 

emission92. The temperature at which half-maximal unfolding is observed for the 

R366 mutants (R366C: 62.0 ± 0.4 ˚C and R366H: 62.3 ± 0.1 ˚C) were modestly 

lower than WT (63.5 ± 0.1 ˚C) yet still higher than the Y155C mutant (60.2 ± 0.3 

˚C) which served as a representative of an unstable mutant since trace protein 

levels were detected via western blot (Figure 2-1a, b). The denaturation profiles 

exhibit a minor unfolding event at ~40 ˚C for each mutant that is not observed for 

WT. Formaldehyde crosslinking was then used to analyze the ability of these 

mutants to tetramerize and confirmed that R366 mutants, but not the Y155C 

mutant, are able to form tetramers comparable to WT SAMHD1 when supplied 
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with dGTP (Figure 2-1c). As Vpx-mediated antagonism in HIV-2 and SIV infection 

is dependent on the tertiary fold of SAMHD193, a Vpx degradation assay showed 

a similar ability of Vpx to dispatch WT, R366C, and R366H SAMHD1 thereby 

indicating a generally conserved fold between WT and R366 mutants (Figure 2-

1d). 

2.2.2 R366 mutants have impaired dNTPase activity and cannot restrict HIV-1 

Next, we employed a thin layer chromatography (TLC)-based assay and 

α32P-dGTP to monitor dNTP triphosphohydrolase activity of each mutant (Figure 

2-2a). Of this panel of mutants, only R366H maintained partial activity and 

accumulated ~25% of the radiolabeled triphosphate product compared to WT. 

Interestingly this partial activity was observed with hydrolysis of dGTP alone, not 

with other dNTPs (Figure 2-2b). To complement in vitro experiments R366 mutants 

were expressed in differentiated U937 cells, which lack endogenous SAMHD1 

expression, and antiviral competency and dNTP levels were compared with WT- 

and D311A-expressing cells. The D311A mutation abrogates metal ion binding in 

the catalytic site and renders SAMHD1 deficient in HIV-1 restriction and dNTPase 

capabilities94 thus serving as a negative control. Indeed, expression of D311A, 

R366C, and R366H all failed to suppress HIV-1 infection in differentiated non-

cycling U937 cells, unlike WT SAMHD1 (Figure 2-3a).  
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Figure 2-1. Characterization of protein stability, tetramerization capability, and Vpx 
degradation of selected cancer-associated SAMHD1 mutants. A) The SAMHD1 
protein levels in HEK293T cells transfected with an equal amount of plasmids 
expressing HA-tagged SAMHD1 proteins. Empty: Backbone plasmids, pKH3-
3xHA (left) and pLVX-IRES-mCherry (right). The relative SAMHD1 protein levels 
were normalized by GAPDH protein level and the ratios between wild type and 
mutant SAMHD1 protein levels were calculated. B) Thermal shift assay of wild type 
and mutant HD proteins was conducted after preincubation with SYPRO Orange 
dye. The melting temperature (Tm) of each protein was calculated as described in 
Methods. Tm: WT = 63.5 ± 0.1°C, Y155C = 60.2 ± 0.3°C, R366C = 62.0 ± 0.4°C, 
R366H = 62.3 ± 0.1°C. C) Tetramerization of wild type and mutant HD domain 
proteins was analyzed by SDS-PAGE after formaldehyde crosslinking in the 
presence (+) and absence (-) of 2 mM dGTP. M: Monomer, D: Dimer, T: Tetramer. 
MW: Molecular weight. C: No formaldehyde control. D) Vpx-mediated proteasomal 
degradation of wild type and mutant SAMHD1 proteins in cells was monitored.  
293T cells were co-transfected with SAMHD1 expressing plasmids and Vpx 
expressing (Vpx+) or non-expressing (Vpx-) plasmid. SAMHD1 protein levels in 
the transfected cells were determined by immunoblot with anti-SAMHD1 antibody. 
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Cellular dNTP concentrations were generally consistent with biochemical 

data and R366C/H-expressing cells had statistically significant elevated dNTP 

levels versus WT (Figure 2-3b). Increased concentrations of dATP, dCTP, and 

dTTP are observed for R366 mutants relative to the D311A construct. Curiously, 

activity of R366 mutants exhibits a unique effect for dGTP similar to in vitro data 

since R366 mutants have depressed dGTP levels compared to D311A, a 

phenomenon not observed for other dNTPs. Lastly, the inability to deplete dNTPs 

was confirmed in patient-derived cells. Virus-like particle (VLP)-mediated 

treatment with Vpx in activated primary CD4+ T-cells disposed of ~30% of cellular 

SAMHD1 and resulted in significant increases in concentrations of all dNTPs 

(Figure 2-3c). The magnitude of the relief in SAMHD1-mediated suppression for 

dATP and dGTP is approximately double the effect observed for dCTP and dTTP.  

Figure 2-2. A) In vitro dNTPase activity of recombinant SAMHD1113-626 using TLC 
to detect α32P-dGTP hydrolysis. Relative dGTPase activity of wild type and mutant 
SAMHD1 proteins (HD domain) was calculated by dividing the triphosphate 
product by the lane total and normalizing to wild type dGTPase activity. B) The 
relative dNTPase activities of wild type, R336C and R366H proteins were 
determined for dATP, dCTP, and dTTP. Data are the mean of three replicates and 
error bars reflect standard deviation from the mean. P values were determined 
using two-tailed, unpaired Welch’s t-test with WT, wild type. CIP: calf-intestinal 
phosphatase control. NE: No enzyme negative control. P: Monophosphate. PPP: 
Triphosphate. nd: not detected. Figure and legend were adapted from 
manuscript91. 
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Figure 2-3. HIV-1 restriction competency and cellular dNTP effects. A) Left, U937 
cells were transduced with lentiviral vector expressing FLAG-tagged wild type, 
D311A inactive mutant, R366C, and R366H proteins. The expression level of each 
SAMHD1 protein was determined by western blot with anti-FLAG antibody and 
normalized with GAPDH. Right, the transduced U937 cells were differentiated to 
nondividing stage, and transduced with eGFP expressing HIV-1 vector. 
Transduction efficiency using different quantities of HIV-1 vector was determined 
using flow cytometry. B) Intracellular dNTP levels in differentiated U937 cells 
expressing wild-type and mutant SAMHD1 proteins were determined by RT-based 
dNTP assay. Data are the mean of three replicates and error bars reflect standard 
deviation from the mean. P values were determined using two-tailed, unpaired 
Welch’s t-test to WT knock-in cells. C) Human primary CD4+ T cells were isolated 
from 3 healthy donors, activated by PHA and IL-2 for 5 days, and treated with VLP 
Vpx (-) or VLP Vpx (+) for 24 hours. Cellular SAMHD1 protein levels were 
determined by immunoblot using anti-SAMHD1 antibody and anti-GAPDH 
antibody as a loading control. The relative SAMHD1 protein levels were normalized 
by GAPDH protein level and the ratios between wild type and mutant SAMHD1 
protein levels were calculated. Intracellular dNTP levels were determined by RT-
based dNTP assay. Data are the mean of three replicates and error bars reflect 
standard deviation from the mean. P values were determined using two-tailed, 
unpaired Welch’s t-test to VLP Vpx (-) condition. Figure and legend adapted from 
manuscript91. 
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2.2.3 Crystallization and structure determination of R366 mutants 

Full-length human SAMHD1 has thus far been unable to be crystallized in 

contrast to the catalytic core, which is readily crystallized. For both R366C and 

R366H mutants, we therefore crystallized the HD domain and C-terminal 

regulatory region of SAMHD1 (residues 113-626) in the presence of dGTP, which 

is capable of binding both A1 and A2 as well as the catalytic site of SAMHD110. In 

the WT catalytic site the guanidinium group of R366 neutralizes the negative 

charge of the substrate dNTP γ-phosphate and interacts with D506 to stabilize the 

bound nucleotide (Figure 2-4, cyan). The catalytically inactive mutant SAMHD1RN 

was used to prevent hydrolysis but retain binding capacity of dGTP during 

crystallization.  

Figure 2-4. R366C/H mutations abrogate catalytic nucleotide binding. Overall 
structure of the SAMHD1 tetramer in surface representation (top left). The upper 
row of insets shows selected interactions of R366 and the catalytic nucleotide in 
SAMHD1RN (PDB code 4BZB). H-bonds and salt bridges are shown as dashed 
lines. R366C (magenta cartoon) or R366H (green cartoon) mutation leads to the 
disruption of the interactions and the loss of nucleotide binding at the catalytic site. 
The catalytic nucleotides (gray) are modeled in based on their theoretical positions 
in SAMHD1RN. Portions of the structure have been hidden for clarity. The bottom 
row shows representative 2Fo-Fc density at the allosteric sites (for all structures) 
and the catalytic site (for each individual structure). 
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R366C crystals were fewer and formed on the span of weeks as singular 

rectangular prisms with a deep imperfection (Figure 2-5a). These crystals were 

difficult to replicate in further optimization attempts yet were stable on the order of 

weeks and diffracted to high resolution at 1.9 Å. R366H crystals formed rapidly 

overnight and fully matured within a week. Streak seeding was used to improve 

thick, flat faceted prisms which were generally clustered around a central nucleus 

with multiple adsorbed lattices (Figure 2-6a). Indeed, the diffraction data collected 

for R366H were twinned and contained data from multiple crystals which limited 

the final resolution to 3.6 Å. Statistics for data collection are summarized in Table 

2-1. 

SAMHD1RN R366C/H mutants both retained a tetrameric architecture in the 

crystal structures and showed no significant deviations from a previously solved 

dGTP-bound SAMHD1RN tetramer (RMSDR366C: 0.36 Å and RMSDR366H: 0.39 Å 

when compared with PDB 4BZB). Importantly, no density was observed in the 

catalytic pocket of either mutant, unlike the allosteric sites each with appropriate 

density for dGTP (Figure 2-4). Of note, additional amorphous density is observed 

close to the R366C side chain upon map sharpening (Figure 2-5b), consistent with 

an earlier 2.7 Å data set showing similar features (data not shown). 
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Figure 2-5. R366C crystals show abnormal electron density features surrounding 
cysteine side chains. A) Image of the R366C crystal. B) Representative 2Fo-Fc 
electron density (blue) and Fo-Fc density (green) of residue 366 modeled as 
various side chains to explain extra density including: Ala (alanine), to explore 
unbiased side chain features; Lys (lysine), to evaluate if the proper mutation is 
present; Cys (cysteine), the expected side chain identity; and Cso (S-
hydroxycysteine), an oxidized form of cysteine. C) Location of other surface-
exposed cysteines (magenta) with observed amorphous density are marked noting 
proximity to T592 (red) of the adjacent monomer and at the tetramer interface. Red 
arrows mark locations of T592. 
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Figure 2-6. R366H crystal packing and other pathology gives rise to difficult 
diffraction data. A) Image of the R366H crystal. B) Diffraction image pairs taken 
roughly 90˚ orthogonal to each other. Data were anisotropic, mosaic, twinned, and 
contained reflections from multiple lattices. Green arrow indicates indexed set of 
reflections. Red arrow indicates contaminating lattice reflections. C) Packing of 
four tetramers in the asymmetric unit yielded an uncharacteristically large unit cell 
which contributes to the extremely fine spacing between reflections observed in 
panel B, lower. The discrete reflections in panel B, upper are columns of stacked 
reflections caused by the long b axis oriented parallel with the incident x-ray beam. 
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Table 2-1. Data collection and refinement statistics for R366 mutants. 

 R366C R366H 
Data collection   
   Wavelength (Å) 0.97918 0.97918 
   Space group  P21 P21 
   Cell dimensions 

a, b, c (Å)  
α, β, γ (˚) 

80.9, 140.1, 97.2 
90.0, 114.2, 90.0 

83.7, 573.5, 100.5 
90.0, 114.7, 90.0 

  No.molecules/ 
       asymmetric unit 4 16 

   Resolution (Å)  50.0-1.9 (1.93-1.90) 50.0-3.60 (3.66-3.60) 
   Rmerge 0.071 (>1) 0.143 (>1) 
   Mean I / σI 17.3 (1.0) 13.8 (1.6) 
   CC1/2 0.999 (0.297) 0.996 (0.690) 
   Completeness (%) 99.1 (98.8) 85.6 (83.1) 
   Redundancy 3.3 (3.3) 5.1 (4.8) 
   Unique reflections 153,730 (7,622) 84,897 (4,131) 
Refinement   
   No. nonhydrogen atoms 16,683 64,032 
   Rwork/Rfree 0.173/0.207 0.227/0.259 
   Mean B-factor (Å2) 31 144 
   R.m.s.d. 

Bond lengths (Å) 
Bond angles (˚) 

0.012 
1.7 

 
0.008 
1.4 

Ramachandran 
  Favored (%) 
  Allowed (%) 

Outliers (%) 

98.64 
1.26 
0.10 

97.84 
2.11 
0.05 

Parentheses indicate highest resolution shell. 

 

2.2.4 SAMHD1 R366 mutants maintain other endogenous functions 

It is important to evaluate the ability of SAMHD1 cancer-associated mutants 

to carry out other dNTPase-independent functions and ask whether these may 

contribute to cancer progression. The Kim lab completed a wide functional screen, 

and selected data are shown above. Further experiments (data not shown91) 

confirmed unaltered interactions between R366 mutants and Cyclin A2 via co-

immunoprecipitation (co-IP), as well as DNA repair protein CtIP. Both mutants also 

had comparable HR repair activity to WT SAMHD1 in an RFP gene repair reporter 
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assay. Both R366 mutants also efficiently suppressed expression of a Luciferase 

(Luc) reporter gene under control of either the HIV-1 LTR or an IFN-stimulated 

response element (ISRE) similar to WT levels in 293T cells. Notably however, 

R366 mutants displayed a modest reduction in affinity for ssDNA and ssRNA 

oligonucleotides versus WT SAMHD1 using fluorescence polarization. 

2.3 Discussion 

Abnormally high dNTP levels are a biochemical hallmark of cancerous cells 

due to aggressive and uncontrolled cell proliferation which requires ample dNTP 

fuel70. This study shows that mutation of R366 causes impaired dNTPase activity 

and concomitant increase in cellular dNTP pools and can be mechanistically linked 

to CLL and colon cancer, independent of other biological functions of SAMHD1. In 

the majority of cases, cancer-associated mutant protein levels were generally ≲	

10% of WT SAMHD1. Similarly, previously described CLL mutations have been 

shown to cause reduced SAMHD1 protein levels and have been linked to cancer 

pathogenesis76. The R366 mutants are notable exceptions that retained cellular 

stability in addition to the capacity to tetramerize as evidenced by formaldehyde 

crosslinking and crystal structure determination discussed below (Figures 2-1c and 

2-4). To our knowledge, no other disease-associated SAMHD1 mutant has been 

reported to retain tetramerization capability.  

Despite the presence of an assembled tetramer, severely attenuated 

dNTPase activity is observed for R366H with near complete ablation of dNTPase 

activity for R366C (Figure 2-2). Moreover, dGTP-activated R366H partial activity 

is specifically biased towards hydrolyzing dGTP over other dNTPs (Figure 2-2a), 
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an effect also originally observed using GTP-activated R366H in vitro82. Both R366 

mutants drive a decrease in dGTP levels relative to other dNTPs in transfected 

cells and treatment with Vpx relieves suppression of purine dNTP levels by WT 

SAMHD1 more significantly than for pyrimidines (Figure 2-3). Combined, these 

data show a biased sensitivity of SAMHD1 to dGTP which is interesting 

considering guanine nucleotide triphosphates are solely capable of binding A1 and 

priming SAMHD1 for allosteric activation14, 22.  

The SAMHD1RN catalytic core was then crystallized in the presence of 

dGTP, a single nucleotide sufficient for allosteric activation and catalytic substrate 

binding which also appeared to be preferred by R366H. Despite dGTP density at 

both allosteric sites and packing into a tetramer, no significant density was 

observed at the catalytic sites (Figure 2-4). This confirms that mutation of the 

arginine side chain at position 366 renders SAMHD1RN deficient in stably binding 

dGTP at the catalytic site and is consistent with R366 mutants’ impaired dNTPase 

activity and concomitant increase in cellular dNTP pools. 

Data processing presented challenging cases. R366C diffraction data 

showed dubious density directly adjacent to the mutated cysteine side chain of 

interest (Figure 2-5). Water was initially built into some of these blobs, but two 

scenarios are more likely. First, there is evidence of oxidation of other solvent-

accessible cysteine side chains. Additional Fo-Fc difference density is also 

observed for C177 and C522 combined with a disulfide bridge between C341-

C350. Taken together, it is clear SAMHD1RN R366C was in an oxidized state 

despite the presence of 0.5 mM TCEP in the protein buffer. SAMHD1 is reportedly 



 30 

redox-regulated since oxidation of C341, C350, and C522 contribute to decreased 

tetramerization and dNTPase activity38, 39, which may contribute to its mechanism 

of dysfunction or downregulation in CLL. It is also interesting to note that the cluster 

of oxidized cysteines lie immediately adjacent to the tetramer interface and T592 

of an opposing dimer, as well as the theoretical region the SAM domain can 

sample. Alternatively, it is clear through crystallization and crosslinking data that 

R366 mutations do not inhibit tetramerization. Theoretically the catalytic pocket 

could therefore retain partial or transient binding capacity of substrate nucleotide 

causing weakly averaged partial density for dGTP to appear in the map.  

R366H, purified identically to R366C, formed crystals that exhibited no 

amorphous density or evidence of oxidation. Despite crystallizing only 0.8 pH units 

higher in the otherwise same condition as R366C, the R366H crystal exhibited 

novel packing with four tetramers in the asymmetric unit. This packing generated 

a 573.5 Å axis and, along with another lattice adsorbed to the primary crystal, 

resulted in major artifacts in the diffraction data. The incredibly long b axis caused 

overlapping reflections in reciprocal space and drastically reduced signal:noise. 

Streaky, off-angle contaminant reflections are caused by an imperfect adsorbed 

crystal and even further complicated indexing which required parsing the more 

discrete set of reflections (Figure 2-6b, red arrow). Lastly the indexed diffraction 

data were twinned and altogether this limited resolution to 3.6 Å, yet still allowed 

us to determine whether nucleotide ligands were present. Uniquely, N ε2 of the 

mutant R366H side chain sits close to the γ-phosphate position in a modeled 

dGTP-bound mutant structure and is therefore theoretically capable of an 
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interaction, which could explain a higher relative R366H activity with dGTP versus 

other cancerous mutants and may contribute to the difference in cancer 

manifestation based on side chain identity. 

Both R366 mutants efficiently tetramerize and theoretically could retain 

other oligomer-dependent, or simply dNTPase-independent, functions. In the 

majority of our assays not probing dNTPase activity or HIV-1 restriction, R366 

mutant effects on other WT SAMHD1 functions were negligible, as observed for: 

degradation by Vpx; co-IP with CtIP and HR-mediated DNA repair; co-IP with 

Cyclin A2; and suppression of HIV LTR-driven and ISRE-mediated gene 

expression. Some differences are noted however in the reduced ability of the 

recombinant catalytic core of R366C and R366H to bind single stranded nucleic 

acids, with FP assays demonstrating up to ~10-fold reduced affinity depending on 

oligonucleotide length (data not shown). Both ssDNA and ssRNA can bind the 

allosteric sites of SAMHD151, and reduced affinity by R366 mutants in vitro may 

indicate an overlap with the catalytic site as well.  

2.4 Future Directions 

This functional panel is a surface-level characterization at best. Each 

experiment can be expanded to ask deeper questions. For example, R366 is newly 

implicated in single-stranded nucleic acid interactions in our manuscript’s 

fluorescence polarization data91. Previous co-crystal structures of SAMHD1 only 

capture ssDNA/RNA overlapping the tetramer interface and A1/A251, 95. Future 

work should focus on determinants in SAMHD1 interactions with single stranded 

nucleic acids and the biological scenarios requiring them. Although nucleic acid 
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binding is not currently linked mechanistically to cancer, it is conceivable that 

aberrant binding can result in breaking specific intermolecular interactions that 

contribute to SAMHD1 (and cellular) dysregulation. Since suppression of innate 

immunity is independent of dNTPase activity in dividing 293T cells, contrary to 

nondividing cells34, 84, expanding work to investigate the differential effects of R366 

mutants in cycling versus noncycling cells is also warranted. 

2.5 Experimental Procedures 

2.5.1 Protein expression and purification 

N-terminally 6x His-tagged SAMHD1 (residues 113-626; H206R/D207N) 

was cloned into pET28b (Kan). Protein was expressed in E. coli Rosetta (DE3) 

cells and induced for 16 hrs at 18 ˚C. Resuspended cells were lysed via 

microfluidizer (15k psi) and purified through gravity flow Ni-NTA affinity resin and 

S200 PG gel filtration chromatrography. Collected protein was concentrated, 

aliquoted, flash frozen in 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 10% 

glycerol, and 0.02% sodium azide, and stored at -80 ˚C until further use. 

2.5.2 Crystallization and data collection  

Crystals for the HD domain of SAMHD1 (residues 113-626) R366C/H were 

obtained using catalytically inactive H206R/D207N constructs with the microbatch 

under oil method. R366C or R366H (4 mg/mL; 50 mM Tris pH 8.0, 150 mM NaCl, 

5 mM MgCl2, 0.5 mM TCEP) was mixed with 4 mM dGTP, incubated on ice for 15 

min, and added 1:1 with crystallization buffer (100 mM succinic acid-phosphate-

glycine (SPG) buffer, 30% w/v PEG1500; Qiagen). R366C crystallized at pH 8.2 in 

~2 weeks at room temperature. R366H crystallized at pH 9.0 within 1-2 days at 
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room temperature. Both constructs were cryoprotected with 25% v/v glycerol and 

flash frozen in liquid nitrogen. Diffraction data were collected on the NECAT 

beamline 24-ID-E at the Advanced Photon Source (APS), Argonne National Lab. 

Data statistics are summarized in Table 2-1.  

2.5.3  Structure determination and refinement 

Diffraction images were processed using HKL200096. Structures were 

solved via molecular replacement (Phaser97) using PDB 4BZB as a search model. 

Models were refined through iterative rounds of restrained and TLS refinement 

(REFMAC598) and model building (Coot99). The R366H crystal was twinned with 

twinning fractions of 0.57 and 0.43 for the (H, K, L) and (H, -K, -H-L) twinning 

operators, respectively. Residues 278-283 were unresolved in both structures. 

Refinement statistics are summarized in Table 2-1. Coordinate and structure 

factors were deposited in the PDB under accession codes 7LTT and 7LU5 for 

R366C and R366H, respectively. 

All functional methods are available in Bowen and Temple, et al91. 

2.6 Contributions 

Functional and biochemical work was performed by members of the Kim lab 

as part of a manuscript in press at JBC91. Presented here is work by co-first author 

Nicole Bowen (Figs 1B-D, 2, 3B); Caitlin Shepard (Figure 1A); Mirjana Persaud 

(Figure 3A); and Adrian Oo (Figure 3C). Fidel Arizaga in the Xiong Lab was 

significant help in optimizing crystal hits for R366C and R366H mutants and 

providing company during data processing. 
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3. Towards a full-length human SAMHD1 structure 

3.1 Introduction 

Currently no structure of human full-length SAMHD1 exists. Indeed, the 

SAM domain has not been extensively studied as it has been shown to be 

dispensable for tetramerization, enzymatic catalysis, RNA binding, and retroviral 

restriction32, 88. Despite up to 74% sequence identity, it has been shown that the 

contribution of the SAM domain to mouse SAMHD1 tetramerization and activity 

are markedly different from the human homologue88, 100. Intriguingly, full-length 

human SAMHD1 has decreased dNTPase activity relative to the HD domain 

alone88. In contrast, mouse SAMHD1 tetramer formation, dNTPase activity, and 

HIV-1 restriction ability are severely impaired unless the SAM domain is present. 

Thus, it is clear even within highly similar evolutionary cousins that the role of the 

SAM domain is not well understood.  

The SAM domain in mouse SAMHD1 acts as a cap on the allosteric 

nucleotides and helps pin the tetramer together, but the human SAM domain 

seems to lack those stabilizing contacts and has remained elusive in structure 

determination. Since a full-length SAMHD1 tetramer is an ideal size (~290 kDa) 

and symmetry candidate, we then pursued the first cryo-EM structures of human 

SAMHD1RN in the hopes of capturing dynamic states of the SAM domain. 

Furthermore, crystal structures of T592E44 or in vitro phosphorylated SAMHD124 

do not resolve residues past approximately residue 580, suggesting that the 

modification may loosen previously ordered C-terminal residues. We therefore 

included a full-length SAMHD1RN T592D phosphomimetic in our analysis.  
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3.2 Results 

3.2.1 SAMHD1RN and T592D assemble into dGTP-activated tetramers 

SAMHD1RN (residues 1-626) was analyzed by gel filtration chromatography 

and negative stain EM to confirm the ability of the human full-length catalytically-

inactive protein to tetramerize. In the absence of dGTP, which is the only dNTP 

capable of satisfying A1, A2, and the catalytic site, SAMHD1 elutes at a volume 

consistent with the 72 kDa monomer. Incubation on ice with 2 mM dGTP, orders 

of magnitude above the reported low micromolar EC50 for dNTP-mediated 

allosteric activation23, stimulated near complete tetramer formation as observed by 

a ~2.5 mL earlier peak shift and agrees well with the theoretical elution volume of 

a ~290 kDa tetramer (Figure 3-1a).  

A phosphomimetic mutant, SAMHD1RN T592D, was purified and similarly 

examined. Hereafter, it is referred to as T592D for simplicity. Unlike SAMHD1RN, 

the T592D tetramer fraction was smaller. Tetramer assembly was also limited by 

kinetics for both constructs at these concentrations, as incubation with dGTP 

stimulated more complete tetramerization after 4 hours on ice compared to 30 min 

incubations (data not shown). Negative stain EM micrographs visualize largely 

intact globular particles amidst a distribution of oligomeric states (Figure 3-2b), 

which motivated me to include 2 mM dGTP in the tetramer fraction immediately 

following column passage to ensure tetramer stability. Assembled tetramers have 

diameters of 11-12 nm. 
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Figure 3-1. Tetramer formation of full-length SAMHD1RN and SAMHD1RN T592D. 
A) Incubation with 2 mM dGTP stimulates robust tetramerization of SAMHD1RN 
(left, blue) and the T592D phosphomimetic (red, right). B) Representative negative 
stain micrographs for each construct (left, SAMHD1RN; right, SAMHD1RN T592D).  
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3.2.2 Preliminary cryo-EM datasets show no observable SAM domain density 

Particles were well-behaved and stable with 2 mM dGTP in solution and 

allowed us freeze and optimize grids. We recently collected initial datasets for both 

constructs using a 200 kV Glacios cryo-TEM microscope, which was interrupted 

by a facility power outage for SAMHD1RN analysis. However, a partial dataset for 

SAMHD1RN was obtained from 928 images, compared to 2484 images for T592D, 

and allowed us to resolve side chain density in both cases. Figure 3-2a shows a 

heatmap of the particle orientations for both tetramers in which T592D exhibits 

more even distribution due to a larger observed number of particles (592,532 as 

opposed to 176,727). Class averages show no remarkable differences in 

orientation, yet also show no evidence of an associated SAM domain.  

Closer inspection of 2D class averages shows the C-terminal lobe is 

modestly blurred in some classes for both SAMHD1RN and T592D. Following ab 

initio reconstruction in cryoSPARC, I performed non-uniform refinement with D2 

symmetry enforced resulting in a 2.8 Å map for SAMHD1RN and a 2.6 Å map for 

T592D (Figure 3-2b). Interestingly, the generated maps are practically identical to 

each other (cross FSC0.143 < 3 Å), no SAM domain density is observed, and the 

maps are thus not significantly different than the X-ray crystallographic structure 

of dGTP-bound SAMHD1RN HD domain (residues 113-626; Figure 3-2c)10. Both 

full-length SAMHD1RN and its phosphomimetic however exhibit disorder in the C-

terminal lobe beyond residue 580, unlike the X-ray model. 
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Figure 3-2. Cryo-EM structures of SAMHD1RN and T592D. A) Particle orientation 
distribution plots and the associated 2D class averages for each construct. B) 3D 
volume alignment and gold standard Fourier shell correlation (GSFSC) plots 
showing resolution determination at the 0.143 threshold. C) Comparison between 
the 2.8 Å cryo-EM map of SAMHD1RN and an X-ray model (PDB code: 4BZB) of 
dGTP-bound SAMHD1RN. Red boxes indicate regions of disorder in both the 
SAMHD1RN and T592D cryo-EM maps that have been previously resolved for the 
HD domain alone. No SAM domain density is observed in the cryo-EM maps.  
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3.3 Discussion 

As a globular particle with D2 point group symmetry and labile domains 

unresolvable by crystallography, we hypothesized that SAMHD1 would be a good 

candidate for single-particle cryo-EM studies. With this technique we hoped to 

capture potential dynamic conformational states of the full-length tetramer, but 

SAM domains remained completely unresolved in our preliminary maps. Notably, 

the maps for SAMHD1RN and SAMHD1RN T592D were essentially the same. Both 

structures also showed density for dGTP at the catalytic and A1/A2 sites.  

Previous X-ray crystal structures of a T592E phosphomimetic or in vitro 

phosphorylated SAMHD1 lack ordered density extending beyond residue ~58024, 

44, which was also the case here. Figure 3-3a shows a dGTP-bound tetramer rigidly 

docked into the volume for SAMHD1RN. The C-terminal lobe is overall slightly less 

ordered and no density for the small T592-containing helix or beyond is observed 

like in previous (bacterially-expressed, non-phosphorylated HD domain) X-ray 

models10. This is true even for SAMHD1RN, which lacks modification or mutation at 

T592. Residues stretching between 116-119 make direct contacts with allosteric 

nucleotides (Figure 1-2) and density is only resolved starting at D113, akin to 

previous crystal structures (Figures 3-2c and 3-3a).  

The high similarity between SAMHD1RN and T592D maps, combined with 

all previous structural information, suggests that the phosphorylated protein 

contains an assembled catalytic core that is largely invariant from the non-modified 

tetramer. Thus, phosphorylation-dependent regulation of SAMHD1 dNTPase 

activity, discussed at length in the Section 1.1, may be governed by 1) interactions 
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with other macromolecules that are dependent on the phosphate moiety of pT592, 

or 2) the combinatorial influence of pT592 with other modifications on SAMHD1 

structure or interactions. Bacterial expression of SAMHD1 served as a useful tool 

in allowing us to dissect the effects of T592 phosphorylation alone on tetramer 

structure and confirm results from X-ray crystal structures. SAM domain lability 

relative to the HD domain also appears unaffected by T592 phosphorylation. 

These results stand to be confirmed using mammalian-expressed protein, and 

further work is ongoing regarding isolation of endogenously phosphorylated 

SAMHD1 as well as SAMHD1 co-immunoprecipitated with binding partners from 

mammalian cells. 

Classifying either data set using up to 3 ab initio classes without symmetry 

enforcement failed to capture a discernible fixed orientation for a SAM domain and 

2D averages show no evidence for additional domains beyond the catalytic core. 

Focused refinement of an additional ~30 Å of space surrounding the current 

particle boundary (~110 Å in diameter) would be ideal to visualize the SAM domain 

independent of its orientation to the HD domain. However, this is not possible due 

to the very small (~12 kDa) SAM domain which generates indistinguishable signal 

in our (and likely any) current microscope and detector setup. Since a single ab 

initio class gives the best map and no evidence for SAM density is observed at low 

map contours for SAMHD1RN and T592D, the SAM domain is likely highly flexible 

and free from stable intra- or inter-protomer association within each tetramer. 

It is interesting to speculate on the origins of flexibility. Alignment of mouse 

(mSAMHD1) and human (hSAMHD1) N-terminal sequences are shown in Figure 
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3-3b. The mouse orthologue is extremely conserved relative to the human version 

with most variability arising due to the SAM domain. Pairwise sequence identity for 

the HD domains is 72% (using the EMBOSS alignment server101), whereas the 

SAM domains reside at 50% (and drop to ~37% if including the 31-residue N-

terminal addition in mouse). One region contributing to this variability involves 

residues 100-112 in hSAMHD1 (corresponding to mouse positions 132-144) 

immediately preceding D113, which warrants investigation as to its role in SAM 

domain flexibility.  

C-terminal flexibility is also apparent (Figure 3-3b). Notably, a helix 

containing T592 that has been observed in X-ray data of HD domains is absent in 

our structures. This may reflect the heterogeneity in C-terminal lobe conformations 

induced by a lack of crystal packing, loosened tetramer packing specific to 

SAMHD11-626 instead of SAMHD1113-626, or a combination of these factors. T592 is 

also among ~40 C-terminal residues for which no density has been resolved, which 

delineates an unstructured C-terminal tract capable of extending across the 

diameter of the tetramer core. Numerous critical modifications occur in this tail, 

including phosphorylation, SUMOylation, and ubiquitination (Figure 1-1) which 

require direct interaction with the appropriate enzymes and have major functional 

consequences. No gross structural deviations caused by T592D were revealed 

here, but pT592-based regulation of catalytic activity may still be dependent on a 

disordered-to-structured transition (or vice-versa) in unresolved regions of these 

maps induced by the modification, as observed for other phosphorylation-

regulated proteins102.  
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Thus, bacterially-produced full-length SAMHD1RN and SAMHD1RN T592D 

retain similar structure of the catalytic core. In both cases, the SAM domain is a 

dynamic appendage and the unstructured C-terminal domain, which is tagged in 

multiple locations, is capable of sampling a large radius for potential interactions. 

These new cryo-EM data confirm that phosphorylation-dependent regulation of 

full-length SAMHD1 does not involve pT592-induced structural changes in the 

catalytic core, or stable intra-tetramer SAM domain interactions. Instead, the N-

terminal SAM domain and the C-terminus may engage in PTM-modulated 

macromolecular interactions that govern SAMHD1 enzymatic regulation. The C-

terminal lobe lies directly adjacent to a cluster of regulatory cysteines (Figure 2-5), 

sits proximal to space a neighboring SAM domain can sample, and exhibits a 40-

residue disordered stretch at the C-terminus that is capable of being multiply-

modified and spanning the tetramer’s diameter. Considering the four-fold 

redundancy of these potential interactions in an assembled tetramer, and how they 

might affect allosteric activation, the opportunity for regulatory crosstalk involving 

these regions is evident.  
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Figure 3-3. N-terminal SAM domains and C-termini are highly flexible. A) PDB: 
4BZB rigid docked into the SAMHD1RN map with each subunit colored and labeled 
accordingly. The inset shows the disordered C-terminal lobe sitting over the A1/A2 
allosteric nucleotide binding sites. Red diamond indicates the location of T592 
phosphorylation. The sphere indicates the first ordered N-terminal residue of 
SAMHD1 (D113) observable by both X-ray crystallography or cryo-EM, which is 
situated directly adjacent to A1/A2. B) Sequence alignment (generated using the 
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ESPript server103) of the mouse and human SAMHD1 N-terminus. The SAM 
domain is boxed in gray. Identical residues are colored red. Similar residues are 
colored yellow. Residue numbering is indicated above (mouse isoform 1) or below 
(human isoform 1) the sequence. C) Schematic of a full-length SAMHD1 tetramer. 
“N” signifies the N-terminus. Relative positions of T592 phosphorylation and the 
SAM domains are shown. Red arrows indicate the opportunity for intra-tetramer 
interactions between unstructured N- and C-termini. Gray arrows indicate the 
possibility for undiscovered interactions with the N-terminal SAM domain, the 
highly modified C-terminus, and/or the HD domain. 
 

3.4 Future directions 

 The lateness with which my work surrounding SAMHD1 began, in 

combination with limitations due to the COVID-19 pandemic, caused the desired 

progress on this project to be delayed. Currently we are moving forward with 

multiple prongs of work on SAMHD1 structure. We are interested in full-length WT 

SAMHD1 structure as opposed to the HD/RN mutant in these studies. We have 

preliminarily explored general chemical crosslinkers such as glutaraldehyde to limit 

protein dynamics and attempt to capture regions of conformational space the SAM 

domain can sample. These studies are ongoing and will include side-chain specific 

crosslinker screening. A more attractive direction is obtaining SAMHD1 in complex 

with a binding partner that may stably interact with and lock down the flexible SAM 

domain. Furthermore, these initial studies were performed with bacterially-

expressed SAMHD1, but must be repeated with protein produced in mammalian 

cells before any conclusions can be drawn for human SAMHD1 structural 

mechanisms. We are currently collaborating with Li Wu’s lab at the University of 

Iowa to isolate pSAMHD1 from 293T cells with co-immunoprecipitated NF-κB, and 

I will expand this work to purify (non-phosphorylated) SAMHD1 from non-cycling 

cells. Further optimization of tetramer stability using different dNTP combinations, 
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and quantitatively assessing full-length protein assembly kinetics, may also 

provide improved particles and resolution. Ultimately, data collection on a 300 kV 

Titan Krios is planned. 

3.5 Experimental procedures 

3.5.1 Protein expression and purification 

N-terminally 6x His-tagged SAMHD1 (residues 1-626; H206R/D207N +/- 

T592D) was cloned into pET28b. Proteins were expressed in E. coli Rosetta (DE3) 

cells and induced at OD ~ 0.6-0.8 for 16 hrs @ 18 ˚C. Resuspended cells (NiA 

buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 0.1 mM TCEP, 5% v/v glycerol, and 10 

mM imidazole) were lysed via microfluidizer (15k psi) and purified through gravity 

flow Ni-NTA affinity resin and S200 PG 16/60 gel filtration chromatography. 

Collected protein was concentrated, aliquoted, flash frozen in 25 mM Tris-HCl pH 

7.5, 150 mM NaCl, 1 mM DTT, 10% glycerol, and 0.02% sodium azide, and stored 

at -80 ˚C until further use. 

3.5.2 Tetramer assembly  

Tetramers were assembled fresh from thawed protein. SAMHD1RN (6.6 

mg/mL) or SAMHD1RN T592D (12.4 mg/mL) was combined with dGTP (2 mM) and 

gel filtration buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 5 mM MgCl2, 0.5 mM 

TCEP) and incubated on ice for at least 4 hrs, agitating every hour. Samples were 

applied to a S200 Increase GL 10/300 gel filtration column and tetramer fractions 

were immediately spiked with 2 mM dGTP after coming off the column to preserve 

tetramers until grid preparation.  
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3.5.3 Negative stain EM grid preparation and data collection 

Generally, protein (~0.05 mg/mL; 4 µL) was applied to grids (Cu 400 mesh 

with carbon film; Electron Microscopy Sciences) pretreated by glow discharge for 

15 s at 10 mA (Gloqube Plus; Electron Microscopy Sciences). Following 1 min 

incubation, liquid was blotted away and sample was briefly massaged in 15 µL of 

2% uranyl acetate, (UA) blotted, then dipped in another UA drop and incubated for 

1 min. All stain was blotted and the grid was allowed to air dry. Images were 

collected using a Talos L120C equipped with a BM-CETA CCD detector.  

3.5.4 Cryo-EM grid preparation and data collection 

 Tetramer fractions (~350 mAU) stabilized with dGTP were applied (3 µL) to 

a 300 mesh C-flat 2/1 Cu grid (Electron Microscopy Sciences) pretreated by glow 

discharge for 15 s at 10 mA. Each grid was blotted at 20 ˚C, 100% humidity for 1 

s with blot force of -1, plunge-frozen into liquid ethane using a FEI Vitrobot Mark 

IV (Thermo Scientific), and stored in liquid nitrogen until data collection. 

 Images were collected using a Thermo Scientific Glacios electron 

microscope equipped with a 200 kV FEG and a Gatan K2 direct electron detector. 

Raw pixel size was 0.4515 Å. A total of 928 images (cut short due to Hurricane 

Ida’s power outage!) for SAMHD1RN and 2484 images for SAMHD1RN T592D were 

collected. A defocus range of -1 to -2 µm was used and data were collected with a 

total dose of 41 e/Å2, or 4.65 s over 31 frames. Standard data processing 

procedures in cryoSPARC were used104, including non-uniform refinement with D2 

symmetry enforced. The final global resolution was 2.8 Å from 176,727 particles 

for SAMHD1RN and 2.6 Å from 592,532 particles for SAMHD1RN T592D. The 



 47 

crystal structure of dGTP-bound SAMHD1RN from PDB: 4BZB was rigid docked 

into the maps using ChimeraX without need for further fit refinement. 

3.6 Contributions 

 Many thanks to Kaifeng Zhou, Wei Zheng, and Jianfeng Lin who taught me, 

helped prepare grids, and collected data.  
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4. Appendix I: Probing HIV-1 capsid stability and interactions 

4.1 Introduction 

As a retrovirus, HIV-1 is tasked with reverse transcribing its ssRNA genome 

into double-stranded complementary DNA (cDNA), translocating it to the nucleus, 

and integrating into the host genome. The viral genome is contained within a 

proteinaceous capsid – a protective cargo vessel porous to nucleotides105, 

doubling as a reaction chamber for reverse transcription – while it is trafficked to 

the nucleus along microtubule networks. The capsid is an important biological 

structure that must protect the vulnerable viral genome from restriction factors, 

interact with necessary trafficking machinery including the nuclear pore complex 

(NPC), and disassemble at the proper moment to allow for genome integration, as 

we review in106.  

Each capsid is composed of many copies of the capsid protein (CA) which 

oligomerizes into hexamers (~250) and pentamers (12) that form the conical 

shell107, 108 (Figure 4-1a). Numerous proteins must interact with the assembled 

capsid to facilitate productive infection and the capsid has thereby evolved to 

recognize various common motifs, which can be studied through the assembly of 

CAA14C/E45C tubes that recapitulate the pattern of the capsid surface (Figure 4-1b). 

Patterns formed at four main interfaces are propagated throughout the lattice, each 

with unique charge distributions, and serve as signposts for capsid-binders (Figure 

4-2). My work regarding CA focused on interactions at the central pore, which is 

most notably characterized by a 6-fold ring of R18 residues (Figure 4-2). This 

electropositive channel makes the capsid porous and can coordinate phosphate 
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moieties of important small molecule metabolites including dNTPs to fuel reverse 

transcription and IP6 which seems important for DNA synthesis and stability105, 109, 

110. Other polyanions located on disordered protein domains are capable of 

interacting with the central pore, including fasciculation and elongation protein 

zeta-1 (FEZ-1) which acts as a kinesin-1 adaptor and participates in capsid 

translocation to the nucleus111. Tracts of sequential polyglutamate (pE) residues 

have been shown biochemically and computationally to mediate binding to the 

central R18 ring in CA hexamers112. Other proteins bearing pE motifs or 

modifications then became my focus, including polyglutamine binding protein 1 

(PQBP1, a nuclear transcription/splicing factor that binds polyglutamine 

repeats113) and cyclic GAMP synthase (cGAS) discussed below. 

Figure 4-1. Organization of HIV-1 CA assemblies. A) The HIV-1 capsid is 
composed of 12 pentamers (yellow and gray, top) and over 200 hexamers (wheat 
and slate, bottom). Model is based off of PDB 3J3Q. B) Model of helical disulfide-
stabilized CAA14C/E45C tubes and visualization through negative stain EM 
micrograph. 
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Figure 4-2. Commonly targeted sites of the HIV-1 capsid surface with important 
residues noted and relevant binding factors listed. Figure adapted from106. 
 

Initial work began with cGAS, a cytosolic DNA sensor that mediates innate 

immune responses by catalyzing formation of cGAMP (cyclic 2’-3’-guanosine-

adenosine monophosphate) to mount IFN-I responses59, 114 and positively regulate 

T-cell activation115 upon activation with dsDNA116 (Figure 4-3). Contact with 

cytosolic DNA causes liquid phase separation in which cGAS crosslinks 

nonspecifically with DNA and condenses into highly enzymatically active 

populations, which concentrates cGAMP product formation to activate 

downstream innate immune activation117. Due to low observed DNA affinity and 

relative binding promiscuity, co-receptors have been proposed as a mechanism of 

specificity and affinity; PQBP1 is a co-receptor for cGAS and directly binds the 

HIV-1 RT product to help induce an antiretroviral immune response118. PQBP1 
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possesses a disordered N-terminal poly-acidic patch, and cGAS (as well as 

tubulin119) is post-translationally polyglutamylated120. Although little is understood 

about the general nature of polyglutamylation as a PTM, it can affect processivity 

and velocity of tubulin-traversing microtubule motors121 and negatively regulate the 

activation state of cGAS120. Building off of our lab’s previous work with FEZ-1, I 

show a preliminary identification of polyglutamate as a motif directing capsid-

binders to the central hexamer pore. 

Figure 4-3. Illustration of cGAS-mediated immunity in which, following cellular 
deposition, retroviral RNA is reverse transcribed into cDNA and stimulates 
cGAS/PQBP1-mediated activation of innate immunity through cGAMP synthesis. 
A working model based on collaborator data was that PQBP1 can only co-stimulate 
innate activation if cGAS was pE-modified (flyout). 
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4.2 Results 

4.2.1 Purification and binding of cGAS and PQBP1  

 cGAS has been reported to form soluble aggregates with DNA117. I 

recombinantly overexpressed full-length human cGAS (residues 1-522) and 

cGASΔNTD (residues 161-522) with pRARE and +/- TTLL6, the endogenous 

polyglutamylase of cGAS120. Large soluble aggregate species are observed 

regardless of sequence length or pE presence, but pE modification through TTLL6 

coexpression markedly reduced the A260/280 of the DNA-associated aggregates 

from 1.46 to 1.11 (and increased the proportion of smaller oligomers (A260/280 ≈ 0.8-

0.9; Figure 4-4a). Later cGAS preps including DNase treatment achieved 

monodisperse monomeric protein that was prone to degradation in solution. 

PQBP1, which is mostly disordered, was purified and runs as a dimer according to 

size on gel filtration. No pairwise affinity between cGAS+/-NTD and PQBP1 is 

observed at low µM concentrations on gel filtration (Figure 4-4b).  
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Figure 4-4. Expression and binding of cGAS and PQBP1 constructs and 
interaction with CA. A) Co-expression of cGAS with TTLL6 reduces the A260/280 of 
the void peak, presumably soluble nonspecific DNA-cGAS aggregates. B) Initial 
binding (shown) and subsequent “cleaner” binding with monodisperse cGAS (not 
shown) show no significant interaction by gel filtration chromatography, but this 
bears repeating. C) PQBP1 and cGAS have non-additive affinities for CA tubes, 
with largely similar affinities between WT and N74D tubes. D) PQBP1 pelleting 
with CA tubes is salt-sensitive. MBP: maltose binding protein (negative control). E) 
PQBP1 pelleting is sensitive to the present of the NTD and charge neutralization 
at the R18 hexamer pore. 
 
4.2.2 Interaction of cGAS and PQBP1 with CA constructs 

Neither cGAS nor PQBP1 interacted with soluble 

A14C/E45C/W184A/M185A crosslinked CA hexamers (data not shown). However, 

both proteins demonstrated affinity for helical arrays of HIV-1 CA tubes in a 

pelleting assay that takes advantage of the insolubility of assembled A14C/E45C 
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crosslinked CA. Neither PQBP1 nor cGAS showed increased or diminished 

pelleting with tubes in a mixed sample (Figure 4-4c). Focus of our collaboration 

shifted to PQBP1, which seemed to be recruited first to decorate the HIV-1 capsid 

upon cellular deposition. I further characterized PQBP1 binding to tubes. PQBP1 

has concentrated acidic residues, particularly rich in glutamates, on its NTD 

(residues 1-46) and overall had weak affinity for CA tubes at 75 mM NaCl. Stronger 

binding is observed at 25 mM NaCl (4-4d). 

I hypothesized that the higher negative charge density of the NTD (Figure 

4-5a) targets the central pore of assembled CA hexamers. Consistent with this 

hypothesis, 500 mM salt abrogated the expected electrostatic interaction between 

the electropositive R18 pore and acidic PQBP1 residues and slight reduction in 

binding can be observed using PQBP1Δ1-46, IP6 addition, or CAR18D tubes (Figure 

4-4e). Alanine-scanning mutants were used to further identify regions of binding 

significance, but pelleting assays were generally not sensitive enough to capture 

subtle differences in weak binding. Protein ended up being sent instead for 

spectroscopic binding assays in collaboration with the Chanda group at SBP and 

Böcking group at UNSW, in press at the time of this writing122. Indeed, these 

assays show the N-terminal 46 residues of PQBP1 are sufficient for strong capsid 

binding, and that PQBP1 binding is abrogated by hexacarboxybenzene addition 

(HCB, a polyanionic R18 pore ligand) and CAR18G mutation (manuscript in press). 
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Figure 4-5. pE motifs are common capsid binders. A) Schematic of PQBP1 
primary structure with all acidic residues highlighted in red. Structured domains are 
noted on top and relevant constructs to my experiments are denoted below the 
schematic. B) Tubulin pelleting assay with disulfide-stabilized CA tubes. C) 
Western blot to detect pE modification on various preps of full-length cGAS, with 
tubulin as a positive control and FEZ-1 as a negative control. Arrow indicates 
unique band in TTLL6-coexpressed protein. D) Crystal obtained from 6x pE 
peptide additive screen with disulfide-stabilized HIV hexamers. No density was 
observed for the peptide. 
 

4.2.3 Crystallization of CA hexamers with a pE peptide is unfruitful 

We have known HIV-1 capsid cores are trafficked along tubulin-based 

microtubule networks, yet pelleting assays I performed positively demonstrated 

direct interaction between natively purified calf brain α/β-tubulin and CA tubes 

(Figure 4-5b), which is one of few other relatively well-studied pE-modified 

proteins119. IP6 and CAR18D tubes however seemed to have no effect on tubulin 

pelleting, which remained strong, indicating further important binding surfaces. 

However, it is clear that other proteins that bear polyglutamate motifs such as FEZ-

1, PQBP1, and cGAS which is post-translationally modified by TTLL6 (which is 

confirmed via Western blot in Figure 4-5c) share a common targeting mode. I 
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attempted to crystallize an HIV-1 CAA14C/E45C hexamer with a 6x-polyglutamate 

peptide. Extremely large crystals formed that were stable for weeks (Figure 4-5d). 

A diffraction data set was collected revealing a novel (P1) space group, with four 

hexamers in the asymmetric unit but ultimately no additional density for a pE 

peptide (data not shown). 

4.3 Discussion 

Coexpression of TTLL6 with cGAS, thereby increasing the pE-modified 

population, seems to decrease the amount of nucleic acid bound in void species 

that elutes during cGAS size exclusion purification (Figure 4-4a). Unpublished 

collaborator data suggested cGAS may need to be pE-modified to act with PQBP1 

to mount an immune response (Figure 4-3). No pairwise interaction could be 

observed between PQBP1 and cGAS with or without pE modification (Figure 4-4b; 

data not shown) but interaction has been shown by co-IP previously118. Although 

neither cGAS nor PQBP1 could interact with soluble CA hexamers at low µM 

concentrations by gel filtration, both showed affinity at similar concentrations for 

CA tubes in pelleting assays. PQBP1 affinity can be mostly attributed to its acidic, 

negatively charged N-terminal 46 residues acting on the central hexamer pore, but 

less important binding surfaces may still be involved. This is supported by PQBP1 

showing modest yet repeatable decreased pelleting with N74D tubes, a hyper-

stable capsid mutation which might implicate the FG-binding pocket (Figure 4-2). 

Binding between cGAS and PQBP1 appeared independent in part due to their 

inability to saturate the numerous binding sites available on CA tubes at low 

micromolar concetrations. Although crystallization with a pE peptide showed CA 
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hexamers in a P1 space group for the first time in our lab, no density was observed 

for the peptide at the central pore or elsewhere.  

4.4 Future Directions 

 Further work must be completed to ascertain if PQBP1 and cGAS 

independently bind the CA lattice or participate in a ternary complex, which was 

not observed here. Interestingly, PQBP1 binds the HIV-1 RT product, 

Determinants in PQBP1 binding are now well-understood, structural analysis is 

precluded since PQBP1 is largely disordered123. Further work should be devoted 

to uncovering determinants in cGAS association with CA tubes. As both cGAS and 

PQBP1 can associate with the viral cDNA118, the potential role of nucleic acid in 

complex with these proteins and the capsid should be evaluated.  

4.5 Experimental Procedures 

4.5.1 Protein expression and purification 

Constructs for full-length (1-522) and ΔNTD (161-522) cGAS were cloned 

into pET16 vectors (Amp) with an N-terminal 6xHis-MBP tag and intervening TEV 

protease cleavage site. Sequences encoding residues 1-265 and 47-265 of 

PQBP1 were inserted into MCS1 of pCDFDuet-1 with a 6x N-terminal His-tag. 

Similarly, full-length human TTLL6 was inserted into MCS1 of pRSFDuet-1 with an 

N-terminal 6x His-tag. Proteins were expressed in E. coli BL21 (DE3) cells (or the 

Rosetta cell line and co-transfected with pRARE for cGAS expression) and 

induced at OD600 ~ 0.8 for 16 hrs at 18 ˚C. Cells were resuspended and lysed in 

NiA buffer supplemented with a protease inhibitor cocktail tablet (Roche) using a 

microfluidizer (15k psi). 6xHis-PQBP1 was purified through Ni-NTA affinity and 
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S200 PG 16/60 gel filtration chromatrography. Both cGAS constructs were treated 

with DNAse 30 min prior to lysing, then purified through Ni-NTA affinity and S200 

PG 16/60 gel filtration, with an optional HiTrap QP anion exchange step. 

CAA14C/E45C-[mPro]-MBP-6xHis and CAA14C/E45C/W184A/M185A were cloned into 

pET11a (Amp). Protein was expressed in E. coli BL21 (DE3) cells and induced at 

OD600 ~0.6-0.8 at 25 ˚C for 16 hrs. Cells were resuspended in lysis buffer (50 mM 

Tris pH 8.0, 300 mM NaCl, 0.1 mM TCEP, 5% v/v glycerol), lysed via microfluidizer 

(15k psi), and clarified at 15000 rpm for 35 min. Samples were purified separately. 

CAA14C/E45C-[mPro]-MBP-6xHis was purified through gravity Ni-NTA affinity 

chromatography followed by concentration and dilution into QA buffer (50 mM Tris 

pH 8.0, 0.1 mM TCEP) and passage through a HiTrap QP ion exchange column. 

CAA14C/E45C/W184A/M185A supernatant was subject to a 25% ammonium sulfate 

precipitation at 4 ̊ C for 2 hrs while stirring but minimizing bubbles. The precipitation 

was centrifuged at 15000 rpm for 20 min and the pellet was resuspended slowly 

and dialyzed overnight in excess SA buffer (25 mM HEPES pH 7.5, 0.1 mM TCEP). 

Protein was further purified through HiTrap SP ion exchange chromatrography. All 

protein was concentrated in 50 mM Tris pH 8.0, 75 mM NaCl, and 40 mM βME 

and flash frozen for storage at -80 ˚C until use. 

4.5.2 Western blots 

 Following SDS-PAGE, protein bands were transferred to a PVDF 

membrane via electrophoresis, blocked with milk, and incubated with the 

appropriate antibody according to standard protocol. Either mAb GT335 

(Adipogen; detects the branch points on glutamate side chains of all forms of 
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glutamylated protein), pAb IN105 (Adipogen) which detects polyglutamate chains, 

were used as primary antibodies)124, and α-His (from where??) were used as 

primary antibodies. Orthogonal secondary antibodies conjugated to horseradish 

peroxidase (HRP) were used with ECL reagent (Thermo Fisher) according to 

manufacturer’s protocol and exposed to film for detection. 

4.5.3 Gel filtration binding assays 

 Binding reactions were typically performed at 75 mM NaCl with 50-100 µM 

binding partners allowed to incubate on ice for 30 min to 1 hr. Samples were 

applied to the appropriate gel filtration column, typically a Superdex resin like S200 

GL Increase 10/300, in a running buffer made of 50 mM Tris pH 8.0, 75 mM NaCl, 

and 0.1 mM TCEP, and elution profiles were analyzed.  

4.5.4 Pelleting assays 

Disulfide-stabilized CA tubes were formed by dialyzing CAA14C/E45C (~15 

mg/mL) at 4 ˚C overnight in 50 mM Tris pH 8.0, 1 M NaCl, and 40 mM β-

mercaptoethanol, followed by two nights in 50 mM Tris pH 8.0, 1 M NaCl, and 

finally overnight in 50 mM Tris pH 8.0. Concentration of CA tubes was determined 

using A280 and monomeric Abs0.1% = 1.31. Pelleting reactions were performed at 

25 mM NaCl and mixing 100 µM CA (16.7 µM hexamers) with typically 50 µM 

binding factor unless otherwise noted. Reactions were incubated at room 

temperature for 30 min and pelleted by tabletop centrifugation at 4 ˚C at 14000 

rpm for 15 min. Supernatants were carefully removed from the pellet and their 

volume estimated to resuspend the pellet. Gel samples for input, supernatant, and 

pellet fractions were taken at appropriate times and analyzed via SDS-PAGE. 
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4.5.5 Crystallization  

 CAA14C/E45C/W184A/M185A (300-400 µM) was assembled into hexamers by 

dialyzing overnight at 4 ˚C in 50 mM Tris pH 8.0, 1 M NaCl, and 40 mM β-

mercaptoethanol, followed by two nights in 50 mM Tris pH 8.0, 1 M NaCl, and 

finally overnight in 50 mM Tris pH 8.0. Concentrations of CA hexamers was 

determined using A280 and monomeric Abs0.1% = 1.31. Co-crystals for disulfide-

crosslinked hexamers with a 6x-pE peptide (Genscript) were obtained using the 

microbatch under oil method. A solution of hexamers (20 µM; in 50 mM Tris pH 

8.0, 75 mM NaCl) was mixed with a 10X molar excess EEEEEE peptide (200µM; 

resuspended according to manufacturer protocol in 50 mM Tris pH 8.0, 60 mM 

NaOH) and incubated at room temperature for 30 min before setting trays with 1 

µL of protein solution with 1 µL of condition in the crystallization drop. Crystals 

appeared within 3 days, with the most significant hit in 0.1 M MMT buffer, 25% v/v 

PEG 1500 (NeXtal PACT D3). The crystal was broken apart and cryoprotected 

with 25% v/v glycerol and flash frozen in liquid nitrogen. Diffraction data were 

collected on the NECAT beamline 24-ID-E at the Advanced Photon Source (APS), 

Argonne National Lab. No structural data are presented since no pE density was 

observed. 

4.6 Contributions 

Some of the work shown here references data recently submitted for 

publication122 in collaboration with Sumit Chanda’s group at SBP Medical 

Discovery Institute.  
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5. Appendix II: Prototyping DNA origami scaffolds to mitigate the 

air-water interface in cryo-EM grid preparation 

5.1 Introduction 

 As the sophistication of cryo-EM processing capabilities have developed, 

particle adsorption to the air-water interface (AWI) has had little match in the 

bottleneck it presents for routine high-resolution structure determination. AWI-

mediated denaturation of proteins is to an extent unavoidable. Following blotting 

of a sample from a grid, the blotted grid is exposed to air while quickly plunged into 

liquid ethane to form vitreous ice, which is necessary for electron-transparency in 

contrast to crystalline ice125, 126. Residual protein deposited in holes of the grid has 

a high surface area:volume ratio and generally capable of diffusing to the AWI in 

under 1 ms127. Hydrophobic cores of folded proteins tend to associate with the 

hydrophobic AWI, which leads to partial denaturation and/or anisotropic preferred 

orientations of particles relative to the AWI125 and can affect upwards of 90% of 

particles128. Thus, the AWI can introduce major deleterious effects during atomic 

resolution cryo-EM structure determination129, 130. 
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Figure 5-1. Grid structure and the CA hexamer orientation bias. A) Basic 
dimensional cryo-EM grid organization (left) and illustration of the AWI problem in 
single particle analysis (right). Hydrophobic cores of proteins associate with the air 
interface, which is hydrophobic compared to aqueous solution. This results in 
partial denaturation of the majority of deposited protein, limiting overall maximum 
resolution and contrast, and is often coincident with an induced particle orientation 
bias (red particles, fewer views amongst more aggregation and/or denaturation). 
B) Experimental 2D class averages of an HIV CA hexamer showing orientation 
bias versus theoretical class averages showing multiple views. 
 

Various groups have attempted to mitigate the AWI problem at each step of 

sample preparation, reviewed well by Weissenberger et al131. Alternate blotting 

parameters and faster plunging are obvious avenues to reduce diffusion time and 

therefore denaturation at the AWI126. Additives and detergents have successfully 

been used in some cases to line the AWI and prevent particle adsorption, 
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specifically with nonionic and zwitterionic species132-134, but detergent selection is 

case-by-case and may still affect native protein structures. Further aspects of 

sample buffer and construct design can be optimized131. Support structures that 

sequester the protein within the aqueous volume – away from the AWI – are more 

popular. For example, carbon-based thin films of graphene-oxide135 or graphene 

monolayers136, 137 hydrophilized with plasma have been used to achieve near 

atomic resolution of a 52 kDa streptavidin particle in the latter case. However, 

these supports can introduce background signal that makes particle visualization 

more difficult. Some carbon films can also be chemically functionalized to retain 

particles away from the AWI, for example using ssRNA to enrich low abundance 

biological complexes on the grid138. Other reports detail using an additional highly 

stable gold grid, across which a graphene monolayer is supported, to achieve 

improved image quality and resolution139. 

Another more tunable approach uses DNA origami to serve as a support 

structure. DNA origami, as its name suggests, refers to folding DNA duplexes into 

large nanoscale structures and relies on a long ssDNA template strand and 

numerous oligonucleotide “staples” that govern its three-dimensional 

organization140. Martin et al used a hollow hexagonal origami tube with an internal 

anchoring point as a scaffold for the transcription factor p53 which recognized 

specific dsDNA sequences engineered into the scaffold141. This scaffold design 

did not generate multiple orientations as intended, which are needed for high 

resolution reconstruction and was further limited in application to DNA-binding 

proteins. In collaboration with Chenxiang Lin’s lab, we worked to develop a 
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modular DNA origami scaffold to sequester the protein of interest (POI) away from 

the AWI and allow for multiple orientations to be sampled in order to aid in 

structural analysis of challenging POIs that exhibit AWI association or preferred 

orientation issues.  

Anecdotally in the Xiong lab, the CA hexamer (described in Appendix I) is 

notorious for preferred orientation bias while preparing cryo-EM grids (Figure 5-

1b). It therefore served as a useful test case in assaying whether our origami 

construct: 1) easily and efficiently tethered a POI, 2) sequestered the POI away 

from the damaging AWI, and 3) allowed the particle to freely tumble in solution and 

sample multiple orientations. Here I summarize results of an extensive negative 

stain EM screening effort after scaffold prototyping as the first steps in methods 

development aimed at mitigating effects of the AWI. 

5.2 Results 

5.2.1 Our origami scaffold prototype is modular and polymerizeable   

  In collaboration with the Lin lab, we screened methods of attaching a CA 

hexamer to multiple scaffold designs. Initial work focused on the modularity of the 

origami monomer. Our design included the capacity for axial polymerization, which 

we hypothesized would allow us to control monomer stacking and therefore 

regulate ice thickness. Indeed, the monomers were able to stack to an extent as 

observed in negative stain micrographs (Figure 5-2c), and the number of stacked 

monomers can be controlled. 
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Figure 5-2. Pilot origami scaffold design. A) Top view of an origami monomer brick. 
Cylinders represent dsDNA helices, with two intervening ssDNA strands through 
the middle. Dimensions are shown. A 9-mer POT1 binding sequence was 
designed into one central strand for protein attachment. B) Monomers were 
designed to stack axially, in a modular manner, to precisely and systematically 
influence ice thickness. C) Negative stain micrographs demonstrating axial 
polymerization. D) Teeth (blue/green helices) are built into opposing sides and slot 
into corresponding grooves (blue/green dashed boxes) upon addition of specific 
oligonucleotide linkers, allowing us to laterally polymerize the monomer. Colored 
asterisks indicate the location of linker hybridization staple monomers together. E) 
Negative stain micrographs demonstrating lateral monolayer polymerization. The 
yellow circle indicates the size of a standard cryo-EM grid hole (1 µm). All 3D 
renderings were made by John Powell. 



 66 

  The sides of the scaffold were also sculpted such that addition of an 

oligonucleotide staple (Figure 5-2d, “blue” linkers) induces lateral tetramerization; 

the linker hybridizes to the origami, forming a tooth on one side and slots into a 

complementary groove on another monomer and joining them. The four-monomer 

unit is similarly incubated with another set of staples (“green” linkers) to stimulate 

total lateral polymerization. Our construct’s capacity to polymerize laterally was 

incredibly successful as judged by negative stain, showing continuous origami 

arrays with enough coverage to fill a standard cryo-EM grid (Figure 5-2e). With 

well-behaving origami constructs, we next focused on screening strategies for 

anchoring a POI to the origami scaffold. 

5.2.2 Iterative protein-to-origami attachment strategies yield a robust anchor 

 The first anchoring strategy we tried involved a DNA-binding protein fusion 

with POT1 (protection of telomeres 1), a ssDNA-binding protein reportedly involved 

in telomeric maintenance and possessing a low nM ssDNA affinity142. In order to 

make the scaffold more widely adaptable, we also utilized SpyCatcher/SpyTag-

based (SpyC/SpyT) covalent protein attachment143. SpyC/SpyT are two 

bioengineered components of a bacterial adhesin that spontaneously react in close 

proximity to form an isopeptide bond and covalently link both components. Instead 

of requiring a recombinantly-encoded POT1 fusion, separate purification of a 

POT1-SpyC chimera (19.6 + 15 kDa) then offers a smaller fusion tag to be 

encoded (SpyT, 13 residues without requirement for N-or C-terminal exposure) 

and has the advantage of a more universal tethering mechanism.  
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Accordingly, soluble hexamers incorporating CA-SpyT-MBP were 

assembled. Singly-tagged hexamers (Hex-SpyT-MBP) were isolated to ensure 1:1 

binding with POT1-SpyC and therefore 1:1 stoichiometry with the scaffold tether 

site (Figure 5-2d). MBP was not cleaved so as to protect SpyT from degradation. 

In an attempt to purify a reacted complex of POT1-SpyC and Hex-SpyT-MBP 

however no interaction could be confirmed by gel filtration, even for hexamers with 

6 incorporated SpyTs and MBP cleaved off (data not shown). Altogether the POT1 

binding efficiency was extremely low (~10%; defined as the number of origami 

monomers with a single loaded complex) and caused us to pursue other anchoring 

strategies. 

We also explored, and ultimately decided to use, oligonucleotide 

hybridization as an anchoring mechanism. We initially elected to take advantage 

of biotin-streptavidin (SA) interactions, one of the strongest affinities observed in 

biology (Kd ~10 fM for a SA tetramer144). We used a double mutant, S52G/R53D, 

with a 10-fold slower biotin off-rate145. Our designs incorporated a SA-SpyC fusion, 

intended to connect a biotinylated oligo with a POI containing SpyT (Figure 5-3). 

Ultimately however, ~30-50% of origami monomers showed successful loading of 

tetrameric SA alone, without POI tethering. Our impressions of the large SA 

tetramer size (~265 kDa particle) along with the number of intermediate 

connections – scaffold to oligo, oligo to SA, and SA to POI – did not justify further 

optimization.  

We investigated a final tethering scheme involving POI fusion to a SNAP 

tag. A SNAP tag is a 20 kDa bioengineered alkyltransferase highly specific for 
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benzylguanine (BG)-modified oligonucleotides that forms a rapid and irreversible 

covalent attachment under physiological conditions146, 147 (Figure 5-3c). We cloned 

and purified CA constructs containing a SNAP tag in place of SpyT, then cleaved 

off MBP and assembled single SNAP-tagged hexamers as before. The reaction 

with BG-oligonucleotides and CA-SNAP constructs was highly efficient, and 

incubation of the origami scaffold v3 with CA-SNAP-[BG]-oligo resulted in loading 

efficiencies much higher than observed for SpyC/SpyT-based protein engineering. 

In this background, the vast majority of origami monomers contained at least 1 and 

up to 4 hexamers loaded (Figure 5-3d). 
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Figure 5-3. Summary of primary strategies used for origami loading. A) Iterative 
designs of the origami monomer that optimized for increased conformational 
sampling space to generate more particle orientations (v2) and the number of 
attachment sites (or “handles”, shown by asterisks) to maximize particle capacity 
per origami monomer (v3). B) Screened methods of anchoring a POI to the origami 
scaffold including the DNA-binding protein POT1 (top) and a biotinylated 
oligonucleotide that binds streptavidin (SA) and is complimentary to programmed 
sites in the scaffold. Both anchors are tethered to the POI using SpyC/SpyT 
linkages in these constructs. C) Final method for anchoring a POI using a SNAP 
tag fusion, which covalently attaches to BG-labeled oligonucleotides and produces 
free guanine. D) Representative negative stain micrograph of a loading reaction 
using the anchor strategy in panel C. Singly SNAP-tagged CA hexamers 
conjugated to a BG oligo were loaded onto scaffold v3, which contains four 
handles. Orange arrows indicate select loaded origami monomers. 
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Figure 5-4. Cryo-EM grid behavior of our prototype origami scaffold and future 
designs. A) Examples of both “apo” (left) and loaded origami (right) exhibit a 
marked preference for the grid support structure instead of the grid hole. B) 
Rendering of tensegrity triangles which became the next fundamental scaffold 
design, with three representative images showing its capacity for multi-layered 
polymerization. The yellow circle indicates the size of a standard cryo-EM grid hole 
(1 µm). 3D rendering was made by John Powell. 
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5.3 Discussion 

 In our pursuit to mitigate the AWI problem, we aimed to systematically 

optimize our scaffold for loading efficiency. Our origami exhibited robust 

polymerization capability. Our screens showed a clearly superior attachment 

strategy using BG-oligonucleotides and a SNAP-tagged POI. Recent data suggest 

POT1 DNA affinity may be up to 1000-fold weaker than previously reported148, and 

we didn’t anticipate that the uranyl acetate salt used for staining (and MgCl2 

concentrations necessary for origami stability) might out-compete POT1 binding 

from the charged ssDNA in our screens. This likely explains our low binding POT1-

mediated loading efficiency. We decided to explore oligonucleotide-based loading, 

which serves a few advantages: each oligonucleotide can be sequence-

specifically targeted to handles within the scaffold without difficulty. Oligos also 

offer an array of chemistry for linkage to other macromolecules, and salt-sensitivity 

is a minor concern since DNA duplex stability is largely driven by the hydrophobic 

effect. The SA tag we screened, which binds biotinylated handles, was more 

efficient than POT1 but far from the efficiency required. Since the tag alone 

exhibited suboptimal loading efficiency, we reasoned that attachment to a POI 

could only be worse. Ultimately, SNAP-tagging methods were superior in loading 

our hexamers and was the chosen anchoring method. 

With a robust tethering strategy and polymeric architecture, we attempted 

to analyze our scaffold’s practicality for sequestering the CA hexamer from the 

AWI and allowing the hexamer to sample multiple orientations. However, we 

immediately struggled with origami behavior on cryo-EM grids. Our origami 



 72 

constructs showed a marked preference for the grid support structure and avoided 

entering the grid hole (Figure 5-4a). In addition, the scaffold itself is ~5 nm thick on 

all sides and altogether renders ~30% of the origami’s 2D surface area unusable 

for data collection. The DNA thickness causes a tradeoff in efficient use of grid 

space, lowering particle density and potentially contributing to higher background 

signal due to significant amounts of electron-rich DNA. 

5.4 Future Directions 

 My role in the project was sunlit as I moved into work with SAMHD1 and 

CA, but further scaffolds were evaluated. These include support structures made 

with long, rigid viral filament proteins from members of the Podoviridae family, an 

amphipathic bacterial protein BslA that self-assembles into biofilms at the AWI149, 

and other polymeric origami structures as shown in Figure 5-4b. The latter case is 

assembled from “tensegrity triangle” subunits. Further work must be done to 

optimize the scaffold array’s stability while minimizing occupied grid space.  

5.5 Experimental Procedures 

5.5.1 Purification and assembly of singly-tagged Hex-SpyT-MBP 

CAA14C/E45C/W184A/M185A was expressed and purified as described in Section 

4.5.1. CAA14C/E45C/W184A/M185A-SpyT-[mPro]-MBP-6xHis was expressed and purified 

identically to CAA14C/E45C-[mPro]-MBP-6xHis as also described in Section 4.5.1, 

and hexamers were assembled using an identical dialysis protocol with a 4:1 ratio 

of CA:CA-SpyT. Mixed hexamers were separated by SpyT multiplicity using a 

MonoQ gradient fractionation, as previously described150. 

5.5.2 Purification of tether proteins 
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6xHis-POT1-SpyC was cloned into pMAT9 (Amp) lacking an MBP tag. 

Protein was expressed in E. coli BL21 (DE3) cells and induced at OD600 ~ 0.8 for 

16 hrs at 18 ˚C. Cells were resuspended and lysed in NiA buffer supplemented with 

a protease inhibitor cocktail tablet (Roche) using a microfluidizer (15k psi). 6xHis-

POT1-SpyC was purified through gravity Ni-NTA affinity and S200 PG 16/60 gel 

filtration chromatrography, flash frozen in 50 mM Tris pH 8.0, 100 mM NaCl, 0.1 

mM TCEP, and stored at -80 ˚C until use. 

The streptavidin variant (S52G, R53D) we purchased (Kerafast) is known 

as Traptavidin, developed by the Howarth lab145. 

5.5.3 Oligonucleotide preparation and BG-oligo reaction  

For streptavidin experiments, biotin-labeled oligonucleotides were ordered 

from IDT. For SNAP-tag based oligonucleotide labeling, 4 µL of 5AmMC6-modified 

oligo (IDT; 2 mM in water) was mixed with 8 µL HEPES pH 8.5 and 12 µL BG-

GLA-NHS (New England Biolabs; 20 mM in DMSO) and incubated for 1 hr at room 

temperature. The BG-oligo reaction product was confirmed by gel shift on a 20% 

TBE agarose gel and the labeled oligo was stored at -80 ˚C until further use.  

5.5.4 Origami scaffold loading 

Folded, purified origami monomers were obtained from John Powell. 

Generally, purified hexamers incorporating CA-SpyT(-MBP) or CA-SNAP were 

incubated in 2x molar excess of available oligonucleotide binding sites (“handles”). 

Origami monomers containing 4 oligonucleotide handles were therefore mixed to 

a final concentration of 25 nM origami (=100 nM handles), ~200 nM hexamer, and 
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30 mM MgCl2 to maintain origami stability. Samples were incubated at 37 ˚C for 2-

3 hrs and imaged via negative stain EM. 

5.5.5 Negative stain EM 

Negative staining was performed as described in Section 3.5.3 or by the Lin 

lab. At least 2-3 micrographs per screening condition were obtained, representing 

dozens of origami particles for loading efficiency estimation. Loading efficiency is 

defined as the number of origami monomers with at least one tethered POI, divided 

by total number of monomers observed.  

5.6 Contributions 

 John Powell was the origami production side of the project and source of 

folded origami that we used for loading reactions, and also was principally involved 

in DNA construct design. He collected many of the negative stain images shown 

here alongside our efforts, with additional help and expertise from Qi Shen, Kaifeng 

Zhou, and Chenxiang Lin. I would also like to thank Yinkai Duan, an intern from 

Tsinghua University in our lab who helped work on the SNAP tag cloning and 

screening. 
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