
Abstract

Canonical and Non-canonical Functions of Dihydrouridine Synthases in Health and

Disease

Austin Stratton Draycott

2023

Dihydrouridine is a universally conserved RNA modification which is installed by enzymes that are important for human health for reasons that are not yet clear. Here I investigate the functions of dihydrouridine (D) in RNA by developing methods to identify D sites in high-throughput and by characterizing the mechanisms by which dysregulation of dihydrouridine synthases (DUS) affects RNA metabolism and cellular physiology. D is universally present in tRNAs, where its unique nucleotide geometry permits proper folding of the tRNA D-loop. Recently, several studies demonstrated that multiple dihydrouridine synthases (DUS) cross link to mRNA in yeast and humans, suggesting they might modify mRNA. I developed dihydrouridine sequencing (D-seq) as a method for transcriptome-wide mapping of D with single-nucleotide resolution. Using D-seq, I discovered dihydrouridine in novel classes of RNA in yeast which include both mRNA and snoRNA. I find the novel D sites are concentrated in conserved stem-loop regions, suggesting a role for D in folding functional RNA structures. My work establishes D as a new functional component of the mRNA epitranscriptome and demonstrates its ability to broadly alter mRNA structure.

In humans, high expression of dihydrouridine synthase 2 (DUS2) predicts poor patient outcomes in non small cell lung cancer (NSCLC). I show in human cells that DUS2 suppresses ferroptosis, a metal-dependent non-apoptotic form of cell death that is emerging as a therapeutic target in lung cancer. In collaboration with Matthew Wang, I extend these results into a mouse xenograft model of NSCLC. Elevated DUS2 correlates with resistance to ferroptosis inducers and loss of DUS2 causes increased sensitivity with concomitant accumulation of toxic lipid peroxides. Because DUS2 is known to modify tRNAs at position 20 in yeast, I analyzed the tRNAome of DUS2 KO cells, and, surprisingly, identified a single family of tRNA isodecoders, CysGCA, as specifically depleted in the absence of DUS2. I tested the functional significance of the >40\% decrease in charged CysGCA levels in DUS2 KO cells using multiple translational reporters and found that high cysteine content reporters produced $\sim 50 \%$ less protein in the DUS2 KO cells, whereas low cysteine reporters were unaffected. I then performed quantitative proteomics to compare DUS2 KO and A549 cells and observed a significant reduction in endogenous cysteine-rich proteins in cells lacking DUS2. Notably, DUS2 KO cells cannot sustain normal levels of metallothioneins, a class of very cysteine rich proteins that serve as key regulators of both metal and redox homeostasis. Accordingly, DUS2 knockout cells are more susceptible to zinc intoxication and have lower levels of reduced glutathione, which partially explains their sensitivity to ferroptosis. My findings demonstrate that DUS2 is required to support tRNACys levels and fend off ferroptosis in lung cancer cells.

Canonical and Non-canonical Functions of Dihydrouridine Synthases in Health and Disease

A Dissertation
Presented to the Faculty of the Graduate School
Of
Yale University
In Candidacy for the Degree of
Doctor of Philosophy
By
Austin Stratton Draycott
Dissertation Director: Wendy Victoria Gilbert
May 2023

© 2023 by Austin Stratton Draycott
All rights reserved

TABLE OF CONTENTS

Page
Table of Contents 4
Acknowledgements 6
Prelude 7
Chapter 1 Transcriptome-wide mapping reveals a diverse 10 dihydrouridine landscape including mRNA
Chapter 2 Dihydrouridine synthase 2 sustains levels of tRNACys 49
and prevents ferroptosis in lung cancer
Postlude 136
References 141

Acknowledgements

This work would not have been possible without the support and encouragement of many people. First and foremost, I want to thank my advisor, Wendy Gilbert for her support over the past six years. Wendy is an inimitable mentor to her "labbies", and without her guidance and encouragement I would not be the person I am today.

The Gilbert lab has been a wonderful scientific home during my time in graduate school. Without its members this adventure would have been substantially less fun and probably unsuccessful. Cole Lewis joined the lab the same year as me and has been very generous with his time and advice since then. Cassandra Schaening-Burgos provided essential code, and invaluable advice. Rachel Niederer and Maria RojasDuran never tired of my endless questions about how to do simple things with yeast. Nicole Martinez, Erin Borchardt, Jiri Koubek, Julia Wang, Christian Fagre, Ritam Neupane, Kyrillos Abdallah, Danni Jin, and Shivani Bhandarkar, thank you for all of the enjoyable scientific and social interactions we've had. Leo Schärfen, thank you for the many good hours of scientific (and non-scientific) discussion and debate. I would also like to thank the Rocket household for their warmth and good company during the pandemic.

Finally, I would like to thank my family for their love and support: my mother Meredith Hamilton, my father Miles Draycott and my sisters Margot and Celia Draycott. I would not be here without you all.

Prelude

When I started in Wendy's lab, I was certain I wanted to study "mRNA modifications" (even though I had only recently been introduced to the idea of a "mRNA modification"). However, after talking about projects with Wendy (which revealed how little I knew about "mRNA modifications"), we agreed that I would work on two projects in the lab: 1) characterizing the binding preferences of a core eukaryotic translation initiation factor (eIF4F) in yeast and 2) developing a high throughput sequencing method to identify dihydrouridine (D) residues in RNA, because there had been two recent publications that showed the dihydrouridine synthases (DUS) associated with polyA + mRNA (Beckmann et al., 2015; Mitchell et al., 2013), which suggested to us that the DUS might be installing D in mRNA.

For the D project, I proposed to adapt D-specific chemistry from a low-throughput Dmapping method (Xing et al., 2004). This method relies upon the fact that dihydrouridine is susceptible to alkaline hydrolysis, which breaks the the 3-4 linkage in the dihydrouracil ring (Batt et al., 1954; Magrath and Shaw, 1967). The product of the ringopening, β-ureidopropionic acid, no longer can participate in Watson-Crick base pairing, and blocks reverse transcription (Xing et al., 2004). The plan was to adapt an existing Gilbert lab high throughput reverse transcriptase stop mapping protocol (Carlile et al., 2015) to work for D by incorporating an alkaline hydrolysis step. I would then use this method to look for Ds in polyA+ RNA from a wild type yeast strain, and in RNA from a strain lacking all dihydrouridine synthase activity (Xing et al., 2004). However, when I incubated the polyA+ RNA in the basic conditions required for alkaline hydrolysis of the dihydrouracil ring, I realized the RNA was so badly degraded that it wasn't workable to
make a sequencing library after treatment. I then encountered a series of papers (Cerutti et al., 1968; Cerutti and Miller, 1967; Kaur et al., 2011; Pan et al., 2009) that showed D could be efficiently reduced by sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$, and that the reduced D base had a damaged Watson-Crick face. I hypothesized that reduced D would block reverse transcription similarly to β-ureidopropionic acid.

As I describe in Chapter 1, reduced D does block reverse transcriptase, and NaBH_{4} treatment does not significantly degrade RNA. Combining the NaBH_{4} treatment with a pre-existing reverse transcriptase stop mapping protocol gave me a method to map Ds in high throughput (D-seq). Using D-seq, I mapped dihydrouridines transcriptome wide in budding yeast, and showed that D is installed at novel sites in both mRNAs and noncoding RNAs. Intriguingly, many of the novel D sites are located in conserved stem-loop regions. These compact stem-loops are structurally similar to the D loops of tRNAs, suggesting a role for D in promoting functional RNA folding. I used high-throughput chemical probing with DMS to profile RNA folding around the novel D sites, and identified D-dependent RNA structures in both mRNAs and ncRNAs. This work demonstrated that DUS install D in RNAs other than their canonical tRNA targets and highlighted the functional impact of this modification on folding of diverse classes of RNA.

After identifying Ds in mRNA in yeast, I then proposed to use D-seq to look for Ds in human mRNA. In humans, high expression of dihydrouridine synthase 2 (DUS2) in nonsmall cell lung cancers (NSCLC) leads to worse outcomes for NSCLC patients (Kato et al., 2005). I proposed to generate DUS2 knockouts in a model NSCLC cell line (A549). Using the DUS2 knockout cells and D-seq, I then planned to identify the cancer relevant
mRNA targets of DUS2 (this was not a well thought through experiment). However, as I describe in Chapter 2, when I measured tRNA expression in the DUS2 knockout cells (what I thought was a control experiment in preparation for human mRNA D-seq), I found that the DUS2 knockout cells had an approximately 40% decrease in the levels of a specific tRNA, tRNA cysGCA. I then uncovered that the NSCLC DUS2 knockout cells were more than twice as sensitive to ferroptosis, a metal-dependent non-apoptotic form of cell death that is emerging as a therapeutic target in lung cancer. I rationalized the ferroptosis sensitivity by showing that the DUS2 knockout cells have defects in the translation of cysteine codons which reduce steady state levels of many cysteine-rich proteins, including known anti-ferroptotic oncoproteins. In a mouse xenograft model of NSCLC, combinatorial induction of ferroptosis and inhibition of DUS2 in tumors significantly reduced tumor volume and extended mouse life span. My results highlight the potential of inhibiting tRNA-modifying enzymes as a therapeutic approach in cancer and emphasize the outsized roles that specific tRNA substrates play in the biological functions of tRNA-modifying enzymes.

Chapter 1

Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA

Abstract

Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. I introduce dihydrouridine sequencing ($D-s e q$) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and snoRNA. The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures. I demonstrate the dihydrouridine synthase (DUS)-dependent changes in splicing of a Dcontaining pre-mRNA in cells and show that D-modified mRNAs can be efficiently translated by eukaryotic ribosomes in vitro. This work establishes D as a new functional component of the mRNA epitranscriptome and paves the way for identifying the RNA targets of multiple dihydrouridine synthase enzymes that are dysregulated in human disease.

\section*{Introduction}

Dihydrouridine (D) is a modified version of uridine that is installed by dihydrouridine synthase enzymes (DUS) in all domains of life. It is of great interest to determine the locations of D modifications because elevated expression of DUS and elevated D levels in tumors are associated with worse outcomes for patients in lung (Kato et al., 2005), liver (Kuchino and Borek, 1978) and kidney (Creighton et al., 2016, 2013) cancer. DUS target sites in tRNAs are best characterized in budding yeast (Xing et al., 2004, 2002) and include multiple positions within the eponymous D loops as well as sites in the variable loops of some tRNAs. D has also been detected in the genomic RNA of

Dengue, Zika, Hepatitis C and Polio viruses (McIntyre et al., 2018), but the specific locations are unknown. It is likely that DUS modify additional classes of cellular RNA as recently discovered for other tRNA modifying enzymes (Roundtree et al., 2017). Notably, DUS1 and DUS3 cross-link to mRNA in both yeast and human cells (Beckmann et al., 2015; Mitchell et al., 2013) suggesting their potential to modify mRNA target sites.

The D modification is a reduction of the C5-C6 double bond in uridine that has multiple effects on RNA structure. First, D subtly distorts the pyrimidine ring (Emerson and Sundaralingam, 1980) causing destacking of bases in oligonucleotides (Dalluge et al., 1996). D also disrupts the orientation of N3 and O4 in the pyrimidine ring, weakening Watson-Crick base pairing, which likely contributes to the $3-5^{\circ} \mathrm{C}$ reduction in melting temperature of RNA duplexes containing a D (Sipa et al., 2007). More significantly, D substantially destabilizes the typical C3' endo conformation of the ribose thereby favoring the C2' endo conformation in a D nucleotide by $5.3 \mathrm{kcal} / \mathrm{mol}$ and in the nucleotide 5^{\prime} of D by $3.6 \mathrm{kcal} / \mathrm{mol}$ (Dalluge et al., 1996). These changes to the RNA backbone conformation strongly disfavor RNA helical geometry (Westhof et al., 1988) and allow for greater flexibility in RNAs. NMR studies of modified and unmodified versions of the tRNA D loop illustrate the consequences of this effect for RNA folding: the unmodified D loop adopts several conformations that rapidly interconvert whereas the modified RNA folds into a hairpin with a stable stem and the D in a flexible loop region (Dyubankova et al., 2015). Thus, dihydrouridylation of RNA is expected to have large effects on RNA structure.

Profound alteration of RNA conformation and structure by D would be expected to affect multiple steps in mRNA metabolism depending on the location of the D nucleotide. For example, D antagonizes formation of RNA duplexes (Sipa et al., 2007; Westhof et al., 1988), which are required for pre-mRNA splicing (due to base-pairing between splice sites and U1, U2 and U6 snRNAs) and for regulation by micro RNAs (due to basepairing between target mRNA and miRNA). Intramolecular RNA secondary structures have been found to affect the efficiency and regulation of translation initiation, alternative splicing, RNA localization and RNA stability (reviewed in (Kwok et al., 2015; Lu and Chang, 2016)). D is also expected to stabilize binding of numerous regulatory RNA binding proteins by favoring the C2' endo conformation that is preferentially bound by K homology (KH) domains and RNA recognition motifs (RRM) (Kligun and MandelGutfreund, 2015). KH and RRM domains are responsible for sequence-specific binding by proteins that regulate all aspects of mRNA processing and function.

In this chapter, I report the development of a novel method to map D residues in RNA in high-throughput. My method takes advantage of known D-selective chemistry(Cerutti et al., 1968; Kaur et al., 2011; Pan et al., 2009; Wintermeyer and Zachau, 1979) to reduce D and induce reverse transcriptase (RT) stops 1 nt 3^{\prime} of Ds. I combine this D-selective chemistry with next-generation sequencing to determine the location of Ds across the yeast transcriptome. D-seq identifies known tRNA D sites and uncovers novel D sites in snoRNA and mRNA. These novel D sites occur in conserved stem-loop regions of mRNAs and snoRNAs—and are consistent with a broad function for D in folding
functional RNA structures. In support of the potential for dihydrouridine to affect mRNA biogenesis, I demonstrate DUS-dependent changes in splicing of a naturally dihydrouridylated pre-mRNA in cells. My results establish dihydrouridine (D) as a new component of the mRNA epitranscriptome and show that the D-seq method is broadly applicable to identifying and studying the functions of D.

Results and Discussion

In light of previous work showing that DUS1 and DUS3 cross-link to mRNA in both yeast and human cells (Beckmann et al., 2015; Mitchell et al., 2013) I collaborated with Loren Wilson and Sigrid Nachtergaele to perform bulk nucleotide analysis on RNA from budding yeast. I purified polyA+mRNA from a dus1 1Δ dus 2Δ dus 3Δ dus 4Δ quadruple mutant strain lacking all DUS activity (Xing et al., 2004), and a matched wild type (WT) strain. Loren detected D in the polyA+ mRNA fraction from WT but not DUS KO (Fig. 1a), confirming the hypothesis that DUS enzymes install D in mRNA. I therefore developed a method to map D at single nucleotide resolution by identifying chemical treatments that stall reverse transcriptase $(R T)$ at D.

To identify RT stopping conditions for D, I tested different chemistries for selective RT stopping at D compared to U . Strong OH^{-}treatment conditions used previously to map D in tRNA by primer extension (Xing et al., 2004) proved too harsh to use for mRNA due to substantial RNA degradation (Fig. S1a). In contrast, milder sodium borohydride
treatment conditions do not damage mRNA-like molecules (Fig. S1a). D is selectively reduced to tetrahydrouridine by sodium borohydride to remove a hydrogen bond donor on the Watson-Crick face (Fig. 1b) (Kaur et al., 2011). I prepared 194-nt synthetic RNAs with 4 Us or Ds positioned at ~20nt intervals for easy characterization by primer extension (Methods). Using these RNAs, I found that reduced dihydrouridine blocks several reverse transcriptase enzymes one nucleotide 3^{\prime} to the D site while having no effect on RT processivity on an identical U-containing template (Fig. 1c, S1b). I note that other non-U modified nucleosides (such as 7-methylguanosine) can react with sodium borohydride (Behm-Ansmant et al., 2011). I combined this D-specific chemistry with strand-specific cDNA sequencing to map the locations of D transcriptome-wide using high-throughput sequencing (Fig. 1d).

In collaboration with Wendy Gilbert and Maria Rojas-Duran, I tested the D-seq approach in budding yeast where positive control D sites in cytoplasmic tRNAs have been extensively although not exhaustively characterized (Xing et al., 2004, 2002). I observed strong DUS-dependent pileups of cDNA ends 1 nt 3 ' of many known tRNA D sites (Fig. 2a and Table 1). Given these encouraging findings, Cassandra SchaeningBurgos developed a quantitative approach to evaluate D-seq signal by calculating a modified Z score (MAD score) as a measure of the strength of the RT stop signal at every nucleotide. I used the difference between the distributions of MAD scores at known tRNA D sites (based on previous analysis by micro array and primer extension(Xing et al., 2004)) in WT and DUS KO libraries (Fig. S2a) to set cutoffs for defining a D site in abundant RNAs (Methods). Using these cutoffs, I identified
previously reported target sites of 3 of the 4 DUS as well as previously unannotated D sites in 9 tRNAs at positions in the D loop that are known to be modified by DUS1 and DUS4 in other tRNAs (Fig. 2a, b, S2b and Table 1, which compares these sites to previous annotations). I identified a single unanticipated site, at U32 in tRNA IleAAT (Table 1).

As implemented here, D-seq has specific 'blind spots' in tRNAs. First, the cDNA size selection step precluded detection of DUS3-dependent Ds at position 47 because they are too close to the 3^{\prime} end of the transcript. In addition, several known target sites of DUS1, DUS2 and DUS4 were not detected because they are shadowed by another D 3' of them (Fig. S2b and Table 1). Other known tRNA D sites that were not visible occur 3' of a penetrant RT-stop at position 26 in some tRNAs (Fig. S2c and Table 1). We suspect this RT stop is caused by N2,N2-dimethylguanosine ($\mathrm{m}^{2,2} \mathrm{G}$) (Ellis et al., 1986). Pre-treatment of RNA samples with AlkB demethylases to remove $\mathrm{m}^{2,2} \mathrm{G}$ as well as 1methyladnosine $\left(m^{1} A\right)$ and 7-methylguanosine $\left(m^{7} G\right)$ (Cozen et al., 2015; Dai et al., 2017; Zheng et al., 2015) should overcome this limitation. Advantages of the D-seq method are that it inherently offers single-nucleotide resolution and can, in principle, be used to detect D sites in any type of RNA present in the sample.

I then examined other classes of non-coding RNAs (ncRNAs) with sufficient coverage (Methods). I identified 48 novel D sites in 23 different small nucleolar RNAs (snoRNAs), uncovering snoRNAs as a substantial new class of RNA targeted by DUS enzymes (Figure 2c and Table 2). I considered the possibility that DUS might modify ribosomal

RNA given that dihydrouridine has been reported in the bacterial ribosome at U2449 of the large subunit RNA (Kowalak et al., 1995). However, inspection of the cytoplasmic rRNAs did not reveal any DUS-dependent modification at the orthologous position (Fig. S2d).

Like tRNAs, snoRNAs must fold to perform their cellular function(Khanna et al., 2006; Watkins et al., 2002). Given the importance of D for tRNA folding (Dalluge et al., 1996; Dyubankova et al., 2015), Leonard Schärfen and I analyzed chemical probing data to determine if D occurs within structurally stereotyped regions in snoRNAs. Dimethyl sulfate (DMS) methylates the Watson-Crick face of unpaired As and Cs, which can be detected as sites of misincorporation by RT. The observed mutation rate at each A and C indicates the extent of pairing (Zubradt et al., 2017), with paired nucleotides having low DMS reactivity and low mutation rates and unpaired loop regions having high reactivity and high mutation rates. Comparing snoRNA D sites with DMS probing data from WT yeast cells (Zubradt et al., 2017) revealed a propensity for D to occur in unpaired regions (Fig. 2d). Intriguingly, most of the 48 snoRNA D sites are located in 48bp stem-loop regions (schematized in Fig. 2e). These compact stem-loops are structurally similar to the D loops of tRNAs, suggesting a common mechanism of recognition by DUS and/or a similar role for D within the loop region to promote stable folding of the adjacent stem by causing changes to the RNA backbone conformation (Dalluge et al., 1996; Dyubankova et al., 2015). My results establish that DUS modify additional ncRNAs beyond tRNAs and suggest a broad role for DUS in the biogenesis and function of many structured RNAs.

I next analyzed yeast mRNA for D. With help from Cassandra, I used a simple statistical metric, a modified Z score, to distinguish robust DUS-dependent RT stops from noise in these less abundant RNAs. (See Methods for the advantages and limitations of the MAD score and Z score metrics). As for tRNAs, I defined empirical thresholds for site calling based on differences in the distributions of scores in WT and DUS KO samples (Fig. S3a). Applying conservative cutoffs to the mRNA mapping reads (Methods), I identified 130 high-confidence D sites in mRNAs (Table 2). To estimate the number of false positives, I inverted the analysis (required high Z scores in the DUS KO replicates and low Z scores in WT replicates), which identified five false positives for an estimated false discovery rate for D sites in mRNA of 3.8\%. Two false positives are understandable as 'shadow' peaks downstream of a D (Fig. S3b). To roughly estimate the stoichiometry of the mRNA Ds, I calculated the fraction of reads that traverse a D vs. terminate at a D. For the D site in the ALD6 coding sequence, approximately 13.5% of the reads terminate at the D. For the D site in the SEC63 coding sequence, the fraction of reads terminating at the D is approximately 5.7%. Given that on a synthetic RNA with 100% D occupancy RT terminates at a D only $\sim 20 \%$ of the time (Fig. S1b), I estimate the ALD6 site at $\sim 75 \%$ occupancy and the SEC63 site at $\sim 25 \%$. The number of D sites I identified (130) represents a lower bound for the total number of D sites in yeast mRNA as I surveilled only 1% of the yeast transcriptome that met the coverage threshold in all 6 libraries. These results show that interactions between DUS and mRNA (Beckmann et al., 2015; Mitchell et al., 2013) result in substantial modification and uncover dihydrouridine as a component of the mRNA epitranscriptome.

The 130 D sites were distributed throughout mRNA features including the $5^{\prime}-$ UTR, CDS, introns and 3'-UTR (Fig. 3a-b and Table 2). The prevalence of D in coding sequences, including of essential genes, raised the question of how the presence of D in mRNA impacts translation. I generated model mRNAs encoding a short (12kD) protein, Top7 (Kuhlman et al., 2003), that can be produced with few uridines: 2 or 3 , including the start/AUG, stop/UAG and an internal test codon (Fig. 3c). Wendy synthesized mRNAs with no internal U/D test codon, or one of three different internal codons that I detected as frequently D-modified in endogenous yeast mRNAs, ADC, AGD and GAD. Wendy translated the D or U versions of these mRNAs in rabbit reticulocyte lysate (RRL) and quantified protein production by measuring ${ }^{35}$ S-Met incorporation into full-length Top7 protein by SDS-PAGE and autoradiography (Fig. 3c and S3c). All 8 mRNAs were efficiently translated in RRL with no significant differences in the amount of protein produced from any D or U containing mRNA ($n=6$ replicates, Fig. 3c and S3c). Thus, eukaryotic ribosomes can efficiently traverse D sites in mRNAs. While Wendy's results show that the translational output is not impaired by these D-containing codons, other codons may behave differently. It is also possible that D could impact translational fidelity, as has been reported for pseudouridine (Eyler et al., 2019).

In light of the impacts of D on RNA structure (Dalluge et al., 1996; Dyubankova et al., 2015; Sipa et al., 2007), the location of D in the intron of RPL30 (Fig. 3d) is notable; this intronic D is adjacent to an RNA structure that is important for the auto-regulation of premRNA splicing by free Rpl30 protein (White et al., 2004). To investigate the potential
consequences of this D site for splicing, I performed RNA-seq on WT and DUS KO. The absence of DUS activity caused a reproducible accumulation of introns in DUS KO cells that is consistent with a positive effect of D on splicing of this pre-mRNA (Fig. 3e). Other D-containing introns (RPL16B and COF1) were not affected indicating that splicing is not generally impaired in the absence of DUS activity (Fig. S3d).

It is interesting that several additional mRNA D sites occur in regions where secondary structure potential is evolutionarily conserved (Rouskin et al., 2014) suggesting biological function for these structures. Although the predicted structures of D sites in mRNA are more diverse than in snoRNAs, 19 of the 130 identified mRNA D sites occurred in structures very similar to the tRNA D-loop, which is consistent with modification of mRNAs at structurally stereotyped positions analogous to previously known D sites in tRNAs. Globally, Leonard Schärfen's analysis of DMS structureprobing data (Zubradt et al., 2017) found that mRNA regions flanking D sites were significantly likelier to be unpaired in cells than a background set of sites (p<.05, Fig. 3f). This might be a consequence of modification because D antagonizes RNA duplex formation, and promotes the formation of stem loop structures (Dalluge et al., 1996; Dyubankova et al., 2015; Sipa et al., 2007) (Fig. 3g). Alternatively, accessibility could be important for modification by DUS.

While the manuscript this chapter is based on was in review, Finet et al (Finet et al., 2021), reported the development of a method similar to D-seq, Rho-seq (so named for the coupling of rhodamine to reduced dihydrouridine). They identified sparse D
modification of mRNAs from human cells and Schizosaccharomyces pombe similar to the frequency of mRNA D sites that I uncovered in Saccharomyces cerevisiae. One notable difference between the studies is that Finet et al. report modest reductions in translation of D-containing mRNAs in vitro for several D-containing codons, including GAD. Wendy's results do not confirm this reported translational defect (Fig. 3c). Conceivably the source of translation components (rabbit reticulocytes vs wheat germ) and/or differences in the mRNA context, including sequences flanking the GAD codons, affect the amount of protein produced.

My results establish D-seq as a high-throughput method to map dihydrouridine sites with single-nucleotide resolution and reveal new classes of RNA targets for conserved DUS enzymes, which I now show include mRNA. The discovery of D in mRNA validates the function of DUS-mRNA interactions that have been observed from yeast to human cells (Beckmann et al., 2015; Mitchell et al., 2013). The D-seq method is broadly applicable to reveal the specific locations of D, including in pathogenic RNA viruses where dihydrouridine has been detected by mass spectrometry (McIntyre et al., 2018) and in tumors where elevated DUS expression is linked to worse patient outcomes (Creighton et al., 2016, 2013; Kato et al., 2005; Kuchino and Borek, 1978)

Methods

Synthetic RNAs for RNA degradation and RT stop testing

Synthetic 100\% uridine or dihydrouridine containing RNA (5'ggaacagaaacagagaaaggaacagagaaagacaU/Daaacagaaagagacaagaacagagacaagaaca gU/DggcaggaacagagacaaacagagacaggaacaaU/Dgacaggaacagaaagaaacagagacaagcac U/Dcgggcaccaaggacacgaaccggaacgcggaaccaaacgggcaacggaccggac-3') was generated by run off transcription with T7 RNA polymerase and gel purified on an 8% urea-TBE polyacrylamide gel electrophoresis (PAGE) gel. To compare the harshness of the different D modifying treatments, a synthetic RNA was incubated either under published D mapping conditions(Xing et al., 2004), under published D reduction conditions(Kaur et al., 2011; Pan et al., 2009) or similar D reduction conditions with $\mathrm{NaBH}_{3} \mathrm{CN}$ substituted for NaBH_{4}. To measure RT at reduced dihydrouridine, we reverse transcribed reduced U or D RNA with Superscript III RT, using manufacturer conditions. Samples were prepared and run on sequencing gels as in(Smola et al., 2015).

Strain construction

Quadruple Dus mutant strain was generated by mating double knockout strains FX-34 (dus1 1Δ dus2 2) and FX-42(dus4 Δ dus3 3), followed by sporulation on SD media and subsequent tetrad dissection. Genotyping was confirmed by PCR using the following oligos:

oAD56_DUS1kanR_F	GCAAGGTGATCGTCAAACTGCACT
oAD57_DUS1kanR_R	ATGGAGACGGAGTTGAACATTTTCT
oAD58_DUS2kanR_F	TAGAGACGTAGTTATCCATTCGTCC
oAD59_DUS2kanR_R	CTTTGGACGATAAACTAAAGGGTTT
oAD60_DUS3kanR_F	GGTAATAGTACACGGGATGAAGAGA

oAD61_DUS3kanR_R	TATTTTGATTTTCTTGGAACCCATA
oAD62_DUS4kanR_F	ACTGCATTCATTTTTGTTAGAAAGG
oAD63_DUS4kanR_R	CAAGCTATCTGGAAAAGAGGTGTTA

RNA isolation and Poly-A selection

Yeast total RNA was isolated by hot acid phenol extraction from 750mL OD 6 culture, followed by isopropanol precipitation. Poly-A RNA was isolated from 8 mg total RNA using oligo dT cellulose beads (NEB), as described(Carlile et al., 2015). Two sequential rounds of poly-A selection were performed. For analysis of mRNA by LC-MS/MS, residual tRNAs were removed by size selection (>200t nt) on a zymo RNA Clean \& Concentrator column according to manufacturer instructions. Removal of small RNA and ribosomal RNA contamination was verified by bioanalyzer analysis using Agilent RNA 6000 Pico chips.

D-seq Library preparation

Yeast RNA was fragmented in 10 mM ZnCl 2 at $94^{\circ} \mathrm{C}$ for 1 min and precipitated. BH_{4} treatment of RNA was as follows: Poly-A+ mRNA was resuspended in $18 \mu \mathrm{~L}$ ddH2O, and treated $2 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL} \mathrm{NaBH}_{4}$ in 500 mM Tris pH 7.5 at $0^{\circ} \mathrm{C}$ for 1 hr . The BH_{4} treatment was quenched with 4 uL of $6 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ and precipitated. RNA fragments were dephosphorylated and end repaired with CIP (NEB) and PNK (NEB), followed by size selection of RNA fragments (70-80nt) on an 8% urea-TBE PAGE gel. RNA fragments were eluted from gel slices overnight at $4^{\circ} \mathrm{C}$ with gentle rocking in $400 \mu \mathrm{~L}$ RNA elution buffer (300 mM NaOAc pH 5.5 , 1 mM EDTA, $100 \mathrm{U} / \mathrm{ml}$ RNasin (Promega)
followed by precipitation. Ligation of a pre-adenylated adaptor (IDT) was carried out with T4 RNA ligase (NEB) in buffer without ATP (50mM Tris-HCl pH 7.8, $10 \mathrm{mM} \mathrm{MgCl} 2,10$ mM DTT) at $22^{\circ} \mathrm{C}$ for 2.5 h , followed by precipitation. Adapter ligated RNA fragments were reverse transcribed with SuperScript III reverse transcriptase (Thermo). RNA and primer were denatured and annealed at $95^{\circ} \mathrm{C}$ for 5 min then placed on ice for 5 min . After annealing, $1 \mu \mathrm{~L} 10 \mathrm{mM}$ dNTPs, $1 \mu \mathrm{~L} 0.1 \mathrm{M}$ DTT, $1 \mu \mathrm{~L}$ RNAsin (Promega), $3 \mu \mathrm{~L} 5 \mathrm{X}$ First Strand Buffer (Thermo), $1 \mu \mathrm{~L}$ SSIII RT were added, and reverse transcription was carried out at $50^{\circ} \mathrm{C}$ for 1 h . Truncated cDNAs were size-selected ($50-80 \mathrm{nt}$) and purified on an 8% urea-TBE PAGE gel, followed by precipitation. cDNAs were eluted from gel slices overnight at room temperature with gentle rocking in 400μ I DNA elution buffer ($300 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris, pH 8.0). A 5' adapter was ligated on to the cDNA using T4 RNA ligase. $0.8 u \mathrm{~L} 80 \mathrm{uM}$ linker (IDT) was mixed with $1 \mu \mathrm{~L}$ DMSO, $5 \mu \mathrm{~L}$ of eluted cDNA, incubated at $75^{\circ} \mathrm{C}$ for 2 min and immediate placed on ice for 2 min . After cooling, 2 uL RNA Ligase buffer (NEB), $0.2 \mu \mathrm{~L} .1 \mathrm{M}$ ATP (NEB), $6.5 \mu \mathrm{~L}$ PEG-8000 (NEB), $3.6 \mu \mathrm{~L}$ ddH2o and $0.5 \mu \mathrm{~L}$ T4 RNA ligase 2 were added to the cDNA/linker mix. The ligation was incubated overnight at $22^{\circ} \mathrm{C}$. The ligation was cleaned up with Dynabead MyOne Silane magnetic beads (Thermo) according to the manufacturer's instructions.

Sequencing libraries were amplified from 5^{\prime} and 3^{\prime} linker ligated cDNA using Phusion DNA polymerase (NEB). PCR products were gel-purified, precipitated, pooled and sequenced on an Illumina HiSeq 2500.

RNA-seq Library preparation

RNA seq libraries were generated in parallel with D-seq libraries by omitting the NaBH_{4} treatment and selecting for full length (90-100nt) RT products.

Sequencing Data Analysis

Demultiplexed reads were adapter trimmed using BBTools(Bushnell, n.d.; Bushnell et al., 2017) bbduk.sh . Adapter trimmed reads were then PCR-duplicated collapsed based on unique molecular identifier (UMI) using dedupe.sh. The UMI was then force trimmed with a second round of trimming. Adapter trimmed and duplicate collapsed reads were then aligned to the sacCer3 genome using bbmap.sh. For the tRNA mapping D analysis, we aligned the trimmed and PCR-duplicate collapsed reads to a pseudogenome containing 1 copy of each unique tRNA sequence. Uniquely mapping strand specific read end position was obtained using bedtools(Quinlan and Hall, 2010). We generated wig files and visualized the read end positions using mochiview(Homann and Johnson, 2010). D peaks were annotated using the sacCer3 features file and bedtools.

mRNA D-seq peak calling

D-sites were identified as statistical outliers in position-specific accumulation of D-seq reads. We required at least 50 reads in the 100nt window surrounding the test position and quantified and compared sites using a modified Z-score, in which the position of interest is excluded when calculating the mean and standard deviation. For all of the test positions that met the read cutoff, we calculated a Z score of read ends based on the distribution of read ends in the 100nt window centered on the test position.

$$
Z_{p o s}=\frac{e n d s_{p o s}-\operatorname{mean}\left(e n d s_{\text {window }}\right)}{\operatorname{stdev}\left(e n d s_{\text {window }}\right)}
$$

tRNA and snRNA D-seq peak calling

In the highly structured and heavily modified tRNAs and $s n R N A s$, we identified D sites by analyzing the absolute deviation around the median (MAD), which scores sites relative to the median rather than the mean. See below regarding the choice of metric for different classes of RNA. We considered every position in the test transcriptome where there were more than 50 reads in the 100 nt window surrounding the test position and additionally required that the window median was greater than zero. For all test positions that met the read cutoff, we calculated a MAD score of read ends based on the distribution of read ends in the 100nt window centered on the test position.

$$
M_{p o s}=\frac{e n d s_{p o s}-\text { median }\left(e n d s_{\text {window }}\right)}{M A D\left(e n d s_{\text {window }}\right)}
$$

And:

$$
M A D=\operatorname{median}\left(\mid e n d s_{p o s}-\operatorname{median}\left(e n d s_{\text {window }} \mid\right)\right.
$$

Selection of D-seq signal scoring metrics

Two different scoring approaches were necessary for unbiased identification of D sites in different classes of RNA due to large differences in the distributions of strong RT stops as well as RNA abundance. The presence of multiple RT stops in close proximity, which is common in tRNA due to pervasive RNA modification and strong secondary structure, precludes use of the intuitive and statistically principled Z-score which we use
for less structured mRNAs. The Z-score cannot identify RT stop signals in windows with multiple strong signals because these background RT stops in ncRNA dampen the signal at the position of interest(Leys et al., 2013) (Fig. S2e). We therefore analyzed non-coding RNAs using the absolute deviation around the median (MAD), which scores sites relative to the median rather than the mean. The MAD score requires much higher coverage than the Z-score because, for the denominator to be non-zero, more than half the positions in the window surrounding a site must have 5^{\prime} ends mapped to them. In mRNA, it is rare for a 100-nt window to contain more than one strong RT stop and the modified Z-score is preferred to quantify and compare sites.

D-seq peak thresholding

For each set of peaks (tRNA, snRNA, mRNA), we defined library cutoffs for peak score by plotting the distribution of peak scores in each library as an inverse CDF. We set cutoffs for D peaks by requiring D site scores be substantially greater than the score at which the distributions of WT and DUS KO diverge in 3 out of 3 WT replicates, and less than the score at which the distributions diverge in the quad KO. For tRNA, MAD score cutoffs were $M A D_{w t}>40$ and $M A D_{\text {dus }}<40$. For snRNA, MAD score cutoffs were $M A D_{w t}$ >12 and $M A D_{d u s}<8$. For mRNA, the Z-score cutoffs were $Z_{w t}>10$, and $Z_{\text {dus }}<7$.

DMS reactivity near D sites

A previously published DMS-MaPseq(Zubradt et al., 2017) data set for S. cerevisiae was downloaded from GEO (accession number GSE84537). Raw reads were preprocessed and aligned according to the original publication, and DMS reactivities
were calculated as the ratio of mutations to coverage. Reactivities around called D sites in mRNAs or snRNAs were pooled for each nucleotide position relative to the respective D coordinate. Values were included in the analysis only if the coverage was larger than 350 and the nucleotide identity in the transcript was A or C . To visualize background reactivities and control for nucleotide bias, 70 samples matching the size of called D sites were randomly drawn from a population of background sites that fell below the Z score cutoffs in wildtype and quad KO. Significance testing was done using two-sided Mann Whitney U tests between reactivities around the full set of background positions and the called D sites.

Detecting dihydrouridine by LC-MS/MS

For each sample, duplicate digestions of 50 ng and 750 ng for each sample were digested with 5 U/uL Benzonase (Sigma, \#E8263), 0.1 U/uL phosphodiesterase (Sigma \#P3243), 1 U/uL alkaline phosphatase (Sigma \#P5521) in 500mM Tris-HCI pH 8.0, $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ in a final reaction volume of $50 \mu \mathrm{~L}$ for 6 hours at $37^{\circ} \mathrm{C}$. An equal volume of water was then added to each sample before filtration through a $0.2 \mu \mathrm{~m}$ PVDF filter ($0.2 \mu \mathrm{~m}$ pore size, 0.4 mm diameter, Millipore). $10 \mu \mathrm{~L}$ of each sample was separated by reverse phase ultra-performance liquid chromatography on a Shim-pack GIST C18 $2 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$ column (Shimadzu, \#227-30001-02) on a Nexera LC-40D XS liquid chromatography system using a gradient of 5 mM ammonium acetate pH 5.3 and acetonitrile. After separation, samples were analyzed by mass spectrometry on a Shimadzu LCMS-8060 Triple Quadrupole Liquid Chromatograph Mass Spectrometer (Shimadzu). Nucleosides were quantified using the following nucleoside-to-base
transitions: $267.966>136.000(\mathrm{~A}), 284.004>152.100(\mathrm{G}), 245.30>113.10(\mathrm{U})$, and $247.20>115.15$ (D). Mixes of nucleoside standards were injected alongside the samples in the same run to generate standard curves, from which concentrations of each nucleoside in each sample were calculated. The percentages of modified to unmodified nucleoside in each sample were calculated based on calibrated concentrations. These conditions were adapted from reference (Finet et al., 2021).

Synthesis of U and D substituted mRNAs

mRNAs were designed based on the coding sequence of Top7(Kuhlman et al., 2003) by replacing all but three uridine-containing codons: start, stop and a single test codon. The UTRs also lacked U. RNA was synthesized with T7 by run-off transcription of linearized plasmid templates with either 100\% UTP or 100\% DTP (Trilink Biotechnologies) and purified on 6\% denaturing Urea-PAGE gels. Samples of purified mRNAs were denatured with glyoxal at $50^{\circ} \mathrm{C}$ for 30 minutes and analyzed for integrity by separation on 1% agarose gels in BPTE buffer (100mM PIPES, 300mM Bis-Tris, 10mM EDTA, pH 6.5) and imaging (Bio-Rad ChemiDoc). Bands were quantified using GelAnalyzer 19.1 (www.gelanalyzer.com).

In vitro translation of U and D substituted mRNAs

Uncapped Top7 mRNAs were translated in nuclease-treated rabbit reticulocyte lysate (Promega). 500ng mRNA was incubated in $8.4 \mu \mathrm{~L}$ rabbit reticulocyte lysate, $0.24 \mu \mathrm{~L}$ 1 mM amino acid mixture minus methionine, $0.48 \mu \mathrm{~L}{ }^{35}$ S methionine, $0.24 \mu \mathrm{~L}$ RNasin, and $\mathrm{ddH}_{2} \mathrm{O}$ to $20 \mu \mathrm{~L}$. Translation reactions were incubated at $30^{\circ} \mathrm{C}$ for 90 minutes and
quenched with $20 \mu \mathrm{~L} 2 \mathrm{X}$ SDS sample buffer. Translation reactions were then incubated at $60^{\circ} \mathrm{C}$ for 20 minutes and resolved on a $14-20 \%$ SDS-PAGE gel. Gels were fixed in 30% methanol 10\% acetic acid, incubated in Amplify solution (GE Healthcare) and dried on a vacuum drier. Dried gels were exposed for a minimum of 12 hours on a storage phosphor screen (GE), scanned (Bio-Rad) and quantified using GelAnalyzer 19.1 (www.gelanalyzer.com).

Figures
A

B

Figure 1 Dihydrouridine-specific chemistry to map dihydrouridine sites in RNA with single-nucleotide resolution
a. Bulk nucleoside analysis of detects D in mRNA from WT but not DUS KO yeast. mRNA was purified by selecting for poly(A)+ and tRNAs were removed by size selection.
b. Structures of uridine, dihydrouridine and tetrahydrouridine.
c. Primer extension analysis of synthetic 4D and 4 U RNAs treated with NaBH_{4} and reverse transcribed with Super Script III RT. D-dependent RT stop positions are highlighted.
d. Schematic of D-seq library preparation.

Figure 2 D-seq identifies known and novel dihydrouridine sites in structured ncRNAs
a. Plots of cDNA end positions in Dus2 target tRNA ProAGG, and Dus2, Dus4 target tRNA ArgCCG. D Peaks are highlighted. X scale in RPM and Y scale in bp.
b. Summary of known tRNA D positions and corresponding DUS.
c. Plots of cDNA end positions in snR5, snR13, and snR46 snoRNAs. D peaks and are highlighted. TSS, transcription start site of snR5. X scale in RPM and Y scale in bp.
d. snoRNA Ds occur primarily in stem loop structures that resemble tRNA D loops. Plot of median DMS induced mutation rate in 25 nt window flanking D site. Red trace is median DMS reactivity flanking D positions. Black dots are median DMS reactivity for randomly selected set of background positions. Blue trace is p-value for difference in DMS reactivity for sequences flanking D or background sites.
e. D sites occur in stem-loop structures of 16 H/ACA and $7 \mathrm{C} / \mathrm{D}$ box snoRNAs.

Figure 3 D-seq identifies dihydrouridine sites in mRNAs
a. Plots of cDNA end positions in ALD6 and SEC63 mRNAs. D peaks are highlighted. Scale in RPM and bp.
b. Distribution of D sites among mRNA features, and background distribution of features for all sites interrogated for D.
c. SDS-PAGE gels showing Top7protein produced from U and D containing mRNAs with 4 different test codons. Denaturing glyoxal agarose gel showing mRNA integrity. All 4 test constructs showed no significant difference in protein produced per mRNA +/- D. Schematic of U/D mRNAs with U/D positions highlighted in red
d. Plots of cDNA end positions for intronic D in RPL30 mRNA. D peak is highlighted. Scale in RPM and bp.
e. DUS KO strain has increased ratio of RPL30 intron mapping reads to exon mapping reads ($p<.05$, students t-test). Model of regulation of RPL30 pre-mRNA splicing by RPL30 protein.
f. mRNA sequences flanking Ds have higher DMS reactivity indicating greater flexibility. Plot of median DMS induced mutation rate in 25 nt window flanking D site. Red trace is median DMS reactivity surrounding D positions. Black dots are median DMS reactivity for randomly selected set of background positions. Blue is p-value for difference in DMS reactivity for sequences flanking D or background sites.
g. D has multiple impacts on RNA structure. D both promotes loop formation and antagonizes duplex formation.

Supplementary Figures

Figure S1 Testing RNA treatment and RT conditions for D-seq
a. Unmodified 194nt RNA was treated with strong base ($\mathrm{OH}-$), $\mathrm{NaBH}_{3} \mathrm{CN}$ or NaBH_{4}, precipitated and run on an 8\% urea-PAGE gel.
b. Multiple RTs stall at reduced D. 1: 4D RNA treated with borohydride and benzyhydrazide, 1: 4D RNA treated with borohydride 3: 4U RNA 4: 4D RNA
c. Bioanalyzer analysis of total RNA and PolyA+ mRNA for mass spectrometry.

Figure S2

a. Inverse CDF plots of MAD score for possible D positions (16,17, 20, 20a, 20b and 47) in tRNAs, MAD score for all tRNA U positions, and all snRNA U positions.
b. Plots of cDNA end positions in tRNA GInCTG and tRNA LysTTT containing multiple Ds. 3' most D peak is highlighted.
c. Plots of cDNA end positions in SerGCT where D signal is blocked by $\mathrm{m}^{2,2} \mathrm{G}$. $\mathrm{m}^{2,2} \mathrm{G}$ position is highlighted.
d. Plots of cDNA end positions in cytoplasmic 25 S rRNA at the position orthologous to E. coli position 2449.

Figure S3

a. Inverse CDF plots of Z score for mRNA mapping reads. Blue line is $Z_{\text {dus }}$ cutoff and red line is $Z_{w t}$ cutoff
b. Plots of cDNA end positions for 5 false positive sites in mRNAs. Shadowing D peaks are highlighted in black. False positive sites are highlighted in red.
c. Uncropped Top7 ${ }^{35}$ S SDS-PAGE and mRNA 1\% BP-TE agarose gels from Fig 3c.
d. DUS KO strain does not have a change in ratio of intron mapping reads to exon mapping reads for COF1 or RPL16b.

Tables

	Called in Xing 2004?	Known position?	Postion	Strand
tRNA-Val-CAC-1-1.21.+	No	Yes	21	+
tRNA-GIn-TTG-1-1.21.+	No	Yes	21	+
tRNA-Gly-TCC-1-1.21.+	No	Yes	21	+
tRNA-GIn-CTG-1-1.21.+	Yes	Yes	21	+
tRNA-His-GTG-1-1.21.+	Yes	Yes	21	+
tRNA-Arg-CCG-1-1.17.+	No	Yes	17	+
tRNA-Arg-CCG-1-1.20.+	No	Yes	20	+
tRNA-Asp-GTC-1-1.17.+	Yes	Yes	17	+
tRNA-GIn-TTG-3-1.17.+	No	Yes	17	+
tRNA-GIn-TTG-3-1.20.+	No	Yes	20	+
tRNA-Leu-GAG-1-1.17.+	No	Yes	17	+
tRNA-Ile-TAT-1-1.35.+	No	No	35	+
tRNA-Pro-AGG-1-1.20.+	Yes	Yes	20	+
tRNA-Pro-TGG-1-1.17.+	Yes	Yes	17	+
tRNA-Trp-CCA-1-1.17.+	No	Yes	17	+
tRNA-Cys-GCA-1-1.17.+	Yes	Yes	17	+

Table 1 Detection of D sites in tRNAs

snR name	Chromosome	Class	Position	Strand
snR46	chrVII	H/ACA	545462	+
snR10	chrVII	H/ACA	346182	+
snR10	chrVII	H/ACA	346123	+
snR10	chrVII	H/ACA	346095	+
snR10	chrVII	H/ACA	346022	+
snR10	chrVII	H/ACA	346017	+
snR82	chrVII	H/ACA	316834	+
snR32	chrVIII	H/ACA	381681	+
snR32	chrVIII	H/ACA	381653	+
snR3	chrX	H/ACA	663871	+
snR44	chrXII	H/ACA	856828	+
snR30	chrXII	H/ACA	199241	+
snR30	chrXII	H/ACA	199090	+
snR30	chrXII	H/ACA	198986	+
snR30	chrXII	H/ACA	198814	+

snR30	chrXII	H/ACA	198812	+
snr11	chrXIII	H/ACA	652470	+
snR11	chrXIII	H/ACA	652409	+
snR11	chrXIII	H/ACA	652351	+
snR11	chrXIII	H/ACA	652288	+
snR49	chrXIV	H/ACA	716267	+
snR5	chrXV	H/ACA	842466	+
snR31	chrXV	H/ACA	842135	-
snR8	chrXV	H/ACA	832441	+
snR8	chrXV	H/ACA	832438	+
snR8	chrXV	H/ACA	832382	+
snR35	chrXV	H/ACA	759456	-
snR35	chrXV	H/ACA	759397	-
snR9	chrXV	H/ACA	408123	-
snR9	chrXV	H/ACA	408106	-
snR9	chrXV	H/ACA	408038	-
snR81	chrXV	H/ACA	234503	+
snR81	chrXV	H/ACA	234457	+
snR81	chrXV	H/ACA	234397	+
snR13	chrIV	C/D	1402965	+
snR13	chrIV	C/D	1402945	+
snR68	chrIX	C/D	97140	+
snR68	chrIX	C/D	97128	+
snR4	chrV	C/D	424796	+
snR4	chrV	C/D	424702	+
snR64	chrXI	C/D	38880	+
snR77	chrXIII	C/D	297561	+
snR77	chrXIII	C/D	297559	+
snR40	chrXIV	C/D	89212	+
snR45	chrXVI	C/D	821816	+
snR45	chrXVI	C/D	821766	+
snR45	chrXVI	C/D	821758	+
snR45	chrXVI	C/D	821749	+

Table 2 Detection of D sites in snRNAs

Gene ID	Gene Name	Chromosome	Position	Strand	Feature type
YJR009C	TDH2	chrX	453577	-	3UTR

YCR031C	RPS14A	chrill	177432	-	3UTR
YHL001W	RPL14B	chrVIII	105123	+	3UTR
YBR189W	RPS9B	chrll	605545	+	3UTR
YGL123W	RPS2	chrVII	278393	+	3UTR
YDL061C	RPS29B	chriV	340517	-	3UTR
YNL067W	RPL9B	chrXIV	500328	+	3UTR
YPL090C	RPS6A	chrXVI	377241	-	3UTR
YLR264W	RPS38B	chrXII	673486	+	3UTR
YOR122C	PFY1	chrXV	552259	-	3UTR
YHL001W	RPL14B	chrVIII	105176	+	3UTR
YNL209W	SSB2	chrXIV	253948	+	3UTR
YEL046C	GLY1	chrV	67230	-	3UTR
YAR002C-A	ERP1	chrl	154020	-	3UTR
YNL135C	FPR1	chrXIV	371782	-	3UTR
YNL096C	RPS7B	chrXIV	443312	-	3UTR
YKL182W	FAS1	chrXI	106851	+	3UTR
YNL104C	LEU4	chrXIV	424810	-	3UTR
YLR395C	COX8	chrXII	909694	-	3UTR
YHL011C	PRS3	chrVIII	80621	-	3UTR
YJL159W	HSP150	chrX	121868	+	3UTR
YDR211W	GCD6	chrIV	886918	+	3UTR
YBL028C	YBL028C	chrll	167396	-	3UTR
YML001W	YPT7	chrXIII	267806	+	3UTR
YER025W	GCD11	chrV	206897	+	3UTR
YBR078W	ECM33	chrll	395191	+	3UTR
YKL210W	UBA1	chrXI	42303	+	3UTR
YCR004C	YCP4	chrlII	119541	-	3UTR
YJL138C	TIF2	chrX	153338	-	3UTR
YKL054C	DEF1	chrXI	336462	-	3UTR
YLR209C	PNP1	chrXII	560770	-	3UTR
YJL002C	OST1	chrIV	38679	+	3UTR
YKL125W	RRN3	chrXI	210188	+	3UTR
YDR524W	YDR524W	chriV	1489324	-	5UTR
YGR034W	RPL26B	chrVII	555803	+	5UTR
YLR342W-A	YLR342W-A	chrXII	815797	+	5UTR
YML006C	GIS4	chrXIII	258873	-	5UTR
YJL062W-A	COA3	chrX	316720	+	5UTR
YDL081C	RPP1A	chriV	310097	-	CDS
YKL060C	FBA1	chrXI	326455	-	CDS

YHR021C	RPS27B	chrVIII	148058	-	CDS
YBL087C	RPL23A	chrII	60127	-	CDS
YOR234C	RPL33B	chrXV	778687	-	CDS
YER117W	RPL23B	chrV	397284	+	CDS
YGR034W	RPL26B	chrVII	556614	+	CDS
YLR075W	RPL10	chrXII	283269	+	CDS
YKL056C	TMA19	chrXI	334697	-	CDS
YPL143W	RPL33A	chrXVI	282838	+	CDS
YGL147C	RPL9A	chrVII	228073	-	CDS
YKL060C	FBA1	chrXI	327468	-	CDS
YML063W	RPS1B	chrXIII	147205	+	CDS
YDR050C	TPI1	chrIV	556061	-	CDS
YLL050C	COF1	chrXII	39850	-	CDS
YOL086C	ADH1	chrXV	159965	-	CDS
YGR209C	TRX2	chrVII	913196	-	CDS
YDR050C	TPI1	chrIV	556122	-	CDS
YKL060C	FBA1	chrXI	326956	-	CDS
YDR050C	TPI1	chrIV	556283	-	CDS
YMR242C	RPL20A	chrXIII	753590	-	CDS
YDL130W	RPP1B	chrIV	229980	+	CDS
YDR225W	HTA1	chrIV	915651	+	CDS
YPL079W	RPL21B	chrXVI	407383	+	CDS
YLR264W	RPS28B	chrXII	673178	+	CDS
YMR116C	ASC1	chrXIII	500571	-	CDS
YOL086C	ADH1	chrXV	160476	-	CDS
YLR155C	ASP3-1	chrXII	469375	-	CDS
YHR203C	RPS4B	chrVIII	504865	-	CDS
YBR118W	TEF2	chrII	477756	+	CDS
YIL069C	RPS24B	chrIX	231818	-	CDS
YGR148C	RPL24B	chrVII	787413	-	CDS
YHR203C	RPS4B	chrVIII	504954	-	CDS
YCR012W	PGK1	chrIII	138189	+	CDS
YJR145C	RPS4A	chrX	702777	-	CDS
YDR139C	RUB1	chrIV	733916	-	CDS
YCR031C	RPS14A	chrIII	177778	-	CDS
YGR063C	SPT4	chrVII	617665	-	CDS
YMR242C	RPL20A	chrXIII	753323	-	CDS
YMR242C	RPL20A	chrXIII	753732	-	CDS
YCL043C	PDI1	chrIII	48741	-	CDS
			-	-	-

YER009W	NTF2	chrV	172164	+	CDS
YLR044C	PDC1	chrXII	233955	-	CDS
YFR031C-A	RPL2A	chrVI	220998	-	CDS
YML073C	RPL6A	chrXIII	123610	-	CDS
YDL082W	RPL13A	chriv	309054	+	CDS
YJL052W	TDH1	chrX	338772	+	CDS
YGL245W	GUS1	chrVII	41052	+	CDS
YLR150W	STM1	chrXII	441061	+	CDS
YBL002W	HTB2	chrll	236876	+	CDS
YLR150W	STM1	chrXII	440987	+	CDS
YAR002C-A	ERP1	chrl	154502	-	CDS
YDR115W	MRX14	chriv	682373	+	CDS
YNL030W	HHF2	chrXIV	576814	+	CDS
YDL055C	PSA1	chriv	356523	-	CDS
YDR134C	CCW22	chriv	721486	-	CDS
YLR048W	RPSOB	chrXII	242837	+	CDS
YLR179C	protein_coding	chrXII	514413	-	CDS
YDR115W	MRX14	chriv	682205	+	CDS
YPL225W	protein_coding	chrXVI	126354	+	CDS
YDL084W	SUB2	chriv	306440	+	CDS
YNL071W	LAT1	chrXIV	492888	+	CDS
YKL058W	TOA2	chrXI	330199	+	CDS
YPR080W	TEF1	chrXVI	701422	+	CDS
YJR143C	PMT4	chrX	698471	-	CDS
YPL061W	ALD6	chrXVI	433969	+	CDS
YOR254C	SEC63	chrXV	805085	-	CDS
YOL139C	CDC33	chrXV	60623	-	CDS
YDL072C	YET3	chriv	330084	-	CDS
YMR074C	SDD2	chrXIII	413309	-	CDS
YOR187W	TUF1	chrXV	685212	+	CDS
YPL225W	protein_coding	chrXVI	126301	+	CDS
YGL191W	COX13	chrVII	144814	+	CDS
YGR106C	VOA1	chrVII	699643	-	CDS
YDL185W	VMA1	chriv	129970	+	CDS
YML001W	YPT7	chrXIII	267409	+	CDS
YPR074C	TKL1	chrXVI	692962	-	CDS
YAL046C	AIM1	chrl	57064	-	CDS
YCL033C	MXR2	chrill	63023	-	CDS
YML106W	URA5	chrXIII	57156	+	CDS

YGR159C	NSR1	chrVII	806414	-	CDS
YJR139C	HOM6	chrX	689725	-	CDS
YMR217W	GUA1	chrXIII	703186	+	CDS
YDL116W	NUP84	chrIV	253697	+	CDS
YDL143W	CCT4	chrIV	201505	+	CDS
Q0105	COB	chrM	43479	+	CDS
YNL069C	RPL16B	chrXIV	494532	-	intron
YLL050C	COF1	chrXII	40229	-	intron
YGL030W	RPL30	chrVII	439186	+	Intron
YPR132W	RPS23B	chrXVI	795766	+	STOP CODON
					STOP YLODON YLL024C
	SSA2	chrXII	95568	-	ADJ
					STOP YPL189C-A
COA2	chrXVI	188309	-	ADJ	

Table 3 Detection of D sites in mRNAs

Chapter 2

Dihydrouridine synthase 2 sustains levels of tRNACys and prevents ferroptosis in lung cancer

Abstract

Dihydrouridine is a universally conserved tRNA modification installed by enzymes that are important for human health for reasons that are yet unclear. High expression of dihydrouridine synthase 2 (DUS2) predicts poor patient outcomes in lung adenocarcinoma (Kato et al., 2005). Here, I show in human cells that DUS2 suppresses ferroptosis, a metal-dependent non-apoptotic form of cell death to which many lung cancers are unusually sensitive (Xiong et al., 2021), which is emerging as a therapeutic target in lung cancer. Consistent with a positive role for DUS2 in lung adenocarcinoma growth and metastasis, high expression of DUS2 correlates with increased resistance to ferroptosis inducers. In collaboration with Matthew Wang and Luisa Escobar-Hoyos, I extend these results to a mouse xenograft model of lung adenocarcinoma. Loss of DUS2 causes increased sensitivity with concomitant accumulation of toxic lipid peroxides, a hallmark of ferroptotic cell death. Mechanistically, DUS2 is required to maintain tRNA CysGCA levels and support translation of cysteine-rich proteins including metallothioneins that serve as key regulators of both metal and redox homeostasis. Metallothionein deficiency in DUS2 knockout cells leads to increased susceptibility to zinc intoxication and lower levels of reduced glutathione, which partially explains their sensitivity to ferroptosis. My results reveal a tRNA-specific vulnerability and demonstrate the therapeutic potential of targeting DUS2.

MAIN

Many cancers display resistance to canonical apoptotic cell death pathways (Hanahan and Weinberg, 2000). Non small cell lung cancers (NSCLC) use a number mechanisms to avoid apoptosis including loss of expression of the pro-apoptotic gene Bcl-2-like protein (BIM) (Ng et al., 2012) and amplification of an anti-apoptotic gene, induced myeloid leukemia cell differentiation protein (MCL1) (Beroukhim et al., 2010). Recently, several novel cell death mechanisms have been described. One of these, ferroptosis, is a form of non-apoptotic cell death that is emerging as a therapeutic target in lung cancer (Bebber et al., 2021).

DUS2 is overexpressed in lung cancer and loss of DUS2 sensitizes cells to

 ferroptosisHallmarks of ferroptotic cell death include dependence on redox active iron and accumulation of toxic lipid peroxides (Dixon and Stockwell, 2019). Several compounds have been described to induce ferroptosis, including class I ferroptosis inducers that inhibit import of cystine (erastin) and class II ferroptosis inducers which inhibit activity of the phospholipid hydroperoxidase GPX4 ((1S,3R)-RSL3, M162, and ML210) (Fig. 1a). Several studies have demonstrated that NSCLC cell lines are sensitive to chemical ferroptosis inducers, both in vitro and in vivo (Alvarez et al., 2017; Wohlhieter et al., 2020), and development of ferroptosis modulating drugs is an active area of research (Hadian and Stockwell, 2021). Intriguingly, resistance to treatment with several class II ferroptosis inducers (RSL3, ML162 and ML210) correlates with expression of the tRNA
modifying enzyme dihydrouridine synthase 2 (DUS2) in a panel of 860 cancer cell lines (Basu et al., 2013; Rees et al., 2016; Seashore-Ludlow et al., 2015) (Fig. 1b).

Dihydrouridine synthases (DUS) install a modified form of uridine in RNA (Fig 1c). Dihydrouridine (D) is the most common modified nucleotide in tRNA, and is found in tRNA from organisms from all branches of the tree of life (Xing et al., 2002). In tRNAs, D is thought to stabilize to the correct folding of the D-loop (Dyubankova et al., 2015). Eukaryotes including humans express four D synthases, and each DUS has unique target nucleotides in multiple individual tRNAs (Xing et al., 2004). Disturbance of D levels and/or DUS expression are implicated in lung, brain and kidney cancer (Kato et al., 2005; Kuchino and Borek, 1978). DUS2 is known to modify tRNAs at position 20 in the tRNA D-loop in yeast (Xing et al., 2004). DUS2 is frequently overexpressed in nonsmall cell lung cancer (NSCLC) tumors (Fig 1d), and NSCLC patients whose tumors express high levels of DUS2 have shorter survival time when compared to patients whose tumors do not express high levels of DUS2 (Kato et al., 2005) (Fig. 1e).

Here, I investigate the role that DUS2 plays in NSCLC disease progression. Using CRISPR/Cas9, I knock out DUS2 in a NSCLC cell line (A549) that expresses high levels of DUS2 (Kato et al., 2005) and show that loss of DUS2 leads to hypersensitivity to ferroptosis inducing compounds. Consistent with the in vitro sensitivity of the DUS2 KOs to ferroptosis, Matthew Wang and I show that DUS2 KO cells form smaller tumors in a mouse xenograft model and are more sensitive to systemic administration of a ferroptosis inducer. I probe the role of DUS2 in gene expression and find that loss of

DUS2 causes a $\sim 40 \%$ decrease in the level of a single tRNA, CysGCA. This loss of tRNACysGCA reduces levels of cysteine rich proteins proteome wide, including decreasing synthesis of a family of small, highly conserved cysteine rich proteins called metallothioneins (MTs). MTs are known to inhibit ferroptosis(Sun et al., 2016), and play two critical roles in cells: first, MTs directly inhibit the formation of lipid peroxides (Hurnanen et al., 1997; Miura et al., 1997) and defend the cell against oxidative stress (Thornalley and Vašák, 1985). Second, MTs are major regulators of intracellular zinc levels (Krężel and Maret, 2017; Sutherland et al., 2012; Vallee, 1995). My results establish the loss of MT expression as the likely basis for increased ferroptosis in the absence of DUS2 and suggest therapeutic potential for targeting DUS2 in lung cancer.

To investigate the link between high DUS2 expression and poor patient prognosis in NSCLC, I used CRISPR/Cas9 to generate knockout (KO) cell lines in a common NSCLC model cell line (A549) that expresses high levels of DUS2 (Kato et al., 2005). Using two different lentiviral delivered guide RNAs targeting exons 3 and 4 of the DUS2 coding sequence, I recovered multiple independent clonal KO cell lines. As expected, the clonal DUS2 KO CRISPR lines did not have detectable DUS2 protein expression (Fig. 1f).

The correlation between DUS2 mRNA levels and resistance to known ferroptosis inducing compounds across a panel of 860 cell lines prompted me to test the sensitivity of DUS2 KO cells to ferroptosis. The DUS2 KO cells showed an approximately 2-fold increase in the fraction of dead cells after ferroptosis induction with the GPX4 inhibitor

RSL3 (Fig 1g). This sensitivity was reversed upon re-expression of DUS2 (Fig S1a), or by treatment with known ferroptosis inhibitors, trolox and ferrostatin (Fig S1a), but not by treatment with Z-FAD-FMK, an apoptosis inhibitor (Fig S1a). A key feature of ferroptotic cell death is a buildup of toxic lipid peroxides (Wiernicki et al., 2020). I measured the levels of lipid peroxidation after GPX4 inhibitor treatment using an oxidation-sensitive fluorescent lipid peroxidation probe, C11-BODIPY (Drummen et al., 2002). When compared to WT A549 cells, the DUS2 KO cells had 6-8 fold higher levels of lipid peroxides when treated with RSL3 (Fig 1h, 1i), or a second GPX4 inhibitor, ML162 (Fig S1b). Consistent with the higher levels of lipid peroxidation in the DUS2 KO cells, using a probe for cellular reactive oxygen species (ROS), 2',7'dichlorodihydrofluorescein diacetate (H_{2} DCFDA), I observed higher cellular ROS levels in the DUS2 KOs when treated with RSL3 (Fig S1c).

DUS2 is required to sustain levels of a specific tRNA, tRNACysGCA

As DUS2 is known to modify tRNAs at position 20 in the tRNA D-loop in yeast (Xing et al., 2004)(Fig 2a), and D is known to stabilize tRNA folding (Alexandrov et al., 2006; Dyubankova et al., 2015) I next investigated if DUS2 is required to sustain tRNA expression or function in NSCLC cells. I performed tRNA sequencing using a combination of the ARM-seq and DM-TIGRT-seq protocols (Cozen et al., 2015; Zheng et al., 2015). The DUS2 KO cells showed no significant change in charging fraction of any tRNA (Table S1). As a positive control I detected a $\sim 70 \%$ reduction of tRNAGln charging after starving cells of glutamine (Fig. 2b). Notably, both DUS2 KO cell lines showed a reproducible decrease in expression of nearly every tRNACysGCA
isodecoder expressed in A549 cells (Fig. 2c, 2d, Table S2). When tRNACysGCA levels are summed across all isodecoders, the DUS2 KO cells have a $\sim 40 \%$ decrease in the total pool of tRNACysGCA (Fig S2a, Table S2).

I next re-analyzed small RNA seq data from TCGA lung adenocarcinoma (LUAD) samples for tRNA expression (Network et al., 2013). For tRNACysGCA, I found statistically significant increased levels in patient tumor samples as compared to non tumor samples (Fig. 2e). Levels of another U20 containing tRNA (tRNAGInCTG) were not significantly different in tumor samples (Fig. 2e). Together, these results show that DUS2 is required to sustain levels of a specific tRNA, tRNACysGCA, in NSCLC cells and suggest a role for tRNACysGCA levels in lung cancer disease.

Loss of DUS2 impairs translation of cysteine rich proteins, including known antiferroptotic oncoproteins

To determine if the $\mathbf{\sim 4 0 \%}$ decrease in tRNACysGCA expression in the DUS2 KO cells has a functional impact on translation, I measured cysteine codon translation using luciferase reporters. An array of 15 cysteine codons was prepended to a P2A sequence followed by firefly luciferase as a proxy for production of the cysteine repeat peptide, with an IRES driven renilla luciferase as a normalization control (Fig. 3a). Because cysteine is encoded by two independent codons (UGU and UGC) that are decoded by the same pool of GCA anticodon tRNA, I generated versions of the cysteine repeat reporter with either UGU or UGC codons. When transfected into the DUS2 KO cells, these reporters showed a $\sim 40 \%$ decrease in the ratio of firefly luciferase produced to renilla luciferase produced (Fig. 3b). This loss of efficient cysteine translation was
partially rescued by transfection of in vitro transcribed tRNACysGCA into the DUS2 KO cells (Fig. 3c). The observed cysteine translation defects did not affect bulk protein synthesis as determined by ${ }^{35}$ S methionine incorporation (Fig. S3a).

I then used SILAC proteomics to measure changes in the levels of endogenous proteins in DUS2 KO cells. When analyzed by amino acid content, proteins with greater than 5% Cys content showed a significant decrease in abundance (Fig. 3d) consistent with deficient translation of cysteine codons in cells lacking DUS2. Due to the inherently limited coverage of shotgun proteomics and the fact that many cysteine rich proteins are secreted, the SILAC experiment detected only relatively abundant proteins with moderate cysteine content (Table S3). I did not observe any peptides corresponding to many cysteine rich proteins, including any of the metallothioneins. Metallothioneins (MTs) are a class of very cysteine rich proteins ($\sim 35 \%$ cysteine content) that have been linked to ferroptosis and cancer progression (Ryu et al., 2012; Sun et al., 2016). I therefore measured metallothionein translation in DUS2 KO cells using a dual luciferase reporter similar to the cysteine codon repeat reporter by replacing the arrays of cysteine codons with the coding sequences of MT 1A or MT 1G (Fig. 3e). Production of metallothionein proteins was impaired in the DUS 2 KO cells (Figs. 3g and 3h), demonstrating that loss of DUS2 activity leads to defects in production of an endogenously expressed cysteine rich oncoprotein known to inhibit ferroptosis and lipid peroxidation (Orct et al., 2015; Sun et al., 2016).

In parallel I measured steady state mRNA levels in the DUS2 KO cells by RNA seq. Among the hundreds of mRNAs that were differentially expressed in the DUS2 KO cells (Fig. S3b, Table S4), I noticed that mRNAs encoding cysteine rich proteins were decreased in the DUS2 KO cells (Fig. S3b). Slow translation elongation has been shown to trigger mRNA degradation downstream of surveillance by the ribosome quality control (RQC) pathway (Hickey et al., 2020; Juszkiewicz et al., 2018). I hypothesized that reduced tRNACysGCA levels, which impair cysteine translation in DUS2 KO cells, cause ribosomes to stall more frequently on cysteine codons, leading to RQC mediated degradation of cysteine rich mRNAs. Supporting this hypothesis, metallothionein mRNAs were decreased in abundance in the DUS2 KO cells and partially restored by knocking down the RQC factor GIGYF2 (Fig. S3c).

Metallothioneins utilize their high thiol content to play two interrelated roles in cells: first, through direct coordination of Zn^{2+} and Cu^{2+} ions, they are key regulators of cellular zinc and copper levels. Although ferroptosis was initially characterized as an iron-dependent form of cell death (Dixon et al., 2012), more recent studies show that defects in zinc homeostasis which elevate cytosolic zinc concentrations sensitize cells to ferroptosis (Chen et al., 2021). Given the established role of metallothioneins in regulating intracellular zinc levels(Krężel and Maret, 2017; Vallee, 1995), I explored the role of zinc in the ferroptosis sensitivity of cells lacking DUS2. DUS2 KO cells are more sensitive to Zn^{2+} intoxication and Zn^{2+}-induced cell death (Fig. 3g). The second function of the MTs is to defend the cell from oxidative stress and directly inhibit the accumulation of lipid peroxides, which is a hallmark of ferroptosis (Orct et al., 2015; Schwarz et al., 1994; You et al., 2002). I hypothesized that because of the decreased MT levels in the DUS2

KOs there would be an increased demand for GPX4 mediated reduction of lipid peroxides, and lower cellular levels of reduced glutathione (GSH). Supporting this hypothesis, I found significantly lower GSH levels in the DUS2 KO cells (Fig. 3h). Together, these observations suggest that a major cause of ferroptosis sensitivity in the DUS2 KO cells is loss of MT synthesis, which in turn triggers defects in metal and redox homeostasis (Fig. 3i).

Combined loss of DUS2 and ferroptosis induction extends lifespan in a mouse xenograft NSCLC model

To characterize the impact of DUS2 on tumor growth and progression in vivo, Matthew Wang subcutaneously injected either A549 or DUS2 KO cells to develop xenograft tumors in nude mice. After injection, Matthew and I monitored tumor size and mouse survival. The tumors derived from DUS2 KO cells took 33\% longer to establish and were notably smaller than tumors from A549 cells (Fig. 4a, 4b). Examining the DUS2 WT and KO tumors revealed modestly increased expression of the ferroptosis biomarker PTSG2 in the DUS2 KO tumors, suggesting endogenous induction of ferroptosis in the tumors (Fig. 4c) Ferroptosis inducers are a promising therapeutic approach for the treatment of some cancers (Hadian and Stockwell, 2021). My in vitro experiments indicate that ferroptosis induction might be a more effective strategy to treat NSCLC in combination with inhibition of DUS2. To determine if the ferroptosis sensitivity of the DUS2 KO cells could be exploited for therapeutic benefit, Matthew Wang induced ferroptosis in mice with established tumors by administration of a GPX4 inhibitor (Fig. 4d). Most GPX4 inhibitors (RSL3, ML162, ML210) suffer from poor
pharmacological properties and have limited utility in vivo. However, a new class of GPX4 inhibitors with improved physiochemical and pharmacokinetic properties was recently developed (Eaton et al., 2020, 2019). I first tested if oral administration of one of these compounds (JKE-1674) could induce ferroptosis in mouse lungs by measuring mRNA levels of a marker of ferroptosis, PTSG2 (Yang et al., 2014) after oral JKE-1674 administration. JKE-1674 induced PTSG2 mRNA in lung tissue approximately 8.5-fold (Fig. 4e), similar to the level of induction by other GPX4 inhibitors (Yang et al., 2014). Treatment with JKE-1674 induced PTSG2 expression 3-fold in DUS2 KO tumors (Fig. 4f). JKE-1674 treatment did not noticeably alter mouse weight (Fig. S4a), or normalized tumor volume (Fig. S4b). However, median survival of mice receiving JKE-1647 was significantly shorter than mice receiving vehicle (Fig S4c). Among the mice receiving JKE, mice with DUS2 KO tumors had significantly increased lifespan (Fig. 4g). Together, these data indicate that either inhibition of DUS2 or combinatorial inhibition of DUS2 and induction of ferroptosis could be a promising therapeutic strategy for treatment of NSCLC patients.

DISCUSSION

My data indicate that high expression of a ubiquitous tRNA modifying enzyme is a specific cancer vulnerability in NSCLC cells. DUS2 is frequently over expressed in NSCLC, and patients whose tumors express high levels of DUS2 have worse outcomes(Kato et al., 2005). Using NSCLC cells depleted for DUS2, I demonstrate that DUS2 is required to support the levels of a specific family of tRNAs, tRNA CysGCA. This result highlights the outsized roles that specific tRNA substrates can play in the
biological functions of tRNA modifying enzymes (Delaunay et al., 2022; Ignatova et al., 2020, p. 6; Orellana et al., 2021; Passarelli et al., 2022). Loss of CysGCA expression in DUS2 KO cells leads to defects in translation of cysteine codons, which reduces steady state levels of many cysteine rich proteins, including metallothioneins that play key roles in regulating cellular zinc levels and responding to oxidative stress (Hurnanen et al., 1997; Sun et al., 2016; Vallee, 1995). Loss of metallothionein expression in DUS2 KO cells sensitizes the cells to ferroptosis both in vitro and in vivo.

Consistent with a role for DUS2 and tRNACysGCA in NSCLC disease severity and ferroptosis, alterations to cellular cysteine metabolism support extreme proliferation and resistance to ferroptosis in many cancers. Cancer cell lines frequently express very high levels of the cystine/glutamate antiporter $x C T$, and depletion of $x C T$ triggers ferroptosis in cancer models (Badgley et al., 2020; Daher et al., 2019). Cysteine regulates ferroptosis in part through the synthesis of GSH, a critical cofactor for the lipid peroxide-detoxifying enzyme GPX4. Accordingly, knockdown of the cysteine aminoacyl tRNA synthetase (CARS) protects cells against cysteine deprivation-induced ferroptosis by inducing the transsulfuration pathway to produce more cysteine and promote GSH synthesis (Hayano et al., 2016) My results add a new layer to this model: to fend off ferroptosis, lung cancer cells require both cysteine incorporation into GSH and into cysteine rich metallothionein proteins. Inhibiting either DUS2 or the MT family could increase ferroptosis sensitivity in patients and hold therapeutic value.

Methods

Cell culture

A549 cells were maintained in a 50:50 mixture of DMEM:F12 medium (Gibco), supplemented with 1x penicillin/streptomycin (Gibco) and 10\% FBS (Sigma). Cells were grown at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO} 2$ and maintained at subconfluency.

CRISPR knockout generation

DUS2 CRISPR knockout A549 cells were generated using a single-guide LentiCRISPRv2
strategy to cause deletions in the third and fourth exons of DUS2. Oligos for each guide RNA were phosphorylated and annealed and then cloned into pLentiGuide-Puro (Addgene) digested with BsmBI. Cas9/guideRNA lentiviruses were generated by transfection of pLentiGuide-Puro, psPAX2 (Addgene), and pdr8.2 (Addgene) into 293T cells. Viral supernatant was harvested, filtered and flash frozen 48 and 96 hours post transfection. For infection, 1 mL of 48 hr viral supernatant was placed in a 6 -well dish with A549 cells at 50\% confluency. At 90\% confluency, the A549 cells were split in to a 10 cm dish and selected for stable integrations using $1 \mathrm{ug} / \mathrm{mL}$ puromycin (Sigma). After a stable puro resistant population was generated, single clones were isolated using serial
dilution and colony picking. Single cell clones were expanded, screened for lack of expression of DUS2 protein, and frozen.

Western Blotting

Whole cell lysates were made by pelleting A549 cells and re-suspending fresh or frozen $\left(-80^{\circ} \mathrm{C}\right)$ pellets in RIPA buffer (50mM Tris pH 8, 150 mM NaCl , sodium deoxycholate 0.5%, sodium dodecyl sulfate 0.1%, NP-40 1\%), lysed on ice for 10 min with vortexing. Lysates were clarified by centrifugation at $4^{\circ} \mathrm{C}$ and maximum speed $(22,500 \times \mathrm{g})$ for 15 min. Approximately 20ug of whole cell lysate, as determined by BCA assay, was run on a 7\% Tris-Acetate Gel and transferred to nitrocellulose membranes using wet transfer. Membranes were blocked in 5\% milk for 1 hour and incubated with primary antibodies overnight at 4C in 5% milk low-salt TBST (50 mM Tris pH $7.5150 \mathrm{mM} \mathrm{NaCl} 0.1 \%$ Tween-20). Antibodies used for Western blot were as follows: anti-DUS2 at 1:10,000, anti-GAPDH at 1:10,000 (Sigma-Aldrich

G9545). Secondary antibody incubation was for 1 hour at room temperature using HRP conjugated goat anti-rabbit IgG at 1:3000 (Promega W4011). Washes were with highsalt TBST (50 mM Tris pH $7.5400 \mathrm{mM} \mathrm{NaCl} 0.1 \%$ Tween-20)

AlkB and AlkB D135S purification

pET30a-AlkB and pET30a-AlkB(D135S) (Addgene) were transformed into BL21(DE3) (NEB). 1 L cultures were grown to OD .55 , at $37^{\circ} \mathrm{C}$ with shaking. IPTG (Gold Bio) and FeSO_{4} (Sigma) were added to 1 mM and 10 uM final concentration. Cultures were induced for 4 h at $37^{\circ} \mathrm{C}$ with shaking, cells were harvested with centrifugation and flash
frozen. Each 1L pellet was resuspended in 20 mL fresh AlkB lysis buffer (50 mM HEPES pH8.0, 10 mM Fe(II) sulfate, 300 mM NaCl and 5 mM imidazole). Cells were lysed by sonication and addition of lysozyme (Sigma). Lysates were clarified with a $12,000 \mathrm{xg}$ spin for 30 min at $4^{\circ} \mathrm{C}$. Lysates were filtered through a 0.2 uM filter and loaded onto a HisTrap 5mL nickel column (Cytiva). Unbound protein and RNA were removed with extensive washing with lysis buffer, and crude alkB protein was eluted from the Ni column using AlkB Lysis buffer with 250 mM imidazole. AlkB protein containing fractions were pooled and desalted using a Zeba spin desalting column (Thermo). Desalted protein was purified away from bound RNA using a MonoS column (Cytiva) with a $100 \mathrm{mM}-1 \mathrm{M} \mathrm{NaCl}$ gradient. AlkB protein containing fractions were pooled and concentrated using Amicon Ultra-15 10KMWCO filters (Milipore). Concentrated AIkB protein was fractionated over a HiLoad 16/60 Superdex S200 column (Cytiva). S200 fractions containing AlkB were again concentrated using Amicon Ultra-15 10KMWCO filters (Milipore), diluted to 50% glycerol, and flash frozen.

Total RNA Isolation

A549 cells were harvested by pelleting and resuspending fresh or frozen $\left(-80^{\circ} \mathrm{C}\right)$ pellets in 1 mL of QIAzol (Qiagen). Total RNA was harvested according to the manufacturer's protocol.

tRNA sequencing

Total RNA from A549 cells was resuspended in 100 mM NaOAc/HOAc pH 4.8. $3 \mu \mathrm{~L} 1 \mathrm{M}$ NaIO4 (50 mM FC) was added and the mixture was incubated at $22^{\circ} \mathrm{C}$. After 30 minutes,
$6.65 \mu \mathrm{~L} 1 \mathrm{M}$ glucose was added. Total RNA was then recovered by EtOH precipitation. Briefly, $10 \mu \mathrm{~L} 3 \mathrm{M} \mathrm{NaOAc}, 1 \mathrm{~mL}$ EtOH were added, incubated at $-20^{\circ} \mathrm{C}$ for 15 min , and then spun at $4^{\circ} \mathrm{C}$ and maximum speed $(22,500 \mathrm{xg})$ for 30 min . The RNA pellet was washed with $70 \% \mathrm{EtOH}$ and spund again for 5 min . The pellet was resuspended in $50 \mu \mathrm{~L}$ of Na Borate pH 9.5 and incubated at $45^{\circ} \mathrm{C}$ for 90 minutes. Large RNAs were depleted from the total RNA with Qiagen miRNeasy spin colums using manufactures recommendations. Small RNAs were demethylated with AlkB and AlkB D135S in AlkB buffer (50 mM HEPES KOH , $\mathrm{pH} 8,75 \mu \mathrm{M}$ ferrous ammonium sulfate $\mathrm{pH} 5,1 \mathrm{mM} \alpha$ ketoglutarate, 2 mM sodium ascorbate, $50 \mu \mathrm{~g} / \mathrm{ml}$ BSA) with with $4 \times$ molar ratio of wtAIkB and $4 \times$ molar ratio of D135S at $37^{\circ} \mathrm{C}$ for 100 minutes. RNA was recovered with denaturing SILANE bead cleanup. RNA was then 3^{\prime} end healed using T4 PNK (NEB) and CIP (NEB), and recovered again with denaturing SILANE bead cleanup. A 3' adapter was ligated onto the small RNA using T4Rnl2. $5 \mu \mathrm{~L}$ of RNA was incubated with $1.5 \mu \mathrm{~L}$ DMSO and $0.5 \mu \mathrm{~L} 80 \mathrm{uM}$ preadenylated 3^{\prime} adapter. This mixture was incubated at $65^{\circ} \mathrm{C}$ for 2 min , and placed on ice for 1 min . ligations were incubated overnight at $16^{\circ} \mathrm{C}$ with $3.5 \mu \mathrm{~L}$ water, $2 \mu \mathrm{~L}$ 10X NEB ligase buffer, $5 \mu \mathrm{~L} 50 \%$ PEG $8000,1 \mu \mathrm{~L}$ SUPERASIN (Thermo), and $2 \mu \mathrm{~L}$ RNA ligase (NEB). RNA was recovered again with denaturing SILANE bead cleanup. RNA was reverse transcribed using superscript III. $8 \mu \mathrm{~L}$ of RNA was annealed to RT primer at $65^{\circ} \mathrm{C}$ for 5 min , and 10 min cooling to RT on benchtop. RT was performed following manufacturer's instructions. RNA was removed from cDNA by adding $1 \mu \mathrm{~L} 1 \mathrm{M} \mathrm{NaOH}$ to the RT reaction, incubating $5 \mathrm{~m} 95^{\circ} \mathrm{C}$ and adding $1 \mu \mathrm{~L} 1 \mathrm{M}$ HCl. cDNA was recovered with denaturing SILANE bead cleanup. A 5' linker was ligated to the cDNA using T4 RNA ligase. cDNA was mixed with $.8 \mu \mathrm{~L} 80 \mathrm{uM} 5$ ' adapter,
and $1 \mu \mathrm{~L}$ DMSO. This mixture was incubated at $75^{\circ} \mathrm{C}$ for 2 min and placed on ice for 1 min . to this was added $4.6 \mu \mathrm{~L}$ water, $2 \mu \mathrm{~L}$ 10X NEB RNA ligase buffer, $0.2 \mu \mathrm{~L} 0.1 \mathrm{M} \mathrm{ATP}$, $5 \mu \mathrm{~L} 50 \%$ PEG 8000 , and $2 \mu \mathrm{~L}$ RNA ligase. This mixture was incubated at RT overnight with shaking. Linker ligated cDNA was recovered with denaturing SILANE bead cleanup. Final library PCR was performed with Phusion DNA polymerase according to manufacturer's recommendation.

tRNA rescue experiment

T7 template DNA was constructed using PCR to fuse the T7 promoter sequence to the tRNA CysGCA sequence with CCA tail added. tRNA CysGCA RNA was prepared by run off transcription with T7 RNAP at $37^{\circ} \mathrm{C}$ for 8 hours followed by template removal with DNAsel (Ambion) at $37^{\circ} \mathrm{C}$ for 30 minutes. Full length tRNA CysGCA was purified on an 8% denaturing urea-PAGE gel, eluted overnight, precipitated with ethanol, and resuspended water. For rescue experiments, $2 \mu \mathrm{~g}$ tRNACysGCA and $2 \mu \mathrm{~g}$ translational reporter plasmid were co-transfected into cells using TransIT-X2 (Mirus). 48 hours after transfection, cells were harvested in $500 \mu \mathrm{~L}$ 1X passive lysis buffer (Promega) and flash frozen. Lysates were freeze thawed $2 x$ and $75 \mu \mathrm{~L}$ of lysate was used to measure firefly and renilla luciferase activity with the dual-luciferase reporter assay system (Promega) according to manufacturer's instructions.

DUS2 rescue experiment

Full length DUS2 was cloned into pcDNA3.1 (CMV promoter, C-terminal FLAG tag) and $2 \mu \mathrm{~g}$ of DUS2 plasmid was transfected into cells using TransIT-X2 (Mirus). 48 hours after
transfection, cells were split into 6 well plates and allowed to recover for 24 hours. At 40-50\% confluency, cells were treated with indicated concentrations of ferroptosis inducing compounds for 12 hours. Cells then stained with Annexin/PI as below.

tRNAseq data analysis

Demultiplexed reads were adapter trimmed using BBTools(Bushnell, n.d.; Bushnell et al., 2017) bbduk.sh. Adapter trimmed reads were then PCR-duplicate collapsed based on unique molecular identifier (UMI) using dedupe.sh. The UMI was then force trimmed with a second round of trimming. Adapter trimmed and duplicate collapsed reads were then aligned to a single copy of each isodecoder pseudo-genome using bbmap.sh. tRNA expression was quantified by counting the number of uniquely mapping reads that mapped to a tRNA, and differential expression analysis was performed using limmavoom(Ritchie et al., 2015). tRNAs with less than 100 uniquely mapping reads were not considered during expression analysis. tRNA charging ratio was determined using custom python scripts ratioing the number of reads terminating with CC-3' or CCA-3' .

${ }^{35}$ S Met total protein synthesis

Equal amounts of DUS2 KO and wt cells were seeded into 6 well plates. Cells were allowed to grow to $\sim 80 \%$ confluency, and media was switched to DMEM -Met for 20 m . $10 \mu \mathrm{~L} 100 \mathrm{uCi} / \mathrm{mL}{ }^{35} \mathrm{~S}$ Met was added to each well, and incubated at $37^{\circ} \mathrm{C}$ for 30 m . To harvest, cells were washed in 1X PBS 2x, and harvested in $200 \mu \mathrm{~L}$ RIPA with $1 \times$ PMSF and 1 x cOmplete. Lysates were freeze thawed 2 x , and spun at $4^{\circ} \mathrm{C}$ at $22,500 \mathrm{xg}$ for 15min to pellet cellular debris. Equal amounts of whole cell lysate, as determined by

BCA assay were loaded on a 4-20\% SDS-PAGE gel, dried for 2 hrs and exposed overnight on a storage phosphor screen.

Dual luciferase assay

pCMV:codonarray:P2A:Fluc:IRES:Rluc or pCMV:metallothionein:P2A:Fluc:IRES:Rluc constructs were constructed by gibson assembly into pTwist CMV Hygro, and successful assembly was confirmed by sanger sequencing. $2 \mu \mathrm{~g}$ of each plasmid was transfected into cells using TransIT-X2 (Mirus). 48 hours after transfection, cells were harvested in 1X passive lysis buffer (Promega), and flash frozen. Lysates were freeze thawed 2 x , and then $75 \mu \mathrm{~L}$ of lysate was used to measure firefly and renilla luciferase activity with the dual-luciferase reporter assay system (Promega) according to manufacturer's instructions.

SILAC proteomics

The SILAC experiment was configured as a two channel experiment: Cells were grown in either 1:1 DMEM:F12 with dialyzed FBS (Gibco) supplemented with either un-labeled Arg and Lys (Invitrogen) or ${ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}_{4} \mathrm{Arg}$ and ${ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}_{2}$ Lys (Invitrogen). Cells were maintained in isotopically labeled medium for 10 doublings, and then were harvested in RIPA supplemented with 1mM PMSF and 1X HALT phosphatase/protease cocktail (Pierce). Lysates were clarified at 4C and $22,500 \mathrm{xg}$ for 10 minutes. Total protein was quantified using a BCA assay, and 120μ g total protein was submitted to the Yale MS \& Proteomics Resource where they were processed and analyzed. Total protein samples were filtered through a 3-kDa Amicon Ultra filter, and the retentate was SpeedVac dried
and used for downstream proteomics preparation. Dried protein pellets were reduced with DTT, alkylated with iodoacetamide, enzymatically digested with trypsin, and desalted using C18 RP microspin column. High-resolution liquid chromatography mass spectrometry MS/MS data were collected on an Orbitrap Fusion mass spectrometer coupled to a NanoACQUITY UPLC. All MS/MS samples were analyzed using Mascot (Matrix Science, Mascot version 2.7.0) For peptide identification, Mascot was set up to search SwissProt assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.020 Da and a parent ion tolerance of 10.0 PPM. Scaffold (version 4.11.1, Proteome Software)) was used to validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 95.0\% probability by the Scaffold Local FDR algorithm. Protein identifications were accepted if they could be established at greater than 99.0\% probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm(Nesvizhskii et al., 2003)

RNAseq

Total RNA was isolated for three replicates of A549 and both DUS2 KO cell lines as described above. Stranded poly(A)+ selected mRNA-seq libraries were prepared by Genewiz and sequenced on a HiSeq X 10 with paired end 150-bp reads.

qRT-PCR

Total RNA was isolated as described above. For siRNA knockdown experiments, cells were seeded into 6-well plates, and transfected with siGIGFY2 or siNT siRNAs using

TransIT-X2 (Mirus) for 48hours. Total RNA was DNAse treated using TURBO DNAse (Thermo) according to manufacture instructions. One-step qRT-PCR was performed with gene specific forward and reverse primers using Luna Universal One-Step RTqPCR (NEB) reagents on a CFX96 Real-Time PCR instrument (Bio-Rad). Fold change was calculated using the Pfaffl method(Pfaffl, 2001), with GAPDH as the housekeeping gene. For qPCR experiments from tissues and tumors, cells were disassociated, pelleted and resuspended in TRIzol (Invitrogen). RNA was then extracted following manufacturer's instructions.

Cell death measurements by Annexin V/Propidium lodide Staining

Cells were counted and seeded into 6 -well plates (Corning). At 40-50\% confluency, cells were treated with ferroptosis inducing or inhibiting compounds (RSL3, Cayman Chemical, ML162 Cayman Chemical, Trolox, Sigma, ZVAD-FMK, Promega, ZnCl_{2}, Sigma)for 12 hours. Cells were harvested by trypsinization and centrifugation, washed once with 1X Hanks Buffered Salt Solution (HBSS), and resuspended in 1X annexinbinding buffer (Thermo) and stained with Annexin V/Propidium lodide according to manufacturer's instructions. Cells were filtered through 70 micron filters and analyzed on a BD LSR II FACS analyzer using FITC and Propidium lodide filter sets.

Quantification of lipid oxidation using C11-BODIPY staining

Cells were counted and seeded into 6 -well plates (Corning). At 40-50\% confluency, cells were treated with indicated concentration of ferroptosis inducing compound for 12 hours followed by treatment with 1uM C11-BODIPY for 30 minutes. Cells were then
harvested by trypsinization and centrifugation, washed once with 1X HBSS, and resuspended in 1X Dulbecco's phosphate-buffered saline (DPBS). Cells were filtered through 70 micron filters and analyzed on a BD LSR II FACS analyzer using FITC (reduced C11-BODIPY) or PE (oxidized C11-BODIPY) filter sets.

Cellular Glutathione Concentration Measurements

Cells were seeded into black 96 well cell culture treated plates (Corning). At 80\% confluency, media was removed and cells were washed once with 1X DPBS. Glutathione levels were measured using GSH-Glo reagents (Promega) according to manufacturer instructions.

Subcutaneous Mouse Xenografts

All animal protocols were reviewed by the Yale University IACUC and approved under protocol 2020-20303. A549 and A549 DUS2 KO cells were washed with and resuspended in 1X PBS and combined 1:1 with Matrigel (Corning) to a concentration of 5,000,000 cells per mL. Mice were randomized before injection. 500,000 A549 cells $(100 \mu \mathrm{~L})$ were subcutaneously injected into both flanks of six female nude mice. 500,000 A549 DUS2 KO cells (100 $\mu \mathrm{L}$) were subcutaneously injected into both flanks of six female nude mice. Mice were anesthetized with isoflurane twice weekly, during which time mice were weighed and tumor volumes were measured. Tumors were measured in two dimensions with calipers and tumor volumes were calculated with the formula Volume $=0.5 \times L_{1} \times L_{2}{ }^{2}$, where $L_{1}>L_{2}$.

Each mouse began dosing once either tumor was at least 5 mm long in at least one dimension. Mice within each group were randomized before dosing. Mice were given 10 $\mathrm{mg} / \mathrm{mL}$ JKE-1674 (MedChemExpress) ($10 \% 100 \mathrm{mg} / \mathrm{mL}$ JKE-1674 dissolved in DMSO, 90\% 20\%- β-cyclodextran in 1X PBS) to a concentration of 50 mg JKE-1674 per kg body weight, or vehicle solution (10\% DMSO, $90 \% 20 \%-\beta$-cyclodextran in 1X PBS) by oral gavage. Three of the six mice injected with only A549 or A549 DUS2 KO cells were dosed with JKE-1674, and the remaining mice were dosed with vehicle solution. Mice were dosed twice weekly. Survival endpoints were defined by death (either naturally or as required by veterinary technicians based on the health of each mouse), a 15\% decrease in body weight, or a tumor reaching 2 cm in length in any dimension.

Figures

C

G

Annexin V
A549

KO-1

KO-2
$+2 \mu \mathrm{M}$ RSL3

Figure 1: DUS2 is overexpressed in lung cancer and loss of DUS2 sensitizes cells to ferroptosis
a) Schematic of key regulators and chemical effectors of ferroptosis.
b) High DUS2 mRNA expression correlates with resistance to chemical ferroptosis inducers in a panel of 860 cancer cell lines.
c) DUS enzymes convert uridine to dihydrouridine.
d) DUS2 RNA levels are significantly higher in lung adenocarcinoma (LUAD) tumor samples compared to normal tissue (two tailed Mann-Whitney U test, CysGCA $\mathrm{p}<.0001$).
e) High DUS2 expression predicts worse outcomes for NSCLC patients.
f) DUS2 protein expression is absent in clonal A549 DUS2 KO cells.
g) Increased cell death (Annexin V+/PI+ cells) in DUS2 KOs compared to WT A549 following treatment with $2 \mu \mathrm{M}$ RSL-3.
h) Elevated lipid ROS (C11-BODIPY staining) in DUS2 KOs compared to WT A549 following treatment with $2 \mu \mathrm{M}$ RSL3.
i) Quantification of Fig. 1 h (two tailed t-test, * $\mathrm{p}<.0001$)

Figure 2: DUS2 is required to sustain levels of a specific tRNA, tRNACysGCA
a) DUS2 targets position U20 in tRNA.
b) Quantification of tRNA charging levels in DUS2 WT and KO cells. tRNA charging is unaffected by loss of DUS2, whereas Gln starvation reduces tRNAGIn charging levels $>50 \%$.
c) Changes in tRNA levels in DUS2 KO cells, black dots (FDR<0.05), grey (FDR >0.05), red (tRNACysGCA with FDR< .05).
d) Example isodecoder tRNACysGCA10-1 shows $\sim 50 \%$ lower expression in DUS2 KOs.
e) Analysis of tRNA levels in TCGA LUAD data. tRNACysGCA but not tRNAGInCTG levels are significantly higher in tumors compared to normal tissue (two tailed Mann-Whitney U test, CysGCA p<.0001).

Figure 3: Loss of DUS2 impairs translation of cysteine rich proteins, including metallothioneins, which leads to ferroptosis sensitivity
a) Cysteine translation reporter
b) DUS2 KO impairs translation of TGT and TGC cysteine codons (two tailed t-test, * p <.03).
c) Rescue of TGT translation by transfection of tRNACysGCA into DUS2 KO cells (two tailed t-test, * p <.0001).
d) Proteins with high ($>5 \%$) Cys content are reduced in DUS2 KO cells. Cumulative distribution of changes in protein abundance (log2 fold change, KolmogorovSmirnov test, $\mathrm{p}<.05$).
e) Metallothionein translation reporter
f) Metallothioneins (MT1A and MT1G) are translated less well in DUS2 KOs.
g) Increased cell death (Annexin V+/PI+ cells) in DUS2 KOs compared to WT A549 following addition of $62.5 \mu \mathrm{M} \mathrm{ZnCl}{ }_{2}$.
h) DUS2 KO cells have lower levels of reduced GSH (two tailed t-test, * $p<.004$).
i) Model of anti-ferroptotic function of DUS2.

Figure 4: Combined loss of DUS2 and ferroptosis induction extends lifespan in a mouse xenograft NSCLC model
a) A549 tumors grow faster than DUS2 KO tumors.
b) Example tumor from A549 and DUS2 KO-2
c) DUS2 KO tumors have higher expression of a marker of ferroptosis, PTGS2, than A549 cells by qRT-PCR (ANOVA, * p<.002).
d) Dosing scheme for xenograft experiments
e) Oral JKE-1674 treatment induces PTGS2 mRNA in mouse lungs (ANOVA, * $\mathrm{p}<.03$).
f) JKE-1674 treatment increases PTGS2 mRNA expression in DUS2 KO tumors(ANOVA , * p<.02).
g) Mice implanted with DUS2 KO xenograft tumors survive longer than mice implanted with A549 tumors when treated with JKE-1674 (Mantel-Cox test * $\mathrm{p}<.03$).

Supplemental Information

Figure S1:

a) Fraction of dead (Annexin $\mathrm{V}+/ \mathrm{PI}+$) DUS2 KO cells is reduced with pre-treated with DUS2 expression plasmid, Ferrostatin-1, Trolox but not ZVAD-FMK when treated with $2 \mu \mathrm{M}$ RSL-3.
b) DUS2 KOs have higher levels of lipid ROS measured by C11-BODIPY staining when treated with 200nM ML162.
c) DUS2 KOs have higher levels of cellular ROS measured by H_{2} DCFDA staining when treated with $2 \mu \mathrm{M}$ RSL-3.

Figure S2:

a) In aggregate, the total pool of tRNACysGCA is reduced $\sim 40 \%$ in DUS2 KO clones.

- All mRNA Avg
- $>5 \%$ cys KO-1
- $>5 \%$ cys KO-2

Figure S3:

a) Total protein synthesis is unimpaired in DUS2 KO cells as measured by ${ }^{35} \mathrm{~S}$-Met incorporation (two tailed t-test, * $\mathrm{p}=.67$).
b) mRNAs encoding cysteine rich proteins are reduced in DUS2 KO cells consistent with RQC. Cumulative distribution of changes in mRNA abundance (log2 fold change, $\mathrm{K}-\mathrm{S}$ test, $\mathrm{p}<.0001$).).
c) Depletion of RQC factor GIGYF2 (siGIGYF2) rescues MT1A mRNA levels in DUS2 KO cells compared to non-targeting control (siNT) (two tailed t-test, * $\mathrm{p}<.04$).

Figure S4:

a) Mouse weights generally increased over time with vehicle and JKE-1674.
b) Mice receiving JKE-1674 had shorter median survival than mice receiving vehicle.
c) Normalized tumor volumes (volume at Day $0=100 \%$) were similar between vehicle and JKE-1674 treatment.

Supplemental Tables

	A549 \%charged	KO-1 \%charged	KO-2 \%charged	minus-Gln \%charged
tRNA-Ala-AGC-11-1	0.897	0.776	0.827	0.931
tRNA-Ala-AGC-15-1	0.889	0.780	0.825	0.934
tRNA-Ala-AGC-2-1	0.930	0.826	0.866	0.937
tRNA-Ala-AGC-3-1	0.920	0.810	0.844	0.925
tRNA-Ala-AGC-4-1	0.907	0.861	0.908	0.930
tRNA-Ala-AGC-5-1	0.915	0.861	0.855	0.938
tRNA-Ala-AGC-6-1	0.954	0.848	0.827	0.936
tRNA-Ala-AGC-7-1	0.960	0.961	0.962	0.978
tRNA-Ala-AGC-8-1	0.901	0.771	0.826	0.927
tRNA-Ala-AGC-9-1	0.804	0.661	0.692	0.865
tRNA-Ala-CGC-1-1	0.909	0.830	0.880	0.945
tRNA-Ala-CGC-2-1	0.925	0.854	0.879	0.946
tRNA-Ala-CGC-3-1	0.874	0.819	0.863	0.943
tRNA-Ala-CGC-4-1	0.892	0.840	0.867	0.915
tRNA-Ala-TGC-1-1	0.938	0.800	0.888	0.939
tRNA-Ala-TGC-2-1	0.928	0.866	0.885	0.946
tRNA-Ala-TGC-3-1	0.932	0.848	0.876	0.946
tRNA-Ala-TGC-4-1	0.947	0.874	0.900	0.949
tRNA-Ala-TGC-5-1	0.913	0.885	0.864	0.941
tRNA-Ala-TGC-6-1	0.929	0.877	0.865	0.952
tRNA-Arg-ACG-1-1	0.768	0.812	0.764	0.781
tRNA-Arg-ACG-2-1	0.770	0.814	0.766	0.785
tRNA-Arg-CCG-1-1	0.882	0.855	0.864	0.900
tRNA-Arg-CCG-2-1	0.898	0.869	0.878	0.932
tRNA-Arg-CCT-1-1	0.875	0.864	0.845	0.903
tRNA-Arg-CCT-2-1	0.886	0.868	0.846	0.912
tRNA-Arg-CCT-3-1	0.855	0.846	0.837	0.890
tRNA-Arg-CCT-4-1	0.933	0.898	0.871	0.923
tRNA-Arg-CCT-5-1	0.849	0.859	0.816	0.900
tRNA-Arg-TCG-1-1	0.876	0.854	0.844	0.913
tRNA-Arg-TCG-2-1	0.852	0.826	0.816	0.885
tRNA-Arg-TCG-3-1	0.918	0.875	0.878	0.916
tRNA-Arg-TCG-4-1	0.888	0.859	0.853	0.901
tRNA-Arg-TCG-5-1	0.898	0.881	0.861	0.909
tRNA-Arg-TCT-1-1	0.918	0.908	0.903	0.930

tRNA-Arg-TCT-2-1	0.880	0.865	0.872	0.898
tRNA-Arg-TCT-3-1	0.886	0.878	0.877	0.900
tRNA-Arg-TCT-4-1	0.958	0.919	0.943	0.953
tRNA-Asn-GTT-1-1	0.928	0.855	0.883	0.959
tRNA-Asn-GTT-2-1	0.925	0.875	0.896	0.956
tRNA-Asn-GTT-3-1	0.918	0.872	0.890	0.955
tRNA-Asn-GTT-4-1	0.966	0.908	0.907	0.964
tRNA-Asn-GTT-5-1	0.937	0.867	0.904	0.969
tRNA-Asn-GTT-6-1	0.908	0.860	0.879	0.962
tRNA-Asp-GTC-1-1	0.955	0.899	0.899	0.974
tRNA-Asp-GTC-2-1	0.954	0.902	0.907	0.974
tRNA-Asp-GTC-3-1	0.953	0.900	0.905	0.972
tRNA-Cys-GCA-1-1	0.851	0.768	0.783	0.783
tRNA-Cys-GCA-10-1	0.817	0.880	0.600	0.696
tRNA-Cys-GCA-11-1	0.881	0.817	0.839	0.847
tRNA-Cys-GCA-12-1	0.882	0.684	0.773	0.816
tRNA-Cys-GCA-13-1	0.862	0.838	0.774	0.736
tRNA-Cys-GCA-14-1	0.924	0.930	0.868	0.871
tRNA-Cys-GCA-15-1	0.814	0.806	0.750	0.710
tRNA-Cys-GCA-17-1	0.942	0.901	0.776	0.817
tRNA-Cys-GCA-18-1	0.841	0.778	0.783	0.774
tRNA-Cys-GCA-2-1	0.872	0.819	0.840	0.844
tRNA-Cys-GCA-20-1	0.856	0.828	0.766	0.737
tRNA-Cys-GCA-3-1	0.832	0.732	0.724	0.755
tRNA-Cys-GCA-4-1	0.872	0.809	0.847	0.843
tRNA-Cys-GCA-5-1	0.885	0.814	0.843	0.844
tRNA-Cys-GCA-6-1	0.823	0.763	0.677	0.716
tRNA-Cys-GCA-7-1	0.882	0.819	0.840	0.845
tRNA-Cys-GCA-8-1	0.880	0.833	0.843	0.849
tRNA-Cys-GCA-9-1	0.815	0.771	0.693	0.713
tRNA-GIn-CTG-1-1	0.834	0.812	0.852	0.222
tRNA-GIn-CTG-2-1	0.850	0.824	0.865	0.226
tRNA-GIn-CTG-3-1	0.816	0.801	0.851	0.199
tRNA-GIn-CTG-4-1	0.829	0.802	0.862	0.200
tRNA-GIn-CTG-5-1	0.835	0.848	0.900	0.289
tRNA-GIn-CTG-6-1	0.757	0.766	0.855	0.462
tRNA-GIn-TTG-1-1	0.855	0.830	0.867	0.287
tRNA-GIn-TTG-2-1	0.892	0.865	0.885	0.169
tRNA-GIn-TTG-3-1	0.854	0.828	0.866	0.288

tRNA-Gln-TTG-4-1	0.910	0.850	0.894	0.182
tRNA-Glu-CTC-1-1	0.927	0.869	0.897	0.939
tRNA-Glu-CTC-2-1	0.924	0.860	0.894	0.938
tRNA-Glu-TTC-1-1	0.947	0.879	0.913	0.942
tRNA-Glu-TTC-2-1	0.939	0.883	0.911	0.938
tRNA-Glu-TTC-3-1	0.941	0.885	0.903	0.941
tRNA-Glu-TTC-4-1	0.938	0.886	0.903	0.942
tRNA-Gly-CCC-1-1	0.909	0.888	0.872	0.928
tRNA-Gly-CCC-2-1	0.903	0.796	0.885	0.933
tRNA-Gly-GCC-1-1	0.862	0.800	0.843	0.913
tRNA-Gly-GCC-2-1	0.881	0.803	0.851	0.923
tRNA-Gly-GCC-3-1	0.930	0.929	0.955	0.947
tRNA-Gly-TCC-1-1	0.915	0.834	0.861	0.925
tRNA-Gly-TCC-2-1	0.914	0.827	0.845	0.924
tRNA-Gly-TCC-3-1	0.916	0.834	0.866	0.924
tRNA-His-GTG-1-1	0.924	0.896	0.888	0.942
tRNA-His-GTG-2-1	0.918	0.869	0.875	0.941
tRNA-Ile-AAT-1-1	0.787	0.710	0.763	0.691
tRNA-Ile-AAT-2-1	0.803	0.723	0.761	0.685
tRNA-Ile-AAT-3-1	0.797	0.723	0.753	0.679
tRNA-Ile-AAT-4-1	0.826	0.737	0.795	0.721
tRNA-Ile-AAT-5-1	0.792	0.716	0.763	0.679
tRNA-Ile-AAT-6-1	0.790	0.711	0.740	0.647
tRNA-Ile-AAT-7-1	0.787	0.711	0.761	0.675
tRNA-Ile-AAT-8-1	0.791	0.715	0.760	0.675
tRNA-Ile-TAT-1-1	0.939	0.908	0.896	0.871
tRNA-Ile-TAT-2-1	0.944	0.943	0.899	0.878
tRNA-Ile-TAT-3-1	0.927	0.922	0.887	0.870
tRNA-iMet-CAT-1-1	0.856	0.844	0.837	0.897
tRNA-iMet-CAT-2-1	0.915	0.897	0.902	0.919
tRNA-Leu-AAG-1-1	0.941	0.901	0.923	0.958
tRNA-Leu-AAG-2-1	0.936	0.901	0.916	0.955
tRNA-Leu-AAG-3-1	0.937	0.899	0.919	0.956
tRNA-Leu-AAG-4-1	0.819	0.809	0.736	0.864
tRNA-Leu-CAA-1-1	0.937	0.896	0.921	0.959
tRNA-Leu-CAA-2-1	0.949	0.909	0.934	0.963
tRNA-Leu-CAA-3-1	0.938	0.889	0.919	0.958
tRNA-Leu-CAA-4-1	0.937	0.890	0.919	0.958
tRNA-Leu-CAG-1-1	0.929	0.888	0.899	0.954

tRNA-Leu-CAG-2-1	0.932	0.893	0.897	0.956
tRNA-Leu-TAA-1-1	0.926	0.897	0.916	0.964
tRNA-Leu-TAA-2-1	0.943	0.874	0.976	0.962
tRNA-Leu-TAA-3-1	0.955	0.909	0.919	0.964
tRNA-Leu-TAG-1-1	0.940	0.899	0.923	0.958
tRNA-Leu-TAG-2-1	0.934	0.895	0.915	0.955
tRNA-Leu-TAG-3-1	0.923	0.875	0.863	0.955
tRNA-Lys-CTT-1-1	0.963	0.921	0.928	0.971
tRNA-Lys-CTT-2-1	0.966	0.924	0.938	0.971
tRNA-Lys-CTT-3-1	0.972	0.935	0.944	0.968
tRNA-Lys-CTT-4-1	0.967	0.926	0.933	0.969
tRNA-Lys-CTT-5-1	0.979	0.957	0.971	0.973
tRNA-Lys-TTT-2-1	0.953	0.875	0.907	0.968
tRNA-Lys-TTT-3-1	0.961	0.897	0.904	0.965
tRNA-Lys-TTT-4-1	0.946	0.873	0.905	0.966
tRNA-Lys-TTT-5-1	0.963	0.897	0.901	0.963
tRNA-Met-CAT-1-1	0.965	0.937	0.938	0.968
tRNA-Met-CAT-2-1	0.934	0.870	0.918	0.961
tRNA-Met-CAT-3-1	0.936	0.907	0.923	0.958
tRNA-Met-CAT-4-1	0.940	0.876	0.916	0.962
tRNA-Met-CAT-6-1	0.954	0.902	0.932	0.961
tRNA-Phe-GAA-1-1	0.924	0.868	0.878	0.957
tRNA-Phe-GAA-2-1	0.965	0.936	0.911	0.964
tRNA-Phe-GAA-3-1	0.927	0.876	0.882	0.959
tRNA-Pro-AGG-1-1	0.897	0.798	0.857	0.914
tRNA-Pro-AGG-2-1	0.900	0.843	0.866	0.916
tRNA-Pro-CGG-1-1	0.898	0.848	0.867	0.916
tRNA-Pro-CGG-2-1	0.894	0.849	0.873	0.915
tRNA-Pro-TGG-1-1	0.896	0.840	0.859	0.913
tRNA-Pro-TGG-2-1	0.901	0.884	0.874	0.922
tRNA-Pro-TGG-3-1	0.899	0.845	0.870	0.917
tRNA-SeC-TCA-1-1	0.905	0.886	0.863	0.880
tRNA-Ser-AGA-1-1	0.866	0.695	0.844	0.946
tRNA-Ser-AGA-2-1	0.865	0.650	0.812	0.941
tRNA-Ser-AGA-3-1	0.804	0.688	0.842	0.934
tRNA-Ser-AGA-4-1	0.671	0.649	0.728	0.889
tRNA-Ser-CGA-1-1	0.929	0.762	0.842	0.959
tRNA-Ser-CGA-2-1	0.958	0.805	0.870	0.963
tRNA-Ser-CGA-3-1	0.930	0.882	0.838	0.908

tRNA-Ser-CGA-4-1	0.871	0.720	0.827	0.950
tRNA-Ser-GCT-1-1	0.890	0.747	0.837	0.947
tRNA-Ser-GCT-2-1	0.876	0.706	0.809	0.947
tRNA-Ser-GCT-3-1	0.896	0.724	0.817	0.950
tRNA-Ser-GCT-4-1	0.893	0.713	0.820	0.949
tRNA-Ser-GCT-5-1	0.890	0.760	0.815	0.945
tRNA-Ser-GCT-6-1	0.889	0.700	0.818	0.950
tRNA-Ser-TGA-1-1	0.869	0.680	0.796	0.946
tRNA-Ser-TGA-2-1	0.864	0.660	0.837	0.948
tRNA-Ser-TGA-3-1	0.865	0.649	0.813	0.941
tRNA-Ser-TGA-4-1	0.926	0.651	0.820	0.960
tRNA-Thr-AGT-1-1	0.909	0.735	0.880	0.963
tRNA-Thr-AGT-2-1	0.875	0.723	0.859	0.963
tRNA-Thr-AGT-3-1	0.894	0.718	0.899	0.961
tRNA-Thr-AGT-4-1	0.850	0.683	0.849	0.963
tRNA-Thr-AGT-5-1	0.908	0.735	0.879	0.963
tRNA-Thr-AGT-6-1	0.879	0.732	0.866	0.963
tRNA-Thr-CGT-1-1	0.918	0.729	0.896	0.955
tRNA-Thr-CGT-2-1	0.899	0.752	0.887	0.961
tRNA-Thr-CGT-3-1	0.874	0.719	0.865	0.964
tRNA-Thr-CGT-4-1	0.895	0.752	0.886	0.959
tRNA-Thr-TGT-1-1	0.911	0.800	0.898	0.971
tRNA-Thr-TGT-2-1	0.896	0.794	0.861	0.957
tRNA-Thr-TGT-3-1	0.926	0.768	0.856	0.955
tRNA-Thr-TGT-4-1	0.897	0.801	0.855	0.960
tRNA-Thr-TGT-5-1	0.893	0.802	0.851	0.960
tRNA-Thr-TGT-6-1	0.913	0.759	0.882	0.959
tRNA-Trp-CCA-1-1	0.945	0.906	0.914	0.966
tRNA-Trp-CCA-2-1	0.950	0.904	0.910	0.966
tRNA-Trp-CCA-3-1	0.946	0.904	0.913	0.966
tRNA-Trp-CCA-4-1	0.948	0.910	0.920	0.970
tRNA-Trp-CCA-5-1	0.946	0.900	0.910	0.965
tRNA-Tyr-GTA-1-1	0.928	0.892	0.882	0.949
tRNA-Tyr-GTA-2-1	0.923	0.874	0.886	0.949
tRNA-Tyr-GTA-3-1	0.927	0.888	0.883	0.942
tRNA-Tyr-GTA-4-1	0.937	0.893	0.893	0.970
tRNA-Tyr-GTA-5-1	0.923	0.875	0.886	0.949
tRNA-Tyr-GTA-6-1	0.928	0.890	0.883	0.943
tRNA-Tyr-GTA-7-1	0.956	0.933	0.921	0.971

tRNA-Tyr-GTA-8-1	0.925	0.889	0.882	0.950
tRNA-Val-AAC-1-1	0.963	0.914	0.929	0.966
tRNA-Val-AAC-2-1	0.963	0.915	0.929	0.966
tRNA-Val-AAC-3-1	0.960	0.909	0.922	0.963
tRNA-Val-CAC-1-1	0.963	0.914	0.928	0.966
tRNA-Val-CAC-3-1	0.958	0.921	0.936	0.966
tRNA-Val-CAC-4-1	0.966	0.946	0.943	0.969
tRNA-Val-TAC-1-1	0.965	0.927	0.932	0.971
tRNA-Val-TAC-2-1	0.963	0.922	0.930	0.971
tRNA-Val-TAC-4-1	0.983	0.915	0.907	0.969

Table S1 Charged tRNA fractions upon DUS2 Knockout.

\#ID	L2FC KO-1	L2FC KO-2	FDR	AveExpr	P value
tRNA-Cys- GCA-10-1	-1.5541464	-2.0977973	0.00085937	6.74454054	$7.16 \mathrm{E}-06$
tRNA-GIn- TTG-4-1	0.98231525	1.85211179	0.00085937	7.90882201	$1.02 \mathrm{E}-05$
tRNA-Ser- CGA-4-1	1.39445368	1.33049922	0.00085937	11.4096561	$6.58 \mathrm{E}-06$
tRNA-Cys- GCA-2-1	-0.9263551	-1.1739665	0.00381945	12.119153	$8.21 \mathrm{E}-05$
tRNA-Cys- GCA-14-1	-0.9442128	-1.5217302	0.00381945	9.2659496	$7.23 \mathrm{E}-05$
tRNA-Cys- GCA-9-1	-1.150234	-1.5761573	0.00381945	7.48707828	$9.02 \mathrm{E}-05$
tRNA-Ser- AGA-3-1	0.69562143	1.11197502	0.00782033	10.0579964	0.00021552
tRNA-Asn- GTT-5-1	0.79467269	1.01264262	0.01467142	10.802648	0.00046209
tRNA-Cys- GCA-8-1	-0.7880458	-1.2896502	0.01616332	9.5676113	0.00057272
tRNA-Cys- GCA-5-1	-0.7213852	-1.0661286	0.01659361	11.0539618	0.00065329
tRNA-Thr- CGT-4-1	-0.5070528	-1.1585986	0.02985708	13.4947717	0.00129302
tRNA-Asn- GTT-4-1	0.82594991	0.9348473	0.03096185	9.03501614	0.00146277
tRNA-Thr- CGT-2-1	-0.4053984	-1.010987	0.0469111	13.3333862	0.00240096

Table S2 tRNA abundance upon DUS2 Knockout

Prot ID	Molecular Weight	Avg L2FC KO-1	Avg L2FC KO-2
KRT81	55 kDa	-1.7898	-1.2802333
PLSCR1	35 kDa	1.776	1.17156667
USP3	59 kDa	-1.0387	0.5472
AFP	69 kDa	-1.9745	-2.9251
SPINT2	28 kDa	-1.7704	-0.81325
PDLIM7	50 kDa	1.18296667	0.19446667
OCIAD2	17 kDa	1.1136	0.08316667
EHMT1	141 kDa	-6.4763	-6.499
ETHE1	28 kDa	1.0267	0.9978
PRAG1	150 kDa	1.1234	1.2635
SUSD2	90 kDa	2.4533	2.09886667
ZNF512	65 kDa	1.2769	0.4356
AMIGO2	58 kDa	1.27545	0.6227
IGF1R	155 kDa	2.0965	0.57645
SQSTM1	48 kDa	-1.0069	-1.1747
FNDC3B	133 kDa	-1.0899	-1.25915
C17orf75	45 kDa	-1.4596	-0.4744
CTSC	52 kDa	1.0355	0.42503333
NDUFB7	16 kDa	1.09546667	0.19135
IRF2BP1	62 kDa	1.0668	1.21493333
RPP30	29 kDa	-1.0454	-0.36235
ACSF2	68 kDa	1.23863333	1.10943333
LSM12	22 kDa	-1.2253333	-1.0747
WDR43	75 kDa	-1.1223667	-0.8403667
CYP4F11	60 kDa	-2.86735	-1.93465
LDAH	37 kDa	-2.3752	-2.8421
THEM6	24 kDa	-3.8271667	0.40246667
NUDCD1	67 kDa	-1.5716	-0.7280333
SLC16A3	49 kDa	-2.15885	-1.7532667
APP	87 kDa	1.26155	1.32545
RRP9	52 kDa	-1.3384	-0.7308333
XPOT	110 kDa	-1.2424	-0.1778667
URB2	171 kDa	1.81555	-0.1273
BCAM	67 kDa	1.47413333	0.9721
ATP1B3	32 kDa	1.02256667	-0.3525333
WDR12	48 kDa	-1.2950333	-0.2668

ATP5MF	11 kDa	1.0354	-0.1676667
EFL1	125 kDa	-1.1476	-0.7395667
EXOSC4	26 kDa	1.02123333	0.05893333
GFPT1	79 kDa	-1.2961	-0.4613
LRRC8A	94 kDa	1.3148	0.1971
FKBP8	45 kDa	1.6249	0.47815
KYNU	52 kDa	-1.5689333	-0.9867667
THOC5	79 kDa	-1.4012	0.3277
CADM1	49 kDa	1.58783333	0.91325
CEMIP2	154 kDa	1.0114	0.5097
TUBB4B	50 kDa	-1.0771667	-0.40795
SGPL1	64 kDa	1.11443333	0.23133333
MAP2K3	39 kDa	-1.96215	-1.1521333
KIF2A	80 kDa	1.0682	-0.0398
TCF25	77 kDa	1.08726667	-0.2291
TFAM	29 kDa	-1.7584	-4.1011667
SLC2A3	54 kDa	-1.9733	-6.1787
RIF1	274 kDa	-1.3929	-0.1833
ALKBH5	44 kDa	1.9951	0.6878
PFDN4	15 kDa	-1.1784667	0.06486667
NECTIN2	58 kDa	1.3831	0.78125
CNTN1	113 kDa	1.19856667	0.65493333
MICU1	54 kDa	1.0679	0.77165
H3C1	15 kDa	-1.2539	-0.0195333
TNS3	155 kDa	1.0573	0.90493333
CA12	39 kDa	-1.2814333	-0.9645333
SKIV2L	138 kDa	1.12445	0.79465
PLBD2	65 kDa	1.9719	1.1415
CPS1	165 kDa	-1.3043667	0.3106
RRM2	45 kDa	-1.2398	-1.5
SGTA	34 kDa	-1.2363667	-1.2061
AKR1B10	36 kDa	-1.3854	-0.5225
SNRPB	25 kDa	1.3985	0.9686
MCCC1	80 kDa	-1.4729	-1.3011
PTGR1	36 kDa	-1.6842	-0.6445667
NNT	114 kDa	1.20603333	0.92843333
HSDL2	45 kDa	1.00816667	0.79063333
RPL7L1	30 kDa	-1.2003333	-0.7372667
UTP15	58 kDa	-1.2215	-0.5750333

CD99L2	28 kDa	1.08655	0.02246667
BCKDHA	50 kDa	1.60175	0.8463
SCPEP1	51 kDa	1.3034	0.9737
NIFK	34 kDa	-1.2858	-0.6430333
NAMPT	56 kDa	-2.2381333	-2.1605
POLR1G	55 kDa	1.00033333	0.53796667
SYNPO	99 kDa	1.2958	0.084
EXOC7	83 kDa	-1.1597	-0.2523667
DNTTIP2	84 kDa	-1.4769	0.1575
MSI2	35 kDa	-1.658	-0.1893
MARCKS	32 kDa	1.34513333	1.03076667
TP53I3	36 kDa	-1.3038	-1.3242
CDH2	100 kDa	1.1283	2.30505
TOP2A	174 kDa	-1.2598	-0.9042333
EFHD2	27 kDa	-1.0055667	-1.27845
LAMTOR3	14 kDa	1.07583333	0.7253
TRAM1	43 kDa	1.38356667	0.42183333
BRI3BP	28 kDa	1.15245	0.98293333
PLEC	532 kDa	-1.6202667	-0.723
H3C15	15 kDa	-1.1819	0.016
H3-3A	15 kDa	-1.1810667	0.01036667
MRPL41	15 kDa	1.0069	0.2921
BZW1	48 kDa	-1.0147667	-0.9826333
SMARCA2	181 kDa	1.0076	1.0943
KRT10	59 kDa	1.46513333	-0.1177
MYEF2	64 kDa	1.13515	-0.6347
KRT9	62 kDa	3.02116667	2.35706667
PPP1R10	99 kDa	1.19253333	0.14995
INA	55 kDa	1.4433	0.6388
QKI	38 kDa	1.16	0.1739
AGR2	20 kDa	-1.6993	0.6974
LRRFIP2	82 kDa	1.3283	0.438
RPRD2	156 kDa	1.27256667	0.4791
TAGLN	23 kDa	1.06913333	-0.4395333
CHMP6	23 kDa	1.32305	0.92745
MRPS26	24 kDa	-1.4982667	0.44965
KRT1	66 kDa	3.2413	4.0934
SH3KBP1	73 kDa	-1.3523667	-1.5189667
PGRMC2	24 kDa	1.00526667	0.1824

HDGFL2	74 kDa	1.05666667	0.62793333
PQBP1	30 kDa	1.14713333	0.64193333
UBLCP1	37 kDa	-1.2058	0.19496667
RSRC2	51 kDa	1.071	1.2747
PRRC1	47 kDa	-1.08785	-0.4182
VIM	54 kDa	-1.7456	-0.9005333
CALD1	93 kDa	1.08156667	0.29933333
H4C1	11 kDa	-1.4583	-0.1680333
H2BC5	14 kDa	-1.07375	-0.2080333
KRT19	44 kDa	-1.7206333	-1.0152667

Table S3 Protein abundance upon DUS2 Knockout

Gene_Name	log2(FC) KO-1	P-adj KO-1	log2(FC) KO-1	P-adj KO-2
PEDS1-UBE2V1	5.09	$9.70 \mathrm{E}-14$	4.63	$9.15 \mathrm{E}-15$
PPARGC1A	3.19	$8.66 \mathrm{E}-10$	2.92	$4.78 \mathrm{E}-09$
GABRQ	2.32	$1.47 \mathrm{E}-06$	3.30	$2.10 \mathrm{E}-13$
EDAR	2.60	$1.16 \mathrm{E}-05$	2.81	$2.60 \mathrm{E}-07$
PDE3A	3.16	$3.63 \mathrm{E}-16$	2.09	$4.63 \mathrm{E}-09$
ADAM9	3.12	$7.66 \mathrm{E}-10$	2.10	0.0014752
TNFSF15	2.38	$9.79 \mathrm{E}-13$	2.81	$7.03 \mathrm{E}-17$
PHC1P1	3.41	$5.91 \mathrm{E}-06$	1.77	0.01023472
AC020915.4	3.36	$8.31 \mathrm{E}-06$	1.82	0.00913881
FAT4	2.52	0.00014809	2.53	$7.22 \mathrm{E}-05$
ABCF2-H2BE1	2.94	0.0001906	2.05	0.00469279
LRIG1	2.96	$5.60 \mathrm{E}-11$	1.98	$7.15 \mathrm{E}-06$
RAPGEF2	2.70	$1.40 \mathrm{E}-06$	2.22	$1.44 \mathrm{E}-05$
SHISAL1	2.28	$1.03 \mathrm{E}-05$	2.57	$1.68 \mathrm{E}-07$
PCDHGB5	2.21	0.0005882	2.46	$2.25 \mathrm{E}-05$
ADH1C	1.51	0.00235156	3.14	$2.61 \mathrm{E}-10$
DDIT4L	1.82	$1.93 \mathrm{E}-06$	2.79	$1.25 \mathrm{E}-14$
PCDHAC1	2.35	0.00027637	2.26	0.00042178
PKD2	2.34	$1.96 \mathrm{E}-06$	2.13	$9.39 \mathrm{E}-07$
GLRB	1.70	0.00046146	2.77	$1.63 \mathrm{E}-07$
ITIH2	2.37	$3.56 \mathrm{E}-06$	2.08	$1.60 \mathrm{E}-05$
PDK4	2.44	$1.51 \mathrm{E}-19$	2.01	$4.80 \mathrm{E}-11$
TLR1	2.67	$4.95 \mathrm{E}-05$	1.76	0.00544087
TP63	1.64	0.00053191	2.78	$9.60 \mathrm{E}-13$

ABCA12	2.08	0.00012645	2.33	9.97E-06
PDCD6IP	2.47	$3.46 \mathrm{E}-09$	1.91	2.18E-06
MATR3	2.21	$1.16 \mathrm{E}-06$	2.15	4.33E-07
OPRL1	2.10	9.01E-05	2.22	1.80E-05
RAB23	2.77	2.55E-06	1.53	0.00616781
FAM47E-STBD1	2.34	0.00386796	1.88	0.00919403
CPE	1.81	5.01E-06	2.38	4.43E-09
RARRES1	3.08	$2.25 \mathrm{E}-15$	1.11	0.00040009
ANKRD50	2.05	1.18E-06	2.13	7.41E-08
PTPN13	1.73	0.00364961	2.43	8.37E-07
MFAP3	2.29	$3.26 \mathrm{E}-05$	1.86	0.00083444
FAM131B	2.36	5.34E-09	1.75	3.87E-05
RNF212	2.11	0.00829951	-1.82	0.00220293
SYTL5	2.18	0.00157941	1.93	0.00385485
CCDC85A	1.56	0.01336037	2.55	$1.73 \mathrm{E}-05$
TMEM47	1.45	0.00084954	2.63	6.98E-09
PRKDC	2.31	$6.92 \mathrm{E}-14$	1.72	3.37E-06
LGR4	3.02	1.19E-12	1.01	0.02929749
NCOA2	2.29	1.30E-06	1.74	6.16E-05
CCNG2	2.25	9.87E-07	1.78	$3.87 \mathrm{E}-05$
FGFR2	1.51	0.00119004	2.50	$3.88 \mathrm{E}-08$
GALNT7	2.31	4.61E-08	1.70	$2.10 \mathrm{E}-05$
FRS2	1.97	0.00020195	2.03	$4.24 \mathrm{E}-05$
MARCHF8	1.76	0.00029308	2.22	$1.02 \mathrm{E}-07$
B4GALT6	2.00	$2.13 \mathrm{E}-05$	1.98	7.26E-05
ARHGAP11A	1.98	$1.82 \mathrm{E}-05$	1.98	$2.11 \mathrm{E}-05$
NT5DC1	2.45	$7.21 \mathrm{E}-08$	1.48	0.00044748
HERC3	1.90	0.00054723	2.02	4.70E-05
MBOAT1	2.27	0.00018929	1.64	0.01243583
AC068896.1	2.03	0.01209952	1.88	0.00944449
SMAD4	2.12	1.93E-06	1.77	2.85E-05
CXCL5	2.48	$1.34 \mathrm{E}-08$	1.39	0.00017276
RDH10	1.99	7.01E-06	1.88	$3.37 \mathrm{E}-09$
ENTPD7	1.75	0.00033132	2.10	5.88E-05
BMPR1A	2.11	5.45E-06	1.74	6.66E-05
AOX1	2.41	$2.21 \mathrm{E}-06$	1.43	0.00676903
AC022826.2	2.06	0.01064032	1.77	0.01611644
EPB41L4A	1.95	0.00015533	1.85	8.47E-05
PTGS2	2.00	$1.08 \mathrm{E}-07$	1.78	$6.95 \mathrm{E}-06$

$\left.\begin{array}{|l|r|r|r|r|}\hline \text { NPY4R2 } & 1.99 & 0.00016789 & 1.78 & 7.26 \mathrm{E}-05 \\ \hline \text { GABRA5 } & 1.89 & 7.39 \mathrm{E}-08 & 1.88 & 3.34 \mathrm{E}-11 \\ \hline \text { CXCL1 } & 1.77 & 2.23 \mathrm{E}-05 & 1.99 & 1.01 \mathrm{E}-09 \\ \hline \text { HERC2P2 } & 1.91 & 1.43 \mathrm{E}-05 & 1.83 & 7.23 \mathrm{E}-06 \\ \hline \text { DDX60 } & 2.00 & 9.25 \mathrm{E}-05 & 1.71 & 0.00173779 \\ \hline \text { KDSR } & 2.24 & 0.00026981 & 1.46 & 0.04911837 \\ \hline \text { TANC2 } & 1.91 & 3.94 \mathrm{E}-05 & 1.78 & 4.19 \mathrm{E}-05 \\ \hline \text { AQP2 } & 2.00 & 0.01103655 & 1.68 & 0.01988092 \\ \hline \text { TGFBR2 } & 1.78 & 5.70 \mathrm{E}-05 & 1.89 & 3.30 \mathrm{E}-08 \\ \hline \text { SPIN1 } & 1.91 & 7.88 \mathrm{E}-06 & 1.75 & 8.94 \mathrm{E}-06 \\ \hline \text { ACTR3 } & 2.15 & 5.01 \mathrm{E}-08 & 1.48 & 9.37 \mathrm{E}-05 \\ \hline \text { WDR44 } & 2.19 & 5.33 \mathrm{E}-06 & 1.44 & 0.0018751 \\ \hline \text { ANLN } & 2.02 & 1.56 \mathrm{E}-06 & 1.61 & 2.01 \mathrm{E}-06 \\ \hline \text { RFTN1 } & 1.05 & 0.00089351 & 2.56 & 2.80 \mathrm{E}-19 \\ \hline \text { MAPK1 } & 1.88 & 3.95 \mathrm{E}-05 & 1.73 & 4.30 \mathrm{E}-05 \\ \hline \text { HIF1A } & 2.14 & 8.62 \mathrm{E}-10 & 1.46 & 4.03 \mathrm{E}-05 \\ \hline \text { C1GALT1 } & 2.28 & 3.91 \mathrm{E}-07 & 1.32 & 0.00528191 \\ \hline \text { PELI1 } & 1.63 & 0.00072168 & 1.96 & 8.58 \mathrm{E}-06 \\ \hline \text { CD52 } & 2.22 & 0.00045906 & 1.36 & 0.02894025 \\ \hline \text { FRAS1 } & 1.99 & 0.00016886 & 1.58 & 0.00033629 \\ \hline \text { TECTA } & 2.04 & 0.01270141 & 1.52 & 0.0412344 \\ \hline \text { ZNF365 } & 1.58 & 0.02222138 & 1.98 & 0.00334685 \\ \hline \text { SLC7A2 } & 1.94 & 1.96 & 4.79 \mathrm{E}-07 & 1.59\end{array}\right) 4.03 \mathrm{E}-059$.

SGMS2	1.68	0.0011186	1.79	0.00055847
GPR37	2.21	8.44E-06	1.26	0.02245843
ZBTB39	2.03	1.17E-05	1.44	0.00304629
TAF5L	2.18	8.00E-07	1.28	0.0183487
EFEMP1	1.05	0.00840131	2.41	$2.25 \mathrm{E}-18$
PRDM6	1.57	0.03102303	1.89	0.00461459
C3orf80	1.43	0.00081964	2.02	7.23E-06
TRAM1	1.57	1.37E-05	1.89	$5.40 \mathrm{E}-11$
SMC1A	1.67	0.0002656	1.78	$2.25 \mathrm{E}-05$
METTL14	1.99	0.00045534	1.45	0.001994
SLC36A4	1.84	3.09E-05	1.60	0.00010978
AKAP11	1.83	$2.34 \mathrm{E}-05$	1.61	0.00044338
ZNF248	1.64	0.00036142	1.79	0.00015236
EPHA5	1.50	0.00888385	1.93	0.00412931
ADAM10	1.73	0.00027818	1.69	0.00016577
SLC23A2	2.08	$1.78 \mathrm{E}-07$	1.35	0.00116367
USP28	1.72	0.00010242	1.69	$6.26 \mathrm{E}-05$
TM4SF20	1.46	1.15E-05	-1.60	7.63E-08
MUC5AC	1.43	0.00025813	-1.12	0.00271767
PROC	1.12	0.02541434	-2.01	5.02E-09
NPY4R	2.12	8.90E-06	1.29	0.00341172
LEMD3	1.75	$1.51 \mathrm{E}-05$	1.66	4.80E-05
RB1	1.62	$6.46 \mathrm{E}-05$	1.78	$1.88 \mathrm{E}-05$
AL512506.3	1.98	0.00424735	1.42	0.04710574
CHI3L1	1.89	$5.26 \mathrm{E}-10$	1.50	5.09E-07
PDZD8	1.85	2.83E-05	1.55	0.00027249
GOLGA8A	1.57	0.01667545	1.82	0.00268277
ATP2A2	2.00	3.49E-06	1.38	0.00062602
TMTC2	1.59	0.00027092	1.78	$1.32 \mathrm{E}-05$
XPR1	1.89	4.23E-06	1.47	5.78E-05
SCG2	1.14	0.01611426	2.23	8.87E-05
PLCH1	1.73	$1.48 \mathrm{E}-05$	1.64	2.02E-05
KIAA0895	1.73	0.00156298	1.63	0.00092255
PAPSS2	1.80	$1.29 \mathrm{E}-05$	1.55	6.68E-06
PSMC2	1.81	$2.04 \mathrm{E}-05$	1.52	0.00039665
FBN2	2.09	$2.06 \mathrm{E}-06$	1.22	0.00269663
PIGK	1.91	0.00012533	1.37	0.00214594
BTAF1	1.78	2.95E-05	1.50	0.00039001
CNTN1	1.90	3.17E-06	1.38	0.00041699

SLC33A1	1.88	0.0001125	1.39	0.00719381
CLPX	1.76	5.21E-05	1.50	3.26E-06
GPRIN3	2.25	$1.62 \mathrm{E}-07$	1.00	0.01565104
ADAM17	1.87	8.05E-05	1.38	0.00345091
CUL2	1.44	0.00060189	1.80	7.85E-07
HERC1	1.67	7.35E-05	1.56	$6.28 \mathrm{E}-05$
IKZF5	1.68	0.00136128	1.55	0.000529
GNAI1	1.71	0.00012885	1.52	0.0001784
PRR5L	1.61	6.85E-06	1.61	$1.00 \mathrm{E}-05$
CDON	1.71	0.00045906	1.50	0.00282025
SUSD6	1.68	0.00051219	1.54	0.00055847
TRAF3IP3	1.90	0.00015533	1.32	0.01004266
ZMYND11	1.66	2.91E-06	1.55	2.52E-06
TIFA	1.70	0.00091551	1.51	0.00285384
PLA2G4A	2.04	$2.34 \mathrm{E}-05$	1.16	0.00147895
DOCK9	1.70	6.95E-05	1.50	$9.80 \mathrm{E}-05$
ANO6	1.64	$3.56 \mathrm{E}-06$	1.55	8.94E-06
MET	1.75	$2.89 \mathrm{E}-05$	1.44	5.06E-05
PCDHGB1	1.69	0.02297398	1.50	0.0385523
PJA2	1.89	$1.88 \mathrm{E}-08$	1.29	0.00022004
FNBP1L	1.82	$4.26 \mathrm{E}-05$	1.36	0.00083952
TSPAN1	-1.18	0.00020628	1.39	$1.45 \mathrm{E}-05$
PARG	1.58	$6.80 \mathrm{E}-05$	1.60	2.93E-05
PRKAR2B	1.60	0.00435796	1.56	0.00169274
SLC6A15	1.45	0.00809449	1.72	0.0014752
PTPRG	1.59	0.0018616	1.58	0.00203223
OSBPL11	2.13	1.25E-06	1.04	0.01688645
RNF19A	2.05	$3.28 \mathrm{E}-06$	1.11	0.00866614
AFF1	1.96	$6.02 \mathrm{E}-05$	1.19	0.0054431
CPD	1.96	$2.33 \mathrm{E}-07$	1.18	0.00126451
ZKSCAN8	1.55	0.00148536	1.59	0.00072895
HEG1	1.58	0.00148616	1.55	0.00058656
ACVR1B	2.06	2.25E-06	1.06	0.01462509
TBCEL	1.52	0.00262332	1.61	0.00181437
SMARCAD1	1.82	3.46E-05	1.31	0.00268423
JRKL	1.70	0.00307845	1.42	0.01027377
ACSL4	1.49	4.03E-05	1.62	$2.85 \mathrm{E}-05$
ZNF217	1.77	8.10E-05	1.34	0.00027561
KIRREL1	1.46	0.0007698	1.64	5.34E-05

TET3	1.71	0.00013829	1.40	0.00079057
WWC2	1.61	0.00025052	1.48	0.00096851
PRSS23	1.53	0.00011967	1.56	9.49E-07
PLS1	1.60	5.01E-06	1.48	0.00154501
FBXW2	1.60	0.00111717	1.48	0.00031028
RIC1	1.71	0.00025576	1.37	0.0019501
NSF	1.76	5.39E-06	1.32	0.00063542
HOOK1	1.37	0.0240106	1.71	0.00678307
COL4A5	1.99	2.92E-06	1.09	0.02062202
TSTD2	1.51	0.00080486	1.56	0.0003879
ATP7A	2.01	$2.39 \mathrm{E}-05$	1.05	0.01110018
PDGFC	1.00	0.03864907	2.06	8.94E-06
CCNJ	1.59	0.00403591	1.47	0.0014093
AHR	1.48	3.43E-05	1.57	9.82E-06
FZD3	1.50	0.00267824	1.55	0.00114407
IGF2R	1.67	8.19E-05	1.37	0.00071188
C4BPA	1.63	0.00025264	1.42	0.00194575
FBXO28	1.62	3.13E-05	1.42	0.00025441
SPRY2	1.36	0.00105999	1.68	$2.57 \mathrm{E}-05$
TMCC1	1.25	$1.62 \mathrm{E}-05$	1.79	$2.53 \mathrm{E}-10$
MARCHF5	1.63	8.88E-05	1.40	$3.98 \mathrm{E}-05$
CFI	1.20	0.03854314	1.83	0.00244846
AXIN2	1.46	0.01134396	1.56	0.0006119
SERINC5	1.64	9.50E-06	1.38	0.0004731
FZD6	1.73	$1.14 \mathrm{E}-05$	1.28	0.00148402
TBC1D9	1.76	$1.45 \mathrm{E}-05$	1.25	0.00115667
FBXO3	1.48	0.00094849	1.53	$3.38 \mathrm{E}-05$
KIAA1109	1.71	0.0002261	1.29	0.00454364
ST6GAL2	1.77	8.81E-05	-2.04	$4.30 \mathrm{E}-08$
CYTH3	1.52	0.0003096	1.48	8.35E-05
GAPT	1.88	0.00026015	1.12	0.03101592
WDR3	1.50	0.0008012	1.49	0.00042904
PHC3	1.43	0.00080382	1.56	0.00045654
APP	1.63	$2.34 \mathrm{E}-05$	1.36	3.19E-05
STXBP5	1.50	0.0015078	1.48	0.00073413
DNAJC10	1.85	$6.02 \mathrm{E}-05$	1.13	0.00412931
TRRAP	1.41	0.0017788	1.57	0.00013438
ITGA6	1.75	$1.14 \mathrm{E}-05$	1.23	0.0007089
EFR3A	1.68	$1.53 \mathrm{E}-05$	1.30	0.00043173

FBXO34	1.69	4.35E-05	1.29	0.00031988
CLASP1	1.75	$7.75 \mathrm{E}-05$	1.22	0.00412294
RP2	1.84	3.81E-05	1.14	0.0126593
NCEH1	1.53	0.00025268	1.44	1.18E-05
PRDM10	1.54	0.00182089	1.43	0.00407801
SEL1L	1.66	$3.20 \mathrm{E}-05$	1.31	0.00111674
FAT1	1.85	1.83E-06	1.12	0.00119182
MFSD14A	1.78	5.91E-06	1.19	0.00323837
FAM156A	1.68	6.13E-06	1.29	0.00779852
ZNF300	1.65	0.01998072	1.32	0.04100114
GABRB3	1.66	$2.51 \mathrm{E}-06$	1.30	0.0001055
SOAT1	1.74	$3.92 \mathrm{E}-05$	1.22	0.00284784
CAP2	1.65	0.00019559	1.31	0.00096489
CRYBG3	1.70	0.01215739	1.26	0.04911802
SLC35A5	1.88	5.13E-05	1.08	0.01712004
NDST1	1.18	0.01137788	1.77	$2.85 \mathrm{E}-05$
ZRANB1	1.67	0.0001211	1.27	0.00309807
FUBP3	1.70	$2.17 \mathrm{E}-05$	1.25	0.00035387
C18orf54	1.58	0.00174875	1.36	0.01902208
TBX3	1.61	1.42E-05	1.31	4.88E-06
BRMS1L	1.55	0.00180447	1.38	0.0010237
METAP1	1.62	0.00058526	1.31	0.00067044
GSTCD	1.43	0.00104144	1.49	0.00073413
INTS2	1.91	4.63E-05	1.02	0.03083825
AP3M1	1.66	7.04E-06	1.25	0.00016655
TYROBP	1.87	4.03E-05	1.04	0.03744584
TXNRD1	1.81	$7.88 \mathrm{E}-06$	1.11	0.00230272
FTO	1.73	4.17E-05	1.18	0.00490646
CBLL1	1.72	0.00013953	1.19	0.00404567
FAM114A2	1.65	4.70E-05	1.26	0.00220293
PCDHA4	1.65	0.00111092	1.26	0.0018131
PLSCR4	1.52	0.00304375	1.38	0.01235687
ZNF45	1.57	0.00016351	1.32	0.00417671
KDM1B	1.82	$2.54 \mathrm{E}-05$	1.08	0.01155112
SPPL2A	1.72	$1.45 \mathrm{E}-06$	1.17	0.00022726
TIPARP	1.18	0.00060814	1.71	3.57E-07
BICRAL	1.56	0.00020321	1.32	0.00235757
RBBP4	1.53	1.12E-05	1.36	9.11E-05
NTN4	1.58	7.02E-05	1.30	0.00092248

AP1G1	1.57	1.97E-05	1.32	0.00063542
GLUD2	1.58	0.00298386	1.30	0.01960883
SEMA3C	1.51	8.10E-05	1.37	0.00092671
BTBD3	1.53	0.00082613	1.35	0.00062199
SLC35F2	1.46	0.00025005	1.41	0.00010685
ALG10	1.62	0.00227963	1.25	0.02253047
CLCN3	1.35	0.00083241	1.52	0.0001945
MYOF	1.58	8.96E-05	1.28	0.00077376
BRPF3	1.73	6.47E-05	1.14	0.00762308
PLSCR1	1.23	0.00436141	1.64	$2.86 \mathrm{E}-08$
ARHGEF3	1.61	0.00015715	1.26	0.00455657
SYBU	1.48	0.00152566	1.38	0.00194575
EFCAB14	1.59	0.00014121	1.28	0.00080836
NNT	1.64	1.56E-06	1.22	0.00091379
TGFBR1	1.62	1.17E-05	1.24	0.00051945
PFKFB2	1.45	0.00043821	1.42	0.00257424
ADGRL3	1.34	0.00424735	1.51	0.00145243
SDR42E1	1.66	0.00260051	1.20	0.03082551
AHCTF1	1.44	0.00133996	1.41	0.00058179
SIRT1	1.52	0.00036235	1.33	0.00096851
TAF2	1.55	0.00038559	1.30	0.00203592
IPO8	1.67	$1.75 \mathrm{E}-05$	1.18	0.00237398
USP14	1.45	8.42E-06	1.39	$3.87 \mathrm{E}-05$
EPB41L1	1.46	0.00026499	1.38	0.00011778
VTA1	1.79	5.42E-08	1.06	0.0054957
MTRR	1.67	7.33E-05	1.17	0.00214166
ACBD5	1.69	6.02E-05	1.15	0.00286589
SMG8	1.63	0.00033358	1.21	0.00194381
CLASP2	1.66	$3.13 \mathrm{E}-05$	1.18	0.0017758
PFKFB3	1.61	$3.01 \mathrm{E}-05$	1.23	0.00127506
CD109	1.76	$2.50 \mathrm{E}-05$	1.08	0.0054957
CLINT1	1.67	1.82E-05	1.17	0.0010919
WASF1	1.50	0.00067464	1.33	0.00057731
ZBED4	1.50	0.0001989	1.33	0.00027546
POLA1	1.63	$1.48 \mathrm{E}-05$	1.20	0.00211254
HEATR1	1.50	$3.00 \mathrm{E}-05$	1.32	9.72E-05
MAPK9	1.50	$1.79 \mathrm{E}-05$	1.32	0.00035516
SOS2	1.53	0.00020908	1.28	0.00482148
LRBA	1.58	$3.43 \mathrm{E}-05$	1.23	0.00178847

PLB1	1.63	0.00418601	1.18	0.04775736
GCNT1	1.45	0.01221969	1.36	0.01436727
ACADM	1.44	0.00010034	1.37	0.00204354
TEAD1	1.55	0.00063748	1.26	0.00359083
B3GALT5	1.61	0.00124227	1.19	0.04306656
LARS2	1.44	0.00161838	1.36	0.00088111
SEC24B	1.50	0.00035734	1.30	0.00060736
PLD5	1.75	0.0004199	1.05	0.02635239
RNF44	1.62	0.00015321	1.17	0.00691969
IDH3A	1.49	3.62E-06	1.31	7.92E-06
SMCR8	1.46	0.00259366	1.34	0.00373089
RANBP6	1.68	0.00010566	1.11	0.01060503
LMBR1	1.55	0.00030686	1.24	0.00017041
IGSF3	1.59	0.0003833	1.20	0.00328501
SCYL2	1.70	3.05E-06	1.08	0.00954928
DUSP6	1.52	$2.58 \mathrm{E}-05$	1.26	0.00069175
TMEM168	1.64	0.00027092	1.13	0.01199042
UHRF1BP1	1.43	0.00029333	1.35	0.00091593
SELENOT	1.59	$3.20 \mathrm{E}-06$	1.19	0.00057008
COMMD2	1.55	$3.35 \mathrm{E}-05$	1.23	0.0031561
NCAPG2	1.55	$6.34 \mathrm{E}-05$	1.22	0.0001296
KAT2B	1.49	0.00282031	1.28	0.00719108
PNMA8A	1.11	0.00388099	1.66	5.09E-07
GNA13	1.59	9.08E-06	1.18	0.00082805
CACHD1	1.34	0.02072872	1.42	0.03818594
PYGO1	1.31	0.01002733	1.45	0.00254082
MMUT	1.55	$3.38 \mathrm{E}-05$	1.21	0.0011116
ERCC6L2	1.65	0.00228026	1.11	0.04882119
DLD	1.55	$6.05 \mathrm{E}-05$	1.21	0.00011434
ABI1	1.68	$6.50 \mathrm{E}-06$	1.07	0.00325489
CKAP2	1.53	$1.43 \mathrm{E}-05$	1.21	0.00102064
GART	1.50	8.98E-05	1.24	0.00047452
PIGW	1.39	0.00225914	1.35	0.00187787
TMEM106B	1.41	0.0007417	1.33	4.78E-05
PEX2	1.72	0.00018805	1.02	0.01915912
G3BP2	1.54	$1.70 \mathrm{E}-05$	1.20	0.00038912
ME2	1.52	$4.59 \mathrm{E}-05$	1.21	0.00050941
SNX30	1.51	0.0015804	1.22	0.00893719
SH3RF1	1.39	0.00041479	1.34	5.34E-05

DTL	1.35	$8.77 \mathrm{E}-05$	1.38	$2.88 \mathrm{E}-06$
TNKS2	1.73	$2.23 \mathrm{E}-05$	1.00	0.00807901
NCR3LG1	1.38	0.03012618	1.35	0.02856025
ZNF436	1.60	0.00406471	1.12	0.03136327
PHKA1	1.59	0.00110245	1.13	0.00358262
KIFBP	1.57	0.00040392	1.16	0.00120922
WDR7	1.48	0.00062368	1.24	0.0047376
ANKRD28	1.57	$3.97 \mathrm{E}-05$	1.15	0.0025499
CDC6	1.29	0.0003269	1.43	$8.03 \mathrm{E}-06$
SFMBT2	1.46	0.00381766	1.26	0.00766296
HIPK1	1.47	0.00025229	1.24	0.00177417
OXSR1	1.47	$4.62 \mathrm{E}-05$	1.23	0.00019108
STARD4	1.08	0.01114616	1.62	0.0001883
GATM	1.27	0.00132185	1.44	0.00106969
TNFRSF21	1.13	0.00184805	1.58	$2.75 \mathrm{E}-07$
CCNT2	1.64	0.00020499	1.07	0.01491654
NOTCH2	1.59	0.00040659	1.11	0.00767268
FAM168B	1.66	0.00012991	1.04	0.00563935
TMEM184C	1.33	0.00452324	1.38	0.00051338
OCLN	1.34	0.00215497	1.36	0.00118382
SPTLC1	1.51	0.00055459	1.19	0.00178413
DLAT	1.50	0.00013647	1.29	0.00034203
THAP10	1.18	0.01557165	1.55	0.00018211

PPM1D	1.56	0.0005595	1.11	0.00377552
SMAD2	1.62	9.08E-06	1.05	0.00140407
STS	1.28	0.00534586	1.39	0.00206924
TSPYL4	1.24	0.00469912	1.42	0.00159806
SLC18B1	1.40	0.00021685	1.26	0.00188585
SOCS6	1.31	0.00027754	1.35	$1.01 \mathrm{E}-05$
RAB2B	1.58	0.00023928	1.08	0.00923454
ZFP69	1.18	0.02273922	1.48	0.00528452
PRKAR1A	1.59	2.75E-05	1.07	0.00159806
IARS1	1.45	0.00057551	1.20	0.00019108
RCOR1	1.41	0.0009361	1.24	0.00129026
C5orf22	1.55	0.00117524	1.10	0.00900396
FIGNL1	1.49	0.0025187	1.16	0.01115616
TRIM4	1.59	7.11E-05	1.06	0.00289957
NEMP1	1.18	0.0045216	1.46	0.00055847
KATNIP	1.44	0.00026015	1.21	0.00227369
PDP1	1.47	0.00240918	1.17	0.01812299
MBLAC2	1.33	0.01167323	1.31	0.01071762
POLR2B	1.56	0.00089068	1.08	0.00085842
PARM1	1.55	0.00109682	1.09	0.00475941
KCTD9	1.49	0.0001145	1.15	0.00325905
ATP9A	1.11	0.00192422	1.53	3.34E-06
FECH	1.56	0.00049814	1.08	0.00321372
TPD52L1	1.04	0.00790293	1.60	4.39E-08
FCGR1A	1.34	0.01549041	1.30	0.01457737
SEC24D	1.58	$1.80 \mathrm{E}-05$	1.06	0.00613707
RHOU	1.58	$4.90 \mathrm{E}-06$	1.05	0.00130912
EIF4G2	1.53	5.99E-05	1.11	0.0002825
STT3B	1.50	3.28E-06	1.13	0.00026093
TMEM30A	1.34	0.00022275	1.29	5.65E-05
UBE2G1	1.47	0.0002174	1.16	0.00116742
ZNF146	1.39	0.00019431	1.24	0.00037773
TRUB1	1.57	0.00016946	1.05	0.00751913
TMEM19	1.54	4.14E-05	1.08	0.00255946
CPEB4	1.31	0.00178684	1.31	0.00109081
MAP3K21	1.23	0.00049161	1.39	$2.57 \mathrm{E}-05$
NIPA2	1.30	0.00129765	1.32	4.80E-05
TMEM87B	1.41	0.00127394	1.21	0.00426629
MAPK14	1.45	9.33E-05	1.17	0.00093524

TAF1A	1.52	0.00909989	1.10	0.04982662
PRSS12	1.58	0.00033433	1.04	0.03199649
SDCBP	1.43	$2.55 \mathrm{E}-05$	1.19	3.12E-05
TSPAN13	1.39	0.0001223	1.23	0.0004695
OGFOD1	1.33	0.00023962	1.28	0.00020589
CCNT1	1.53	7.62E-05	1.08	0.00390482
TGFB2	1.27	0.00061214	1.34	0.00012025
HBS1L	1.51	4.37E-05	1.10	0.00298325
ETS2	1.50	0.00067393	1.11	0.00182942
TKTL1	1.37	0.01803719	1.24	0.0240692
ZNF367	1.38	0.0049699	1.22	0.01242096
NBPF3	1.24	0.00304375	1.37	0.00109456
OGT	1.32	0.00049456	1.28	0.00023236
ASB7	1.47	0.0008928	1.13	0.01568914
PLS3	1.42	$6.43 \mathrm{E}-05$	1.17	0.00016026
COL9A2	1.42	$1.07 \mathrm{E}-05$	1.18	0.00027249
YTHDC2	1.47	0.00110544	1.13	0.00590039
KIDINS220	1.43	0.00032496	1.16	0.00386691
PARP4	1.56	0.00028218	1.04	0.0051961
PTPN11	1.48	5.26E-05	1.11	0.00295132
ST8SIA4	1.41	$2.92 \mathrm{E}-05$	1.18	0.00337726
POGLUT3	1.28	0.00439832	1.31	0.00237398
MRPL19	1.57	0.0002254	1.02	0.00545768
HAVCR1	1.57	0.00056419	1.01	0.02019104
UBR7	1.38	0.0002112	1.20	0.00114407
ACADSB	1.34	0.00018134	1.24	0.00046605
NBEA	1.28	0.00629997	1.30	0.01236034
WDR26	1.41	9.77E-06	1.16	6.67E-05
STX7	1.47	0.00267824	1.11	0.00642368
DCK	1.33	0.00693552	1.25	0.00183678
RRN3	1.51	$3.74 \mathrm{E}-05$	1.06	0.00743648
ABCC1	1.43	0.00014121	1.14	0.00451886
MELK	1.36	0.00072085	1.21	0.00157767
FMC1-LUC7L2	1.09	0.049118	1.47	0.0042561
GTF2H3	1.23	0.00289372	1.34	0.00083444
SSX2IP	1.38	0.00366284	1.18	0.01126965
SRSF6	1.38	7.11E-05	1.18	0.00013686
DDHD1	1.37	0.00016887	1.19	0.00323278
CD14	1.60	4.83E-06	-1.69	1.18E-08

RNFT1	1.41	0.00201683	1.15	0.01525805
RNF14	1.47	0.00029697	1.09	0.0058296
SLC25A40	1.39	0.00088681	1.17	0.01038525
NID1	1.13	0.00057707	1.43	2.87E-05
KIAA0586	1.51	$6.39 \mathrm{E}-05$	1.04	0.0113023
FBXO30	1.47	0.0012943	1.08	0.01288654
YWHAG	1.41	3.77E-05	1.14	0.00016577
RAB21	1.38	0.00051332	1.17	0.00707741
PCNX4	1.39	5.70E-05	1.16	0.00089582
OAT	1.45	0.00164528	1.10	0.00231545
PAPSS1	1.34	0.00050677	1.21	0.00019108
PIP5K1A	1.26	0.00334824	1.29	0.00071416
FAN1	1.19	0.01526057	1.35	0.00324435
PLAGL1	1.39	0.00180165	1.16	0.00889225
VLDLR	1.52	8.62E-06	1.03	0.00577121
KIF23	1.35	1.76E-05	1.20	0.00011721
NCOA4	1.40	0.00013533	1.15	0.0001584
AGO4	1.38	0.00671558	1.17	0.02253748
IRF2BP2	1.44	6.07E-05	1.11	0.00187429
ZBTB6	1.38	0.01338335	1.16	0.02642548
SKI	1.44	0.00025961	1.11	0.00350117
FAM3C	1.17	0.00893692	1.37	$2.24 \mathrm{E}-05$
HNRNPF	1.35	0.00064476	1.18	0.00034515
RAPGEF1	1.28	0.00276836	1.26	0.0030709
MFN2	1.38	0.00105836	1.16	0.00470085
ZNF862	1.18	0.01956023	1.35	0.00494126
ITPRID2	1.35	0.00020628	1.19	0.0014752
TPD52	1.38	0.0002938	1.15	0.0023914
RACGAP1	1.41	0.00027495	1.13	0.00118382
SLC19A2	1.21	0.020449	1.32	0.01684234
MTMR4	1.26	0.00081383	1.26	0.0001528
DMRTA2	1.20	0.01793707	1.33	0.0098189
PLEKHA7	1.26	0.00588235	1.27	0.00138491
USP38	1.31	0.00152753	1.21	0.00571283
IMPA1	1.42	0.00083652	1.10	0.02321515
UNC13B	1.49	0.00034621	1.03	0.00654639
CDK12	1.39	0.00012533	1.13	0.0011724
GPRC5A	1.36	0.00264779	1.16	0.00528124
RECQL	1.42	0.0005004	1.10	0.00763242

$\left.\begin{array}{|l|r|r|r|r|}\hline \text { ROBO1 } & 1.32 & 0.00228785 & 1.20 & 0.00540193 \\ \hline \text { TRIM68 } & 1.43 & 0.0017665 & 1.09 & 0.01092548 \\ \hline \text { TECPR2 } & 1.30 & 0.00049089 & 1.22 & 0.00392982 \\ \hline \text { NR1D2 } & 1.39 & 0.00210038 & 1.12 & 0.01116962 \\ \hline \text { OSBP } & 1.41 & 0.00022549 & 1.10 & 0.00071963 \\ \hline \text { ARNT } & 1.28 & 0.01169139 & 1.24 & 0.00888684 \\ \hline \text { DDX3X } & 1.31 & 0.00020542 & 1.21 & 0.00088758 \\ \hline \text { SLC39A14 } & 1.33 & 0.00043927 & 1.18 & 0.00055847 \\ \hline \text { WWP1 } & 1.36 & 0.00022251 & 1.15 & 0.00538652 \\ \hline \text { NLN } & 1.19 & 0.00162758 & 1.32 & 0.00015791 \\ \hline \text { MYO5C } & 1.15 & 0.00107501 & 1.36 & 9.44 \mathrm{E}-05 \\ \hline \text { LATS2 } & 1.19 & 0.02437128 & 1.32 & 0.00398386 \\ \hline \text { FBXW8 } & 1.20 & 0.00085924 & 1.31 & 0.00041448 \\ \hline \text { URB2 } & 1.20 & 0.00540681 & 1.31 & 0.0018751 \\ \hline \text { DSC3 } & 1.20 & 0.04786235 & 1.30 & 0.03629573 \\ \hline \text { TMED8 } & 1.19 & 0.00123065 & 1.31 & 0.000529 \\ \hline \text { FZD8 } & 1.11 & 0.0054702 & 1.39 & 0.00011343 \\ \hline \text { TGFA } & 1.37 & 0.0073215 & 1.13 & 0.01750746 \\ \hline \text { RASSF2 } & 1.10 & 0.00065111 & 1.39 & 2.95 \mathrm{E}-07 \\ \hline \text { MED23 } & 1.48 & 0.00114565 & 1.01 & 0.03498725 \\ \hline \text { NSUN2 } & 1.35 & 0.00161838 & 1.15 & 0.00055743 \\ \hline \text { OSMR } & 1.48 & 0.00064138 & 1.01 & 0.00636921 \\ \hline \text { WEE1 } & 1.32 & 0.0009608 & 1.35 & 0.0017788 \\ \hline \text { UBE3C } & 1.25 & 0.00065815 & 1.00341363 & 1.24\end{array}\right) 0.0000345159$

AMACR	1.41	4.50E-05	1.07	0.00233802
ZMIZ1	1.41	0.00061212	1.06	0.00651493
TTYH3	1.37	0.0013265	1.10	0.00788763
SHROOM3	1.19	0.00434842	1.28	0.00074607
TOPBP1	1.22	0.00015894	1.24	0.00020656
DTWD1	1.33	0.00056292	1.12	0.00544087
BICC1	1.32	0.00011303	1.14	0.00073413
FBXW11	1.22	0.0001145	1.23	0.0001296
RNASE2	1.37	0.00110713	1.08	0.01023472
TM9SF2	1.37	$3.64 \mathrm{E}-05$	1.09	0.00019475
HORMAD1	1.38	0.0068325	1.08	0.0278183
DHX32	1.17	0.00260051	1.28	0.00017498
UBA6	1.27	0.02047696	1.18	0.02635401
RBBP9	1.23	0.00097318	1.22	0.00025264
TFRC	1.27	0.00018805	1.18	0.00029571
TEX2	1.22	0.00045649	1.23	0.00085243
SLC25A13	1.32	0.00131801	1.13	0.00157168
ARL6IP1	1.33	5.11E-07	1.11	0.0001296
GZF1	1.31	0.00078553	1.14	0.00295486
PRDX3	1.43	0.00391923	1.01	0.01047198
ELL2	1.28	0.00024131	1.16	0.00160062
PDE3B	1.22	0.00604157	1.22	0.00811913
KIF24	1.25	0.00513826	1.19	0.00308755
DIS3	1.39	4.61E-05	1.05	0.00433172
TM9SF3	1.41	0.00018788	1.03	0.00490646
LIPA	1.41	0.000333	1.03	0.00205993
TAB2	1.34	0.00010289	1.10	0.00122803
EXOC5	1.24	0.02224698	1.20	0.01850414
RAB5A	1.40	0.00048871	1.04	0.00272285
UBA2	1.41	0.00045906	1.03	0.00189197
SCAMP1	1.38	0.0002912	1.06	0.00299768
RPA1	1.43	5.00E-05	1.01	0.00180546
DCBLD2	1.06	0.00276004	1.38	6.33E-06
RFX7	1.31	0.00174105	1.13	0.00604114
ABLIM1	1.14	0.00021606	1.29	1.57E-05
PPAT	1.38	0.00075121	1.05	0.00937797
TAF1	1.23	0.00877324	1.20	0.00650809
LONRF1	1.34	0.00760416	1.09	0.03079451
ADRA1D	1.36	0.00010929	1.07	0.00298325

FAM210A	1.22	0.00232796	1.20	0.00379872
ADNP2	1.28	0.00071718	1.14	0.00198571
ZMPSTE24	1.24	1.04E-05	1.18	0.00011992
UPRT	1.41	0.00525999	1.01	0.01216705
SPRY4	1.28	0.00508729	1.14	0.02961204
PPP1R3D	1.33	0.00322928	1.08	0.01696209
SLC38A1	1.23	$6.90 \mathrm{E}-05$	1.18	0.00018955
ZNF319	1.38	0.00964617	1.02	0.03632908
INCENP	1.32	0.0016147	1.08	0.00588182
WDFY3	1.29	0.00061318	1.11	0.00988172
ZSCAN29	1.39	0.00114989	1.00	0.02525066
CFL2	1.35	0.00066012	1.04	0.00198765
RALGAPA2	1.22	0.00132768	1.17	0.00463959
L2HGDH	1.21	0.00199592	1.18	0.00264282
SCN8A	1.16	0.04740628	1.23	0.03514031
PAXIP1	1.19	0.00168767	1.19	0.00160062
GNG12	1.21	4.55E-05	1.18	0.00020656
ZFP1	1.33	0.00126431	1.05	0.02188601
CYB5R4	1.21	0.00713587	1.18	0.00947596
SRR	1.29	0.00110883	1.09	0.00136981
RSU1	1.31	0.00043688	1.07	0.00183678
SETD2	1.29	0.0003083	1.08	0.00241202
SEPTIN8	1.21	0.00122125	1.16	0.00102798
SSH1	1.35	0.00170681	1.02	0.01639318
SGPP1	1.22	0.0065206	1.15	0.01155112
ETV3	1.34	0.00333481	1.03	0.01193381
KDM4A	1.23	0.00029872	1.14	0.00038912
UHRF1	1.05	0.00578067	1.31	$2.20 \mathrm{E}-05$
RALGAPB	1.28	0.00157941	1.09	0.00263413
MCU	1.33	0.00054415	1.04	0.0002904
AP1S2	1.29	0.00015583	1.08	0.00294861
FAM98B	1.28	0.00042134	1.08	0.0018751
DAPK1	1.22	0.00287433	1.15	0.00237398
ADAR	1.26	0.00056942	1.10	0.00192405
ADGRA2	1.34	0.00040009	1.03	0.00742325
SEC24A	1.30	0.00067464	1.06	0.00526191
TLCD4	1.33	0.00057234	1.02	0.01327353
NFYB	1.23	0.00127394	1.13	0.00646729
IARS2	1.28	0.00082558	1.07	0.00052539

KLHL15	1.34	0.00284457	1.01	0.01609377
SLC7A1	1.19	0.00151534	1.16	0.00206924
POGK	1.18	0.00081206	1.17	0.00124284
LRRC57	1.34	0.0001987	1.01	0.01040772
OCRL	1.28	0.0015706	1.07	0.00464735
YEATS2	1.26	0.0015946	1.09	0.00190799
TRAF6	1.03	0.01514148	1.31	0.00206924
QTRT2	1.14	0.00699327	1.20	0.00441594
NRIP1	1.16	0.00187042	1.18	0.00098021
ADSS2	1.33	0.00158541	1.01	0.00271767
EID3	1.31	0.0097944	1.02	0.0327069
RCBTB1	1.32	0.00104196	1.02	0.01421348
TMED2	1.32	$2.50 \mathrm{E}-05$	1.01	0.00081208
TAPT1	1.29	0.00501633	1.05	0.01702502
WRN	1.07	0.01798146	1.26	0.0054957
MTR	1.30	0.00070997	1.03	0.00942567
AREL1	1.02	0.00575917	1.30	0.00011385
PTPN1	1.20	0.00222889	1.13	0.00088646
FBXO5	1.31	0.00024053	1.01	0.00969097
CREBZF	1.28	0.0021637	1.04	0.00594464
NDC1	1.20	7.85E-05	1.12	0.00037383
SLC49A4	1.29	0.00147329	1.03	0.01095165
SNX18	1.11	0.00199434	1.21	0.00172031
FAM107B	1.26	$1.48 \mathrm{E}-05$	1.06	0.00019068
CDC23	1.30	0.00018152	1.01	0.00124382
MTM1	1.19	0.03778143	1.13	0.03084177
ZNF740	1.23	0.00244857	1.08	0.00422168
LIMD1	1.30	0.0017332	1.01	0.03127816
RLF	1.21	0.00017615	1.10	0.00290122
DSG2	1.11	0.00166708	1.20	0.00079201
GNG2	1.05	0.04021792	1.25	0.01417155
LYPLA1	1.27	0.00021909	1.03	0.00253776
MTARC2	1.09	0.02911926	1.22	0.00462223
MBTD1	1.05	0.01459392	1.26	0.00470579
VPS41	1.18	0.00652407	1.12	0.01037455
SIK2	1.15	0.00148559	1.15	0.0007754
LIMA1	1.15	0.00299346	1.14	0.00106969
NADK2	1.11	0.00472317	1.19	0.0022159
DDX20	1.26	0.00110713	1.04	0.00426973

LACTB2	1.24	$1.15 E-05$	1.06	0.00086181
ACTL6A	1.22	0.00238413	1.07	0.00053275
WDR36	1.26	0.00189872	1.03	0.00875273
FAR1	1.20	0.00644082	1.09	0.00491245
HGSNAT	1.16	0.00177078	1.13	0.00160364
SCRN1	1.20	0.00117746	1.08	0.00083952
NSD2	1.09	0.00881068	1.19	0.00216473
SYNGAP1	1.22	0.04688567	1.06	0.04840467
SLC39A6	1.24	$8.43 E-05$	1.04	0.00393643
ACSL1	1.24	0.00168448	1.04	0.0028096
MCMBP	1.17	0.00058928	1.11	0.00046605
NSMF	1.25	0.00546195	1.03	0.0257783
MORF4L1	1.27	0.00010164	1.00	0.00099697
COL4A1	1.11	0.01305312	1.16	0.004328
VEGFA	1.03	0.01629257	1.24	0.00162316
SHROOM2	1.03	0.03061974	1.24	0.03423855
MMP24	1.07	0.02172795	1.20	0.00856526
NDFIP2	1.23	0.00034695	1.04	0.00885672
CSRNP2	1.15	0.00409248	1.12	0.00494726
MAPK6	1.18	0.0008301	1.08	0.00465643
UTP4	1.16	0.00190673	1.10	0.00781759
VAPA	1.27	$9.35 E-05$	1.09	0.0011724
PSME3	1.18	0.00186045	1.05	0.00663981
GEMIN5	1.24	0.00076334	1.25	0.00040009
ZBTB2	1.17	0.00871715	1.03	0.00225036
SGPL1	1.15	0.002028	1.08	0.00809597
KIAA1671	1.00	0.00468222	1.11	0.00099644
ZNF664	1.21	0.00130524	1.26	0.00089335
YPEL2	1.06	0.04776235	1.05	0.00155693
CHEK1	1.22	0.00366048	0.00062642	1.19

WDR20	1.11	0.00081964	1.11	0.00228098
EFL1	1.16	0.0005153	1.06	0.00028268
MED17	1.16	0.0009308	1.06	0.00873124
GLS	1.07	0.00744331	1.15	0.00100473
NEDD1	1.19	0.00448836	1.03	0.01463194
PDE4B	1.20	4.42E-05	1.01	0.00464966
ZC3H7B	1.18	0.00541397	1.03	0.00608665
LAPTM5	1.09	0.00131632	1.12	0.00068926
PDE12	1.19	0.00083002	1.03	0.0051834
NSMAF	1.13	0.0082299	1.08	0.00155238
POLR1A	1.20	0.00567414	1.01	0.01709113
SMAD7	1.01	0.00966173	1.20	0.00120055
METAP1D	1.11	0.01796116	1.09	0.02346776
TMPO	1.11	0.00058588	1.09	0.00096813
SLC30A9	1.19	0.00131915	1.01	0.01651705
PIK3C2B	1.00	0.02115694	1.19	0.00261919
APPL2	1.07	0.00170448	1.12	0.00132059
C11orf95	1.18	0.00381146	1.01	0.01408389
EFR3B	1.08	0.00111092	1.11	0.00157767
PRKCA	1.02	0.00354046	1.17	0.00060259
RNF144A	1.16	0.0019839	1.03	0.02159754
DOK2	1.09	0.04374492	1.10	0.04974526
ZDHHC9	1.10	0.00471859	1.08	0.00600236
DPY19L4	1.16	0.01807882	1.01	0.02532986
PTBP3	1.16	0.0015946	1.02	0.00192405
SLC16A1	1.05	0.00223464	1.12	0.00101829
ABHD2	1.10	0.0048178	1.07	0.00461404
FRMD6	1.11	0.02864329	1.06	0.04862653
XIAP	1.13	5.69E-05	1.03	0.00512317
POLR1C	1.11	0.0167625	1.05	0.03004165
GALNT10	1.00	0.00252324	1.15	0.00029616
BRWD3	1.08	0.01621404	1.07	0.01886692
TWNK	1.02	0.0114262	1.12	0.00331258
CDC27	1.05	0.00036209	1.10	0.00030264
WSB1	1.11	0.00659554	1.03	0.00730177
ANKS1A	1.03	0.0222752	1.11	0.00364001
KIF2A	1.05	0.01842738	1.08	0.00541984
NEURL1B	1.07	0.00327133	1.07	0.00536958
IGSF1	1.06	0.04115669	1.07	0.03940409

SUV39H2	1.12	0.01099916	1.01	0.01024976
EAF1	1.06	0.00393494	1.06	0.00670324
PHF2	1.10	0.01071181	1.02	0.00437511
PRPS2	1.04	0.00366284	1.07	0.00147858
FAM72B	1.08	0.00439282	1.02	0.00700712
AP3S2	1.05	0.00566222	1.05	0.00814757
SPICE1	1.03	0.03959893	1.07	0.01565173
RAVER2	1.00	0.01514099	1.10	0.00934246
SPECC1L	1.03	0.00150908	1.07	0.00075338
ALDH3A2	1.03	0.00095962	1.06	0.00047214
TENT4A	1.05	0.01262678	1.04	0.00628854
SLC22A3	1.00	0.00309431	1.08	0.00040966
ZZEF1	1.05	0.00578067	1.03	0.00600004
DOP1B	1.04	0.03154561	1.04	0.02768165
ZDHHC6	1.04	0.01098188	1.03	0.0007946
SNX19	1.01	0.00370764	1.05	0.00137874
AGO1	1.00	0.00583622	1.05	0.00392952
TMEM192	1.01	0.00298352	1.04	0.00592642
SLC9A6	1.03	0.00376319	1.01	0.00438827
AGO2	1.02	0.00209749	1.00	0.00735953
SNAP25	1.93	6.50E-06	-1.16	0.00461936
FOXS1	-1.00	0.01048562	-1.01	0.02092197
OCEL1	-1.03	0.00305529	-1.00	0.00068332
COPS9	-1.02	0.00246808	-1.02	0.00113194
ELOVL6	-1.05	0.00280019	-1.00	0.00326864
HOXD3	-1.04	0.01945456	-1.02	0.03484447
DRAP1	-1.04	0.0007926	-1.03	0.00094537
RSPH3	-1.04	0.00583699	-1.05	0.00450033
RSPH9	-1.00	0.02254926	-1.09	0.01798782
DPM3	-1.03	0.00110713	-1.08	0.0004519
TMEM256	-1.02	0.00295935	-1.09	0.0010305
PAM16	-1.09	0.00055578	-1.02	0.00100021
AP1M2	-1.07	0.00053574	-1.05	0.0002838
CCDC159	-1.07	0.01970515	-1.05	0.00874361
CCR10	-1.02	0.04344729	-1.10	0.03705112
POLL	-1.08	0.00103103	-1.06	0.00021425
PIN1	-1.14	0.00026817	-1.01	0.00067597
DDX54	-1.13	0.00094701	-1.04	0.0019546
CTR9	-1.15	0.00834056	-1.01	0.03225509

UPF3B	-1.14	0.00736862	-1.02	0.02324195
ZNF778	-1.08	0.01942125	-1.09	0.0171277
SDF2L1	-1.15	0.0010209	-1.02	0.00124488
WDR70	-1.12	0.02644761	-1.06	0.03459727
ANKRD12	-1.10	0.01217259	-1.08	0.01284839
DUSP28	-1.02	0.0023424	-1.16	0.000502
WDR54	-1.15	0.00160549	-1.04	0.0008053
RPS11	-1.18	0.00060852	-1.03	0.00164511
SLC52A1	-1.07	0.03190302	-1.16	0.01995016
EEF2	-1.13	0.00104462	-1.10	0.00086871
WNT4	-1.20	0.00838076	-1.03	0.00593406
NOP58	-1.16	0.00714073	-1.09	0.01478802
KCNK6	-1.05	0.0080077	-1.20	0.0005184
RPLP1	-1.22	0.00020935	-1.04	0.00090984
CCDC174	-1.18	0.00739976	-1.08	0.01831489
PCSK4	-1.04	0.02043427	-1.24	0.01649671
FHOD1	-1.24	4.46E-05	-1.03	0.0006001
NBL1	-1.28	6.58E-05	-1.00	0.00029976
PPM1J	-1.20	0.00719364	-1.09	0.02506484
ABTB1	-1.12	0.00096738	-1.17	7.89E-05
MTRNR2L11	-1.27	0.00293727	-1.02	0.01010276
PQBP1	-1.28	0.00026339	-1.02	0.00166639
EMILIN1	-1.06	0.01961077	-1.24	0.00597362
AC009779.3	-1.01	0.03190302	-1.29	0.00855333
PTRHD1	-1.09	0.00124652	-1.22	0.00017429
ZNF791	-1.04	0.00501579	-1.27	0.00068471
ZNF385A	-1.03	0.00468222	-1.28	$2.58 \mathrm{E}-05$
RPS14	-1.26	0.00013897	-1.06	0.00086567
RPL22P1	-1.18	0.00882569	-1.14	0.00949726
PRDX5	-1.26	7.30E-05	-1.06	0.00046871
RPL13A	-1.28	0.00038954	-1.04	0.00139072
HSD17B8	-1.11	0.00106867	-1.21	0.00040426
FBXL15	-1.24	0.00057234	-1.09	0.00112414
EHBP1L1	-1.27	0.00040244	-1.06	0.00151746
TMEM54	-1.27	0.00011561	-1.07	9.80E-05
NME3	-1.26	5.71E-05	-1.07	0.00030336
AKAP8L	-1.30	0.00014918	-1.04	0.00127506
DNAJC4	-1.33	0.0004639	-1.00	0.0025828
RALA	-1.16	0.00507625	-1.17	0.00197027

PRR5	-1.26	0.00083124	-1.07	0.00039995
ARSA	-1.13	0.00188433	-1.21	$7.28 \mathrm{E}-05$
MOGS	-1.16	0.00084954	-1.19	0.00066073
RNFT2	-1.26	0.01316983	-1.09	0.02314404
SLC2A11	-1.27	0.00207348	-1.09	0.00231744
MTRNR2L1	-1.32	0.0014471	-1.04	0.00509702
TAF3	-1.31	0.00153562	-1.05	0.01047775
RHPN1	-1.28	0.0007698	-1.09	0.00084651
EXOC3L1	-1.15	0.04219499	-1.21	0.02458122
SNRPD2	-1.36	0.00045043	-1.02	0.00441594
POLD4	-1.09	0.00028874	-1.29	$7.23 \mathrm{E}-06$
TRAPPC12	-1.19	0.00106251	-1.18	0.00082805
CHD7	-1.21	0.01712386	-1.16	0.0189871
TGFB111	-1.26	0.0005882	-1.11	0.00021572
RAB26	-1.13	0.00315967	-1.25	$8.79 \mathrm{E}-05$
EIF5B	-1.10	0.01690975	-1.28	0.00646067
LRRC46	-1.32	0.00142168	-1.07	0.007294
ZFPM1	-1.32	0.0001511	-1.07	0.00233229
MVB12A	-1.20	0.0007417	-1.19	$4.42 \mathrm{E}-05$
SERGEF	-1.35	0.00127593	-1.04	0.00980959
SDSL	-1.23	0.00189872	-1.17	0.00057107
RRAS	-1.25	$5.05 \mathrm{E}-05$	-1.14	$7.98 \mathrm{E}-05$
PCED1A	-1.33	0.00082613	-1.07	0.0018131
EIF2B4	-1.30	0.00022179	-1.10	0.00084322
CYFIP2	-1.40	0.00013449	-1.00	0.00549707
MIB2	-1.18	0.00171271	-1.23	0.00018295
PC	-1.13	0.00181202	-1.28	0.0002904
NDUFA3	-1.40	0.00222701	-1.00	0.02035504
PSMG3	-1.37	$4.70 \mathrm{E}-05$	-1.04	0.00099357
RABAC1	-1.34	0.00019694	-1.07	0.00053293
KCTD14	1.75	0.00878133	-1.40	0.00484629
RPL3L	-1.21	0.00657814	-1.20	0.00966738
ZNF205	-1.41	0.00025144	-1.01	0.00392952
MRNIP	-1.00	0.0072143	-1.42	0.00367842
AREG	-1.31	0.00064476	-1.11	0.00223522
THUMPD2	-1.28	0.00441476	-1.14	0.03380272
OXLD1	-1.37	0.0001125	-1.06	0.00163255
PMVK	-1.31	0.00014326	-1.12	0.00022758
TMSB10	-1.18	0.00038843	-1.25	$8.47 \mathrm{E}-05$

STX8	-1.35	0.00259891	-1.08	0.00528287
FAM131A	-1.31	0.00060407	-1.14	0.00264282
POLE4	-1.12	0.00106867	-1.33	$2.74 \mathrm{E}-05$
SLC39A4	-1.38	0.0002143	-1.07	0.00142598
NFKBIE	-1.30	4.69E-05	-1.15	3.97E-05
C12orf45	-1.16	0.00136735	-1.30	0.00017289
NKAPD1	-1.37	0.00098959	-1.09	0.01967946
CENPS-CORT	-1.18	0.00546929	-1.29	0.00220941
SFTPB	-1.24	0.04690282	-1.23	0.03705112
TSPO	-1.47	$1.36 \mathrm{E}-05$	-1.01	0.00061854
PSPN	-1.40	4.97E-05	-1.07	0.00440566
NKAP	-1.38	0.00321568	-1.10	0.0206723
TMEM18	-1.34	0.00114031	-1.14	0.00228098
NOP53	-1.26	0.0001055	-1.22	$3.44 \mathrm{E}-05$
IRF3	-1.44	0.00061214	-1.04	0.00126743
OBSCN	-1.01	0.00790293	-1.47	$6.28 \mathrm{E}-05$
CCAR1	-1.39	0.00267824	-1.09	0.01781119
PLEKHN1	-1.20	0.00275284	-1.28	0.00055375
LCN2	-1.40	8.04E-05	1.40	2.47E-06
NUDT22	-1.45	0.00015849	-1.04	0.00232633
CTNNBL1	-1.38	0.00072401	-1.10	0.00822018
SREK1	-1.31	0.00290526	-1.18	0.01419183
DMAC1	-1.33	0.00024053	-1.16	0.00092917
RASA4	-1.18	0.00297531	-1.31	0.00014338
MED19	-1.44	0.00052021	-1.05	0.00425142
CHKB	-1.29	0.00027327	-1.21	0.00065958
CCDC144A	-1.40	0.00458409	-1.09	0.01608554
CSF2RA	-1.17	0.04560669	-1.33	0.00215278
SIGIRR	-1.48	0.00033368	-1.02	0.00462223
CIR1	-1.03	0.01890317	-1.47	0.00198168
IMP4	-1.33	4.55E-05	-1.18	$6.17 \mathrm{E}-05$
TMUB1	-1.47	0.00011574	-1.04	0.00109471
B3GNTL1	-1.07	0.00324753	-1.43	$2.56 \mathrm{E}-06$
ARL6IP4	-1.46	0.00014971	-1.04	0.00364001
ZNRD2	-1.50	9.42E-05	-1.01	0.00230465
TRAPPC6A	-1.04	0.00139847	-1.47	6.63E-07
DUSP18	-1.43	0.00155049	-1.08	0.01688645
TRIML2	-1.43	0.00068556	-1.08	0.01490406
CDK5RAP2	-1.13	0.00393494	-1.39	$6.77 \mathrm{E}-05$

MAGIX	-1.49	5.67E-05	-1.03	0.00807901
AAK1	-1.36	0.00659282	-1.16	0.01159267
MVD	-1.40	0.00018134	-1.12	0.00014547
PSMD13	-1.46	$1.21 \mathrm{E}-05$	-1.06	0.00101703
MOV10	-1.32	0.00137039	-1.20	0.0022159
GRAPL	-1.02	0.00511928	-1.51	4.71E-05
YIF1A	-1.48	0.00016887	-1.04	0.00104681
MISP3	-1.23	0.00041037	-1.30	9.16E-05
NOL8	-1.29	0.01244973	-1.24	0.01405361
CFAP251	-1.20	0.00331352	-1.33	0.00117002
ETV2	-1.46	0.00054448	-1.08	0.00873851
NDUFS6	-1.51	7.30E-05	-1.02	0.0041622
PGF	-1.42	0.00033495	-1.12	0.00652316
EBF4	-1.21	0.00974625	-1.33	0.00105085
SH3RF2	-1.27	0.00162818	-1.27	0.00072895
KRT17	-1.32	0.00477507	-1.23	0.02133375
FES	-1.18	0.00049092	1.37	2.10E-05
GPATCH3	-1.47	0.00029191	-1.08	0.00101179
COX5B	-1.18	0.00087701	-1.37	2.87E-05
ANXA11	-1.50	$6.27 \mathrm{E}-05$	-1.05	0.00304629
CKB	-1.15	0.00139441	-1.40	$1.46 \mathrm{E}-05$
RBMX2	-1.35	0.00210308	-1.21	0.00582764
MAN1B1	-1.40	8.35E-05	-1.16	0.00013729
CCS	-1.32	0.0004456	-1.24	$4.78 \mathrm{E}-05$
EID2B	-1.13	0.00055459	-1.43	$1.46 \mathrm{E}-05$
FAM131C	-1.51	0.00016313	-1.05	0.00258846
LY6K	-1.09	0.04893149	-1.47	0.00162214
FAM174B	-1.37	0.0005175	-1.19	0.00131604
TRIM47	-1.52	$2.01 \mathrm{E}-06$	-1.05	0.00022015
BLVRB	-1.08	0.00043968	-1.49	1.37E-07
CISD3	-1.54	5.69E-05	-1.04	0.0029109
RSF1	-1.35	0.00407327	-1.22	0.01127336
HMBS	-1.55	0.00321313	-1.02	0.01353714
KLHL18	-1.49	7.54E-06	-1.09	0.0010305
ZCRB1	-1.33	0.00448836	-1.24	0.00841371
SMAP1	-1.39	0.00201642	-1.18	0.0071308
RAB11FIP2	-1.41	0.00049207	-1.17	0.01915912
RPL8	-1.44	$6.14 \mathrm{E}-05$	-1.14	0.00034583
RPS5	-1.49	4.65E-05	-1.09	0.00080778

ANKRD26	-1.29	0.00652407	-1.29	0.01318124
LARP1B	-1.50	0.00134073	-1.09	0.01110025
CERS4	-1.43	0.00038843	-1.16	0.00111674
SFI1	-1.56	0.00077089	-1.03	0.00766296
REEP2	-1.47	$6.48 \mathrm{E}-05$	-1.12	0.00067884
REEP6	-1.49	0.00015789	-1.10	0.00164284
LRRC23	-1.25	0.0018952	-1.34	0.00011937
IER5L	-1.35	$6.08 \mathrm{E}-05$	-1.24	$3.78 \mathrm{E}-05$
RP9	-1.51	0.00091114	-1.09	0.01239645
TMEM141	-1.43	$6.05 \mathrm{E}-05$	-1.18	0.00034583
BSG	-1.44	$2.64 \mathrm{E}-05$	-1.16	7.04E-05
PFDN5	-1.36	0.00041351	-1.24	0.00062748
CDC34	-1.46	7.35E-05	-1.15	0.00038671
NPW	-1.32	0.0017788	-1.29	0.00415391
PRPH	-1.61	$1.14 \mathrm{E}-05$	-1.01	0.0196279
ATIC	-1.28	0.00094333	-1.34	0.00019106
VPS51	-1.47	0.0002643	-1.15	0.00026378
NDUFA11	-1.55	5.02E-05	-1.07	0.00142038
ANKRD18A	-1.31	0.01733741	-1.31	0.01276573
TCEA2	-1.37	0.00011057	-1.25	7.19E-05
ARL2	-1.56	5.96E-05	-1.06	0.00135465
LAMA5	-1.31	0.0001125	-1.32	$2.06 \mathrm{E}-05$
LIPE	-1.36	0.00053852	-1.27	0.00011958
ZNF296	-1.47	$3.14 \mathrm{E}-05$	-1.16	0.00023846
YJEFN3	-1.61	0.00073997	-1.02	0.03540833
NOL3	-1.34	0.0009504	-1.29	6.25E-05
ATOX1	-1.62	7.48E-05	-1.02	0.00445268
PDIA3P1	-1.27	0.00869223	-1.37	0.01531565
DNLZ	-1.53	4.59E-05	-1.11	0.00046747
DOCK6	-1.29	0.00166318	-1.35	0.00012245
ELP5	-1.51	$7.34 \mathrm{E}-05$	-1.13	0.00042178
GID4	-1.57	$2.58 \mathrm{E}-05$	-1.07	0.00100473
THAP4	-1.36	8.81E-05	-1.29	0.0001296
RNF208	-1.55	0.00089177	-1.10	0.01782332
NT5C	-1.30	8.73E-05	-1.35	1.33E-05
ZNF524	-1.44	0.00019694	-1.22	0.00032673
HSPB1	-1.49	9.33E-05	-1.16	0.00035475
Z97634.1	-1.49	0.00200207	-1.16	0.02439947
STAG2	-1.38	0.00234404	-1.27	0.00179461

NAT14	-1.53	8.02E-05	-1.12	0.00073328
UPF3A	-1.36	0.00060376	-1.30	0.00067597
C17orf49	-1.46	$3.49 \mathrm{E}-05$	-1.20	0.00016867
FKBP2	-1.53	0.00016307	-1.13	0.00208583
NDUFB11	-1.55	9.82E-05	-1.11	0.00116367
RRP15	-1.60	0.00017911	-1.07	0.02099642
SAXO2	-1.24	0.03381847	-1.43	0.01009349
LAMTOR4	-1.48	0.00016887	-1.19	0.00069175
ANKRD36C	-1.35	0.01832303	-1.32	0.01540642
DNPEP	-1.32	0.0002656	-1.35	6.03E-06
STK32C	-1.25	4.39E-05	-1.43	5.60E-07
SPHK1	-1.51	8.10E-07	-1.17	0.00018432
RPL18	-1.52	5.02E-05	-1.16	0.00050075
RASGRP2	-1.35	0.00738795	-1.33	0.00670787
MAP9	-1.37	0.00299645	-1.31	0.00524304
SPNS1	-1.56	4.40E-05	-1.12	0.00075876
BOLA2B	-1.50	0.00028195	-1.18	0.00243087
ANTKMT	-1.52	$3.18 \mathrm{E}-05$	-1.16	0.000342
LSP1P4	-1.36	0.0003096	-1.33	5.72E-05
TEN1	-1.50	8.62E-05	-1.18	0.00045654
C11orf86	-1.32	0.00015894	-1.37	1.45E-05
TAS1R3	-1.28	0.04508299	-1.41	0.0216353
C19orf81	-1.41	0.00014116	-1.28	0.00025024
RGS20	-1.28	0.00082074	-1.41	0.00010639
WDR13	-1.58	0.00014845	-1.12	0.00236251
FKBP8	-1.55	0.00011682	-1.15	0.00056083
EML3	-1.54	0.00019789	-1.16	0.00038912
BAZ1A	-1.38	0.00170008	-1.33	0.00718042
NRDE2	-1.41	0.00041595	-1.30	0.00120924
HMGN5	-1.45	0.00121789	-1.26	0.00424001
GPX4	-1.51	$3.36 \mathrm{E}-05$	-1.20	0.00014707
TCF25	-1.64	0.00011283	-1.07	0.00236068
NFIC	-1.71	0.00010164	-1.00	0.00565671
NDUFV1	-1.60	7.34E-05	-1.12	0.0007754
ACSF2	-1.40	0.00040464	-1.32	0.00029467
NUDT1	-1.49	9.37E-05	-1.23	0.00024768
FAH	-1.60	3.57E-05	-1.12	0.00065949
UPK2	-1.45	0.00221604	-1.28	0.01249263
UBE3A	-1.31	0.00966173	-1.42	0.00565378

GLI4	-1.35	0.00033692	-1.38	6.32E-06
CTIF	-1.58	0.00013532	-1.15	0.00427124
PSMB10	-1.72	1.42E-05	-1.02	0.00441692
ATP2A1	-1.68	0.00013358	-1.07	0.01460514
MYCBP2	-1.47	0.0024609	-1.28	0.01225616
ZNF653	-1.61	5.82E-06	-1.14	0.00147079
EIF2B5	-1.56	0.00050764	-1.20	0.01682656
EXOSC4	-1.67	3.03E-05	-1.08	0.00117793
CFD	-1.07	0.00238605	-1.69	$1.40 \mathrm{E}-08$
LIN7B	-1.36	0.00021606	-1.39	$6.14 \mathrm{E}-05$
GSTM1	-1.22	0.01075315	-1.53	0.00243864
SHKBP1	-1.52	0.00017587	-1.24	$2.70 \mathrm{E}-05$
RNF181	-1.38	0.00022306	-1.38	2.93E-05
BARX1	-1.00	0.00709043	-1.76	3.15E-09
PPDPF	-1.68	5.69E-05	-1.08	0.00253809
YIPF2	-1.70	$1.90 \mathrm{E}-05$	-1.06	0.00216861
EGFL7	-1.51	5.66E-05	-1.26	0.0001148
FAHD2B	-1.18	0.00026615	-1.58	2.62E-08
KRT86	-1.06	0.00321568	-1.71	2.47E-09
RHCG	-1.12	0.01068064	-1.65	6.51E-07
NANOS3	-1.71	0.00044111	-1.06	0.03666796
SPEF1	-1.66	0.00060638	-1.11	0.01858473
SAR1A	-1.53	$3.58 \mathrm{E}-05$	-1.24	0.00100473
GPATCH11	-1.32	0.01574051	-1.46	0.00791233
PTH1R	-1.53	0.00267824	-1.26	0.01389897
CCDC78	-1.40	0.00409713	-1.39	0.00289957
MFSD3	-1.52	8.53E-05	-1.28	5.65E-05
CNFN	-1.47	0.00055743	-1.33	0.00027317
CUTA	-1.58	8.21E-05	-1.22	0.00024961
MYG1	-1.52	8.19E-05	-1.28	0.00010762
APRT	-1.67	$4.59 \mathrm{E}-05$	-1.13	0.0011055
KREMEN2	-1.68	$1.20 \mathrm{E}-05$	-1.13	0.00212523
S100A1	-1.48	0.00792116	-1.32	0.0164959
ZC3H6	-1.60	0.00353214	-1.20	0.03041995
PAXX	-1.69	3.28E-05	-1.11	0.00178425
RALBP1	-1.66	0.0001782	-1.15	0.01388379
AC024293.1	-1.58	0.00137965	-1.23	0.0249946
PNPLA3	-1.35	0.01047913	-1.46	0.00470861
ECSIT	-1.60	$1.51 \mathrm{E}-05$	-1.21	0.00024699

MAP1LC3A	-1.55	2.95E-05	-1.27	7.22E-05
GPT	-1.42	0.01772896	-1.39	0.0206723
PPM1N	-1.29	0.00080486	-1.53	6.30E-05
ESF1	-1.46	0.00077296	-1.36	0.00533027
WDR18	-1.76	$1.90 \mathrm{E}-05$	-1.06	0.00119916
AC007342.3	-1.48	0.02765847	-1.34	0.04986605
CEBPZ	-1.33	0.00088681	-1.50	0.00139979
MPST	-1.54	0.00012058	-1.29	4.50E-05
CCDC34	-1.48	0.00258464	-1.35	0.04246507
EMC3-AS1	-1.68	0.0002372	-1.15	0.02324195
MLXIPL	-1.20	0.00350697	-1.63	9.98E-05
ZNF354B	-1.64	0.00072871	-1.19	0.00650082
H2AJ	-1.55	2.27E-05	-1.28	0.00012599
CYSRT1	-1.60	0.00148046	-1.23	0.01221085
AMDHD2	-1.75	$3.79 \mathrm{E}-05$	-1.09	0.00357597
UPK3BL1	-1.51	0.00055686	-1.33	0.00104239
RNF31	-1.60	7.67E-05	-1.24	0.00090887
RPL9	-1.55	$6.33 \mathrm{E}-05$	-1.30	0.00063905
ASL	-1.51	0.00032553	-1.34	4.78E-05
EIF3C	-1.81	9.76E-05	-1.03	0.02188601
ABCF1	-1.66	0.00043968	-1.18	0.00939543
MAPK12	-1.65	5.91E-06	-1.20	0.00015452
MRPL52	-1.62	5.50E-05	-1.23	0.00040736
LSM7	-1.72	6.13E-06	-1.13	0.00169839
VMO1	-1.43	0.00165856	-1.42	0.00330064
PIEZO1	-1.59	8.96E-05	-1.26	0.00097775
CHTF18	-1.70	2.18E-06	-1.16	0.00084435
SEPTIN1	-1.64	0.00015238	-1.22	0.00143275
UQCC2	-1.52	$6.24 \mathrm{E}-05$	-1.33	0.00016867
YAF2	-1.56	0.00204777	-1.30	0.00776125
ARPC1B	-1.72	$2.26 \mathrm{E}-05$	-1.14	0.00774655
GMPPA	-1.32	0.00040553	-1.54	1.42E-07
SIPA1	-1.61	$6.20 \mathrm{E}-05$	-1.26	0.00055847
RPL13	-1.58	4.95E-05	-1.29	0.00010639
TMEM91	-1.43	0.00170008	-1.44	0.00032115
STXBP2	-1.62	$3.82 \mathrm{E}-05$	-1.25	0.0002325
PTOV1	-1.63	3.26E-05	-1.25	0.00018832
NDUFA4L2	-1.07	0.02437128	-1.80	$6.28 \mathrm{E}-05$
DCTN1	-1.51	7.11E-05	-1.37	2.25E-05

FIBCD1	-1.38	0.00049909	-1.50	$2.70 \mathrm{E}-06$
TDG	-1.61	0.00044036	-1.28	0.00589972
MAP2K2	-1.73	6.05E-05	-1.16	0.00080534
KCNJ14	-1.48	0.00299645	-1.41	0.00129069
NUDT18	-1.45	0.00029933	-1.44	9.80E-06
MAP7D3	-1.53	0.0007568	-1.36	0.00146493
TCIRG1	-1.58	0.00010643	-1.31	5.53E-05
MMP17	-1.76	4.63E-05	-1.15	0.0010784
MACROD1	-1.43	0.00011595	-1.48	4.42E-06
ASPHD1	-1.28	0.00027092	-1.63	6.15E-08
TTC39C	-1.11	0.00510664	-1.81	$1.40 \mathrm{E}-06$
LUC7L3	-1.63	0.00050278	-1.29	0.00611948
GRIK5	-1.44	0.00659215	-1.48	0.01001928
LCAT	-1.72	0.00021139	-1.20	0.00549614
SLC11A1	-1.41	0.00713875	-1.51	0.00136153
TEX45	-1.50	0.00366284	-1.43	0.00383193
ZBTB48	-1.77	8.13E-05	-1.16	0.00383193
SYMPK	-1.72	$1.53 \mathrm{E}-05$	-1.21	0.0008323
CLPB	-1.47	7.11E-05	-1.46	4.34E-06
ZFHX2	-1.59	9.22E-06	-1.34	0.00182351
PNKP	-1.60	0.0001108	-1.34	8.55E-05
MIF	-1.71	$3.61 \mathrm{E}-05$	-1.22	0.00075393
POLR2I	-1.74	4.06E-05	-1.19	0.00121801
AK8	-1.67	5.29E-05	-1.27	0.0047971
NPAS1	-1.35	0.00077791	-1.58	1.45E-06
KHK	-1.48	0.00012885	-1.46	1.17E-05
SHOC2	-1.77	0.00035416	-1.17	0.01086874
PLPPR3	-1.69	$3.74 \mathrm{E}-05$	-1.26	0.00022182
ETFB	-1.44	0.00022179	-1.51	$9.90 \mathrm{E}-06$
ZNF615	-1.28	0.02983483	-1.67	0.0034049
CUL9	-1.59	0.00034912	-1.36	0.00062602
PRPF40A	-1.30	0.00037242	-1.66	$9.20 \mathrm{E}-07$
DNMT1	-1.79	0.0001399	-1.17	0.00324925
HES1	-1.65	0.00016827	-1.31	0.0011116
ZNF581	-1.48	5.67E-05	-1.48	$2.45 \mathrm{E}-06$
FAM207A	-1.69	4.63E-06	-1.27	$7.26 \mathrm{E}-05$
ROMO1	-1.56	5.34E-05	-1.41	5.56E-05
CCDC25	-1.67	0.00075471	-1.30	0.00609314
MESP1	-1.76	1.51E-05	-1.21	0.00045883

PEMT	-1.74	9.31E-05	-1.23	0.00017942
RPL13AP7	-1.68	0.00083239	-1.29	0.00650082
BIRC7	-1.08	0.01870902	-1.90	$1.08 \mathrm{E}-05$
KRT81	-1.05	0.00096759	-1.93	$3.70 \mathrm{E}-12$
PHPT1	-1.64	4.39E-05	-1.35	0.00013561
LRRC75B	-1.53	5.58E-05	-1.46	2.51E-05
BLOC1S1	-1.57	$7.48 \mathrm{E}-05$	-1.42	5.27E-05
KPTN	-1.77	1.94E-05	-1.22	5.65E-05
FAM133B	-1.70	0.00049207	-1.29	0.00960019
SULT2B1	-1.92	$2.84 \mathrm{E}-07$	-1.07	0.00138491
BSCL2	-1.74	0.00014746	-1.26	0.00206924
RELB	-1.68	$2.68 \mathrm{E}-08$	-1.32	$2.51 \mathrm{E}-05$
FLNA	-1.79	$3.58 \mathrm{E}-05$	-1.21	0.00214467
CTU1	-1.56	$3.65 \mathrm{E}-05$	-1.44	3.36E-05
SLC27A5	-1.62	8.89E-05	-1.38	0.00010429
NENF	-1.69	$1.58 \mathrm{E}-05$	-1.31	0.00013715
RPL36	-1.74	$1.71 \mathrm{E}-05$	-1.27	0.00062604
NOC4L	-1.79	$1.76 \mathrm{E}-05$	-1.22	0.00039043
ERV3-1	-1.36	0.00054531	-1.65	7.37E-05
CCDC88B	-1.80	4.37E-05	-1.21	0.00197769
ADAMTSL3	-1.77	0.00247045	-1.24	0.03761963
KRT83	-1.50	$1.43 \mathrm{E}-05$	-1.52	6.95E-06
ALDH16A1	-1.77	6.33E-05	-1.25	0.00073328
OAZ3	-1.57	0.00145433	-1.45	0.00216714
ALKBH7	-1.68	0.000112	-1.34	0.0002842
DDX49	-1.86	$9.50 \mathrm{E}-06$	-1.16	0.00210197
METRN	-1.77	$1.94 \mathrm{E}-05$	-1.25	0.00032854
TREX1	-1.66	0.00038599	-1.36	0.00140766
NDUFS8	-1.82	$2.43 \mathrm{E}-05$	-1.20	0.00106066
ESPN	-1.60	0.00214975	-1.42	0.01469608
PTGDS	-1.32	0.00799742	-1.70	0.00011124
GALK1	-1.72	3.35E-05	-1.30	0.00012652
ATAD3B	-1.82	0.00010289	-1.21	0.00562594
PPP2R3B	-1.46	4.03E-05	-1.56	1.09E-06
HCFC1R1	-1.70	$6.17 \mathrm{E}-05$	-1.32	0.00032783
GGT1	-1.56	$6.34 \mathrm{E}-05$	-1.47	5.19E-06
FDXR	-1.58	3.49E-05	-1.45	2.71E-06
POLR3G	-1.47	0.00053646	-1.57	0.00049568
EMP3	-1.70	2.27E-05	-1.34	$3.04 \mathrm{E}-05$

TINAGL1	-1.52	0.0220529	-1.52	0.02539407
DDX24	-1.87	0.0002656	-1.17	0.01616176
ABCA7	-1.59	0.00024178	-1.46	$2.74 \mathrm{E}-05$
SART1	-1.72	$5.99 \mathrm{E}-05$	-1.33	0.00089043
RPSAP8	-1.81	0.00148073	-1.25	0.01461945
AC008982.1	-1.70	0.00063223	-1.35	0.01463194
RECQL4	-1.98	$3.89 \mathrm{E}-06$	-1.08	0.00517925
TRIM72	-1.63	0.0012281	-1.43	0.0042261
MTRNR2L10	-1.58	$6.71 \mathrm{E}-05$	-1.48	0.00093689
GET4	-1.78	$3.79 \mathrm{E}-05$	-1.29	0.00025441
COL6A1	-1.34	0.00050677	-1.72	$8.37 \mathrm{E}-07$
RNASEH2C	-1.73	$1.19 \mathrm{E}-05$	-1.34	$8.97 \mathrm{E}-05$
AURKAIP1	-1.81	$1.00 \mathrm{E}-05$	-1.26	0.00043889
TMEM190	-1.41	0.0223327	-1.66	0.00405034
C12orf57	-1.65	$3.42 \mathrm{E}-06$	-1.42	$1.06 \mathrm{E}-05$
NUDT8	-1.76	$5.82 \mathrm{E}-05$	-1.32	0.00019106
ANKRD18B	-1.68	0.00046943	-1.40	0.0024534
SLC22A18	-1.44	0.00399763	-1.64	$5.45 \mathrm{E}-06$
CHCHD5	-1.39	0.00013482	-1.70	$1.68 \mathrm{E}-07$
ZFAND2B	-1.68	$1.72 \mathrm{E}-05$	-1.41	$1.43 \mathrm{E}-05$
DTNB	-1.79	0.00020753	-1.30	0.00292298
SPC24	-1.68	$4.72 \mathrm{E}-05$	-1.41	$1.40 \mathrm{E}-05$
UNC13D	-1.62	$7.59 \mathrm{E}-09$	-1.47	$4.78 \mathrm{E}-08$
PGPEP1	-2.00	$1.71 \mathrm{E}-05$	-1.09	0.00482944
ASPSCR1	-1.92	$2.50 \mathrm{E}-05$	-1.18	0.00070784
BRD9	-1.93	$4.17 \mathrm{E}-05$	-1.17	0.00477365
GSTO2	-1.39	0.0002112	-1.71	$1.18 \mathrm{E}-05$
NDUFS7	-1.88	$1.43 \mathrm{E}-05$	-1.23	0.00070176
CBR3	-1.29	0.00052764	-1.82	$9.84 \mathrm{E}-08$
ABCB6	-1.36	0.00040244	-1.76	$9.90 \mathrm{E}-08$
MCRIP2	-2.00	$1.27 \mathrm{E}-05$	-1.12	0.00317161
ARID4A	-1.64	$5.63 \mathrm{E}-05$	-1.48	0.00106969
ULK2	-1.97	$6.25 \mathrm{E}-07$	-1.16	0.00053594
DLGAP1	-1.75	0.01344155	-1.38	0.04703066
MRPL12	-1.97	$4.00 \mathrm{E}-06$	-1.16	0.00169489
MICOS13	-1.76	$2.34 \mathrm{E}-05$	-1.37	0.00014126
NDUFB7	-1.35	0.00024666		
RRP7A	-1.54	0.00018672		
ERFL	0.00829625			
	-1.37732			

EIF4EBP1	-1.89	1.06E-05	-1.26	0.0005301
NOSIP	-1.84	1.15E-05	-1.33	0.00013241
RNPEPL1	-1.59	$3.62 \mathrm{E}-05$	-1.58	1.10E-06
ENTPD8	-1.95	9.35E-05	-1.23	0.03507888
CDYL	-1.81	0.00050855	-1.37	0.00534552
HAGHL	-1.66	4.06E-05	-1.52	7.09E-06
REX1BD	-1.82	5.91E-06	-1.37	0.00011102
AKAP7	-1.91	$2.20 \mathrm{E}-05$	-1.28	0.01188924
MRPL23	-1.91	1.27E-05	-1.28	0.00072744
AC011448.1	-1.73	8.76E-05	-1.47	0.00046605
POLD1	-2.00	3.48E-06	-1.19	0.00262052
NTHL1	-1.67	9.33E-05	-1.52	$7.38 \mathrm{E}-06$
GSDMD	-1.75	2.67E-05	-1.46	$4.78 \mathrm{E}-05$
CATIP	-1.15	0.03405882	-2.06	7.42E-07
VAX1	-1.90	1.01E-05	-1.31	0.00222191
INHBE	-1.17	0.03429871	-2.05	$3.94 \mathrm{E}-05$
GLB1L3	-1.76	0.00627147	-1.46	0.03549699
EVI5	-1.57	0.00429323	-1.65	5.17E-05
DPP7	-1.95	1.48E-05	-1.27	0.00083444
TSGA10	-1.56	0.01712386	-1.67	0.00642636
METTL27	-1.53	$2.78 \mathrm{E}-05$	-1.71	$2.62 \mathrm{E}-07$
FXYD5	-1.92	$1.20 \mathrm{E}-05$	-1.32	0.00028176
INTS1	-1.91	$1.08 \mathrm{E}-05$	-1.33	0.00040312
RDM1P5	-1.93	9.82E-05	-1.33	0.00358262
ANKRD36B	-1.56	0.0063019	-1.71	0.00319911
MYOG	-1.81	0.02775172	-1.45	0.04852796
NUDT14	-1.69	1.17E-05	-1.58	4.08E-06
AL928654.3	-1.71	0.00062134	-1.56	0.00073413
PRSS3	-1.58	2.31E-06	-1.69	6.15E-08
SMIM24	-1.66	0.03076723	-1.61	0.02715805
PPIG	-1.54	0.00028874	-1.73	0.00016026
RPL24P4	-1.74	0.00228139	-1.54	0.01436727
LMBRD2	-2.07	$1.07 \mathrm{E}-05$	-1.21	0.0195257
CYBA	-1.86	4.76E-06	-1.42	5.68E-05
AK9	-1.75	0.00095962	-1.53	0.01028164
H2AC20	-1.75	2.37E-05	-1.54	0.0004859
KMO	-1.84	0.00482017	-1.44	0.03084177
AD000671.1	-1.85	0.00044107	-1.44	0.00147908
TSSC4	-1.91	1.42E-05	-1.39	4.46E-05

RPS3AP20	-1.75	0.0017665	-1.55	0.00321372
CEP164	-2.03	$2.04 \mathrm{E}-05$	-1.28	0.00229732
RPS28	-1.85	$3.37 \mathrm{E}-05$	-1.46	0.00011494
TNNC1	-1.80	$1.01 \mathrm{E}-05$	-1.51	7.22E-05
KNOP1	-1.99	$6.90 \mathrm{E}-05$	-1.32	0.00452956
GAMT	-1.93	$1.35 \mathrm{E}-05$	-1.38	0.00013409
HSD17B14	-1.45	$1.70 \mathrm{E}-05$	-1.87	$1.61 \mathrm{E}-10$
CATSPER1	-1.70	0.00023775	-1.61	$9.16 \mathrm{E}-05$
F12	-1.72	1.14E-05	-1.60	$6.71 \mathrm{E}-07$
MAP3K6	-1.74	0.00017409	-1.58	$9.26 \mathrm{E}-05$
SNX8	-1.92	$6.50 \mathrm{E}-06$	-1.41	$1.28 \mathrm{E}-05$
INF2	-1.88	4.93E-06	-1.47	$2.27 \mathrm{E}-05$
AC122718.1	-1.81	0.01392804	-1.53	0.03180621
CCDC66	-2.08	$6.41 \mathrm{E}-05$	-1.26	0.01001609
RPS9	-1.76	5.33E-06	-1.59	8.37E-07
POTEC	-1.69	0.0005093	-1.66	0.00237398
CPSF1	-1.88	$3.56 \mathrm{E}-06$	-1.47	7.46E-05
RPL18A	-1.90	9.83E-06	-1.46	$3.97 \mathrm{E}-05$
ELOB	-1.95	$1.05 \mathrm{E}-05$	-1.41	0.00019867
NAA38	-1.78	$3.28 \mathrm{E}-05$	-1.58	$1.66 \mathrm{E}-05$
FAAP20	-1.92	6.69E-06	-1.45	$3.35 \mathrm{E}-05$
CCDC167	-1.92	$2.36 \mathrm{E}-06$	-1.45	4.23E-05
ADGRB1	-1.89	0.00032964	-1.48	0.00959623
DKC1	-2.06	$4.40 \mathrm{E}-05$	-1.31	0.00516291
CACNA1A	-1.94	$6.48 \mathrm{E}-05$	-1.43	0.00676903
PXDN	-2.01	$7.26 \mathrm{E}-07$	-1.36	0.00053409
IGFL1	-2.11	$2.50 \mathrm{E}-08$	-1.27	0.00548433
HAMP	-1.89	0.00720221	-1.48	0.03898641
IL3RA	-1.55	0.00321301	-1.83	$6.81 \mathrm{E}-05$
PARD3B	-1.89	0.00012323	-1.49	0.00338127
COL6A2	-1.54	1.32E-05	-1.85	$2.09 \mathrm{E}-09$
ZNF593	-1.91	1.66E-05	-1.49	8.05E-05
ACP7	-1.83	0.01789812	-1.57	0.03233539
POLR1G	-2.38	$1.56 \mathrm{E}-06$	-1.03	0.03410363
AP2S1	-2.06	$1.33 \mathrm{E}-05$	-1.34	0.00056161
LRRC24	-1.63	0.00077089	-1.78	7.87E-06
TMEM265	-1.91	4.00E-06	-1.50	0.0001945
MYLPF	-1.95	0.00386173	-1.47	0.0369282
HES4	-1.65	1.73E-06	-1.77	1.63E-10

FAM174C	-1.93	8.06E-06	-1.49	$3.78 \mathrm{E}-05$
NAPRT	-1.19	0.01386427	-2.23	5.09E-07
C4orf48	-2.10	5.67E-06	-1.32	0.00084322
FAM133CP	-1.97	0.0057976	-1.46	0.03996255
TCTEX1D4	-1.56	0.03288982	-1.87	0.00589119
GGT5	-1.26	0.02547022	-2.18	$2.62 \mathrm{E}-07$
ARHGDIG	-2.16	9.87E-07	-1.27	0.0010961
RICTOR	-1.67	$2.50 \mathrm{E}-05$	-1.77	$3.58 \mathrm{E}-06$
COL20A1	-2.03	0.00185625	-1.42	0.04150181
ITK	-1.85	0.00676743	-1.60	0.01453499
USP9YP4	-1.97	0.0158592	-1.49	0.04505141
SCN5A	-2.13	7.67E-05	-1.33	0.04505141
IRF7	-2.13	0.00014845	-1.33	0.0241807
JAK3	-1.62	0.00048026	-1.86	3.81E-06
UQCC3	-2.08	4.93E-06	-1.40	0.00030202
MAP1S	-2.00	$9.22 \mathrm{E}-06$	-1.48	0.00016655
IYD	-1.92	0.01258222	-1.57	0.03362292
BCL7C	-2.02	$1.88 \mathrm{E}-06$	-1.46	2.96E-05
AL162231.1	-1.96	6.02E-06	-1.53	0.00014918
CLDND2	-1.55	0.00114565	-1.94	$2.60 \mathrm{E}-06$
LAMC3	-1.56	0.00043968	-1.94	$3.28 \mathrm{E}-05$
SEC14L6	-1.84	0.00501579	-1.66	0.00581912
PLXNB3	-1.93	0.00032104	-1.57	0.01200646
CX3CL1	-2.08	0.00016582	-1.43	0.01947393
EDN2	-1.64	0.00067436	-1.90	0.00013509
NELFE	-1.81	4.27E-05	-1.73	7.95E-06
CHRNA1	-2.14	0.00849262	-1.41	0.04673231
INAFM1	-1.84	$4.59 \mathrm{E}-05$	-1.71	$1.90 \mathrm{E}-06$
GPR85	-1.99	$3.35 \mathrm{E}-05$	-1.56	0.00556287
IGFBP6	-2.13	$5.64 \mathrm{E}-07$	-1.43	5.65E-05
MAFB	-1.88	0.00171423	-1.68	0.00928085
GSTM2	-1.45	0.0003096	-2.12	$1.69 \mathrm{E}-08$
RPS3AP21	-1.87	0.00444613	-1.69	0.00915765
PNPLA6	-2.04	1.05E-05	-1.54	5.06E-05
PERM1	-1.90	$6.41 \mathrm{E}-05$	-1.68	0.00021455
EMILIN3	-1.57	0.02841554	-2.02	0.00164872
NRIP3	-2.00	0.00097943	-1.59	0.0054957
UPF2	-1.95	$2.41 \mathrm{E}-05$	-1.64	0.00055394
WNT10A	-1.67	0.04531907	-1.92	0.00841339

FUOM	-2.06	$1.16 \mathrm{E}-06$	-1.53	$2.40 \mathrm{E}-05$
UBBP1	-2.08	0.00744331	-1.51	0.0418692
DEFB1	-1.56	0.01750255	-2.04	0.000463
NMT1	-2.10	$8.37 \mathrm{E}-06$	-1.51	0.00026439
RPL21P6	-2.20	0.00660947	-1.41	0.04646864
STARD10	-2.11	$9.87 \mathrm{E}-07$	-1.50	$5.13 \mathrm{E}-06$
TPGS1	-1.88	$4.04 \mathrm{E}-06$	-1.74	$7.04 \mathrm{E}-07$
APOE	-1.69	$1.05 \mathrm{E}-05$	-1.93	$2.23 \mathrm{E}-08$
AARD	-2.14	0.00252799	-1.49	0.03755117
AC006509.1	-2.25	$5.33 \mathrm{E}-06$	-1.39	0.01353714
MICALL2	-2.01	$3.62 \mathrm{E}-06$	-1.63	$7.24 \mathrm{E}-06$
WFIKKN1	-2.22	0.00035173	-1.43	0.03917975
TBL3	-2.05	$3.06 \mathrm{E}-06$	-1.60	$6.52 \mathrm{E}-06$
GCHFR	-1.79	$8.37 \mathrm{E}-06$	-1.87	$5.31 \mathrm{E}-09$
CRPPA	-2.18	0.00053574	-1.47	0.01343216
CDKL1	-1.97	0.00077699	-1.70	0.00172031
RPS26P6	-1.93	0.0018952	-1.74	0.00738244
CAMK2B	-2.30	$1.51 \mathrm{E}-05$	-1.37	0.02984981
MZT2B	-1.89	$1.28 \mathrm{E}-05$	-1.78	$8.37 \mathrm{E}-07$
RHO	-1.90	0.01141181	-1.77	0.01072607
ZP3	-2.08	$3.46 \mathrm{E}-06$	-1.59	$4.92 \mathrm{E}-06$
PTAFR	-1.71	0.00073315	-1.98	$7.73 \mathrm{E}-05$
NRTN	-1.89	$1.54 \mathrm{E}-05$	-1.79	$3.74 \mathrm{E}-05$
MMP2	-1.90	$5.40 \mathrm{E}-05$	-1.79	$2.40 \mathrm{E}-05$
HLA-B	0.00032253	0.00767395	-1.78	0.00231915
TRAPPC5	-1.91	0.00581257	-1.65	0.02508925
TMEM160	-2.12	$1.00 \mathrm{E}-05$	-1.79	0.0106439
HSP90AB3P	-2.20	$1.83 \mathrm{E}-06$	-1.58	$6.14 \mathrm{E}-05$
MYL5	-1.96	0.00111717	-1.50	0.00010057
NECAB2	-1.86	$2.26 \mathrm{E}-05$	-1.74	0.00812551
ANKRD30BL	-1.35	0.00184751	-1.84	$9.20 \mathrm{E}-07$
CCDC85B	-1.92	$6.55 \mathrm{E}-05$	-2.36	$7.13 \mathrm{E}-10$
DEK	-2.26	$6.91 \mathrm{E}-07$	-1.81	$7.09 \mathrm{E}-06$
DRD4	-2.24	$7.79 \mathrm{E}-05$	-1.50	$9.58 \mathrm{E}-05$
DYNC1I2	-1.80	0.01774075	-1.52	0.03464549
ARGFXP2	-1.89	0.00018862	-1.96	0.00503114
GC	-2.23	0.00423103	-1.88	$5.63 \mathrm{E}-05$
ZNF350	0.00968831	-1.55	0.03737092	
NRXN1	-1.90	0.00788367		
	-1.0		-1	

HSP90AB2P	-2.07	0.00178786	-1.74	0.00855456
CCDC7	-2.28	0.00019594	-1.54	0.0079118
SYCE1L	-1.92	$6.41 \mathrm{E}-05$	-1.90	5.76E-06
FMO1	-2.29	0.00377387	-1.54	0.03618248
PSG2	-2.10	0.00732259	-1.74	0.01776956
TRPV2	-1.85	0.00013482	-1.99	3.12E-05
NEB	-2.15	0.00062368	-1.69	0.01029443
ZBTB8B	-2.27	0.00082937	-1.57	0.01915912
PDE6B	-2.12	0.00300062	-1.73	0.01608554
ASGR1	-1.40	0.02155015	-2.46	5.92E-07
NOS1	-1.66	0.01280625	-2.20	0.0006692
TTN	-2.10	1.56E-06	-1.76	0.00210705
CADM2	-2.13	0.00877324	-1.75	0.01439883
SRGAP1	-2.23	0.00264214	-1.65	0.01915912
FXYD1	-1.82	0.005202	-2.07	0.00106277
BRD4	-2.34	$1.43 \mathrm{E}-06$	-1.56	0.00030433
MSLN	-2.45	$4.91 \mathrm{E}-08$	-1.45	0.00055431
GADD45GIP1	-2.25	$1.43 \mathrm{E}-06$	-1.66	$2.85 \mathrm{E}-05$
ITFG2	-2.49	3.32E-06	-1.43	0.03877799
PLCXD2	-1.94	$2.33 \mathrm{E}-05$	-2.00	1.21E-06
AP5Z1	-2.22	8.90E-06	-1.74	0.00011721
ZNF236	-2.32	$1.80 \mathrm{E}-05$	-1.65	0.00120922
BAZ2A	-2.26	$2.50 \mathrm{E}-06$	-1.72	7.07E-05
RRAD	-1.93	0.00019356	-2.06	8.02E-05
AEBP1	-1.94	0.01004379	-2.06	0.00378874
HES2	-1.69	0.0015946	-2.31	5.72E-07
AC008716.1	-2.46	0.00215497	-1.56	0.03171685
FTH1P15	-1.91	0.00035416	-2.11	0.00010429
EEF1D	-2.24	1.43E-06	-1.82	3.81E-06
POLRMT	-2.31	1.11E-06	-1.76	5.19E-06
RPSAP53	-2.24	0.00370723	-1.83	0.01199042
ANGPTL4	-1.52	$6.41 \mathrm{E}-05$	-2.56	$6.36 \mathrm{E}-20$
PI3	-2.22	8.19E-05	-1.89	0.00029929
TMEM238	-2.19	1.63E-06	-1.92	4.78E-08
PTPRN	-2.08	0.0097944	-2.06	0.00437675
LAMB2	-2.18	$1.94 \mathrm{E}-06$	-1.97	4.96E-07
APOA1	-2.19	0.00030569	-1.95	0.00106969
HS3ST6	-1.76	4.27E-05	-2.40	$3.58 \mathrm{E}-11$
ODF3B	-1.53	0.00142567	-2.64	$1.33 \mathrm{E}-13$

CRIP1	-2.19	$1.56 \mathrm{E}-06$	-1.99	$1.14 \mathrm{E}-07$
TNNI3	-2.06	$1.93 \mathrm{E}-06$	-2.14	$3.89 \mathrm{E}-09$
AC011479.1	-2.85	$6.09 \mathrm{E}-07$	-1.35	0.03299447
CD248	-2.53	0.00153504	-1.67	0.02134742
SOX11	-2.41	0.00064138	-1.82	0.01011535
NACA4P	-2.26	0.0015946	-1.98	0.00491245
LIMS2	-2.46	$1.34 \mathrm{E}-08$	-1.79	$2.31 \mathrm{E}-05$
CYP2C8	-2.39	0.00233094	-1.86	0.01077761
AC010422.3	-2.37	0.00139167	-1.91	0.00630115
ANGPTL2	-2.61	0.00099253	-1.68	0.02061561
MICU3	-2.62	$5.82 \mathrm{E}-06$	-1.67	0.00496582
KLRD1	-2.38	$3.91 \mathrm{E}-07$	-2.05	0.0008019
SDK2	-2.23	$4.75 \mathrm{E}-07$	-1.95	0.00048401
ACAP1	-2.70	0.00058729	-2.12	$1.37 \mathrm{E}-07$
CDH11	-2.23	0.00472865	-1.66	0.02281378
ATP6V0D2	-1.92	0.01943894	-2.14	0.00313245
GPAT2	-2.57	0.00061214	-2.45	0.00056083
AMZ1	-1.95	0.01774849	-1.80	0.01400799
AP3D1	-1.77	0.00094789	-2.43	$3.81 \mathrm{E}-06$
SGCA	-2.58	0.00097943	-2.62	$4.10 \mathrm{E}-10$
AL357055.1	-1.86	0.00916776	-1.83	0.01225616
MYO7B	-2.45	0.00241206	-2.56	$1.74 \mathrm{E}-05$
EIF4A1P6	-2.92	$2.11 \mathrm{E}-05$	-1.98	0.00600236
HSPA5P1	-2.74	0.00044107	-1.52	0.04199296
EEF1A1P7	-2.58	$1.63 \mathrm{E}-06$	-1.69	0.02064007
TFPT	-2.46	0.0021798	-1.85	0.00015952
IFITM3P9	-2.01	0.00126773	-1.99	0.00601801
IL34	-1.17	0.02740475	-2.46	$2.88 \mathrm{E}-05$
CA8	-2.80	0.00032104	-3.33	$8.91 \mathrm{E}-20$
AC079414.2	-2.76	$4.59 \mathrm{E}-05$	-1.71	0.02039993
RPSAP23	-1.75	$1.43 \mathrm{E}-06$	-1.75	0.01722299
SNCG	-2.72	0.000046365	-2.77	$1.45 \mathrm{E}-21$
PABPC3	-1.75	0.0049814	-1.81	0.01299636
CST2	-2.30	0.00106528	-2.82	$8.83 \mathrm{E}-08$
SERPINC1	0.00090206	-2.30	0.00051946	
AL158071.1	-2.02	0.00552301		
PAH	-1.87	0.00692161		
STMN2	-1.41	0.0455291		
ACTN2	-1.86	0.01016578		
	-0565			

CD37	-2.65	4.15E-06	-2.01	3.94E-05
AC022018.1	-2.90	0.00013482	-1.79	0.01426688
TRPS1	-2.51	1.95E-06	-2.18	0.00098898
PHF1	-2.61	$2.96 \mathrm{E}-05$	-2.08	0.0008854
DPPA4	-2.34	0.00387372	-2.37	0.00051018
KCNJ3	-2.77	3.73E-06	-1.94	0.00261235
ACTG1P21	-2.68	0.00072794	-2.03	0.00501433
ASS1P6	-2.80	0.0002656	-1.94	0.00771565
NECTIN4	-1.88	0.00877324	-2.88	$6.51 \mathrm{E}-07$
RPSAP31	-2.94	$1.58 \mathrm{E}-05$	-1.87	0.01027377
TYMP	-1.66	0.00032139	-3.15	$6.33 \mathrm{E}-21$
HBB	-2.53	0.00014782	-2.28	0.0004401
RASL10B	-2.49	0.00150908	-2.35	0.00091593
ZFP91-CNTF	-3.16	$7.30 \mathrm{E}-05$	-1.68	0.01981231
DCN	-2.80	0.00010263	-2.06	0.00454544
KLF15	-3.62	$2.17 \mathrm{E}-21$	-1.26	0.00031175
PRRG3	-2.67	$3.91 \mathrm{E}-07$	-2.23	$2.93 \mathrm{E}-05$
PPIAP8	-2.82	0.00035416	-2.09	0.00392055
RPS4XP21	-3.20	$3.77 \mathrm{E}-05$	-1.72	0.01775731
RGN	-3.14	5.43E-05	-1.79	0.01396396
KPNA5	-3.05	$5.40 \mathrm{E}-07$	-1.89	0.00101703
HLA-V	-2.76	$5.91 \mathrm{E}-06$	-2.20	0.00027974
EEF1A1P17	-3.03	$2.08 \mathrm{E}-05$	-1.93	0.00802309
HBQ1	-2.84	$1.83 \mathrm{E}-10$	-2.15	1.92E-08
SCN9A	-2.27	$6.33 \mathrm{E}-05$	-2.74	2.86E-08
A2MP1	-2.88	$4.39 \mathrm{E}-05$	-2.13	0.00226271
KLHL41	-3.07	$6.05 \mathrm{E}-05$	-2.00	0.00577121
ALB	-2.61	0.0003522	-2.50	0.00027974
GSTM5	-2.53	0.00012036	-2.59	$4.25 \mathrm{E}-05$
NCAM1	-3.07	$1.98 \mathrm{E}-06$	-2.10	0.00321372
FGF23	-3.22	$2.83 \mathrm{E}-10$	-1.96	0.00518667
EVA1B	-2.20	5.70E-09	-3.02	1.06E-24
CDA	-1.44	8.59E-06	-3.83	1.16E-48
ZNF347	-2.36	$1.78 \mathrm{E}-05$	-2.93	5.43E-08
LBHD2	-1.65	0.04159628	-3.64	$3.41 \mathrm{E}-08$
RPSAP48	-2.90	0.00010929	-2.39	0.00067044
RSPO3	-1.78	7.26E-05	-3.52	6.00E-23
TUBB8	-3.03	0.00010008	-2.27	0.00163674
FTH1P16	-2.88	$7.26 \mathrm{E}-07$	-2.47	8.87E-05

BHLHE41	-3.08	$8.91 \mathrm{E}-06$	-2.35	0.00089335
GAPDHP44	-3.24	$5.29 \mathrm{E}-07$	-2.19	0.00169839
INHBA	-3.19	$1.48 \mathrm{E}-05$	-2.25	0.00167834
NCLP2	-3.38	$1.12 \mathrm{E}-05$	-2.06	0.00446719
AP003467.2	-3.27	$2.20 \mathrm{E}-05$	-2.19	0.00245785
CTSK	-3.70	$1.29 \mathrm{E}-29$	-1.76	0.01693203
DLC1	-1.82	0.02427011	-3.66	$3.94 \mathrm{E}-10$
LY6D	-2.01	0.00243432	-3.48	$2.65 \mathrm{E}-12$
C5orf63	-3.11	$3.55 \mathrm{E}-11$	-2.44	$2.32 \mathrm{E}-09$
CST1	-2.42	$4.00 \mathrm{E}-11$	-3.22	$2.74 \mathrm{E}-23$
AC097658.1	-2.12	$5.40 \mathrm{E}-07$	-2.54	0.00016406
FAM83A	-3.22	$1.37 \mathrm{E}-06$	-3.21	$4.34 \mathrm{E}-15$
PTX3	-2.82	0.00036142	-2.47	0.00038952
ZNF90	-3.27	$6.16 \mathrm{E}-08$	-2.93	$1.46 \mathrm{E}-05$
LDLRAD2	-2.62	$2.83 \mathrm{E}-08$	-2.56	$1.33 \mathrm{E}-07$
SNORC	-2.63	$8.15 \mathrm{E}-08$	-3.21	$1.03 \mathrm{E}-19$
CPS1	-2.95	$4.40 \mathrm{E}-05$	-3.33	$7.99 \mathrm{E}-32$
PDGFRB	-3.31	$1.73 \mathrm{E}-05$	-3.01	$3.81 \mathrm{E}-06$
GUCY2D	-3.93	$4.59 \mathrm{E}-14$	-2.88	$3.48 \mathrm{E}-05$
AL049629.2	-4.84	$2.69 \mathrm{E}-30$	-2.47	0.00037737
KLK10	-2.00	0.00066035	-1.57	0.01064864
HTRA3	-2.21	$5.45 \mathrm{E}-09$	-4.46	$1.82 \mathrm{E}-32$
A1BG	-3.60	$2.09 \mathrm{E}-07$	-4.31	$1.80 \mathrm{E}-44$
IGF1	-3.28	$5.44 \mathrm{E}-17$	-2.96	$8.76 \mathrm{E}-06$
SPARC	-1.32	0.02578796	-3.35	$8.29 \mathrm{E}-16$
HHIPL2	-3.14	$7.62 \mathrm{E}-07$	-5.41	$3.34 \mathrm{E}-54$
PKNOX2	-3.95	$2.23 \mathrm{E}-09$	-3.67	$3.01 \mathrm{E}-12$
GPM6A	-3.96	$1.06 \mathrm{E}-12$	-2.90	$1.38 \mathrm{E}-05$
CSAG1	-3.85	$6.07 \mathrm{E}-13$	-3.05	$2.04 \mathrm{E}-07$
COL3A1	-4.39	$1.50 \mathrm{E}-09$	-3.42	$6.87 \mathrm{E}-11$
RPL10L	-4.20	$3.46 \mathrm{E}-09$	-2.97	$2.31 \mathrm{E}-05$
COX5BP1	-5.19	$5.43 \mathrm{E}-20$	-3.17	$3.34 \mathrm{E}-06$
DNAAF1	-6.99	$2.69 \mathrm{E}-30$	-4.23	$1.11 \mathrm{E}-15$
GP1BB			-6.41	$4.36 \mathrm{E}-34$
	-10			

Table S4 Protein abundance upon DUS2 Knockout

Postlude

While the above chapters provide both a tool (Chapter 1) to study the location and function of D in RNA, and reveal (Chapter 2) a mechanism by which DUS2 contributes to NSCLC disease severity, they raise many additional questions, including:

1. What are the functional consequences of mRNA and snoRNA modification by DUS?
2. Why is tRNA CysGCA specifically sensitive to DUS2 levels?

Below, I will discuss some of the data relevant to these questions and suggest future experiments to begin to answer them:

What are the functional consequences of mRNA and snoRNA modification by

DUS?

D-seq in yeast revealed hundreds of novel D sites in yeast mRNA and snoRNAs. Several of the novel mRNA and snoRNA D sites are in conserved RNA structures. This structural conservation, combined with the known role that D plays in stabilizing to the correct folding of the tRNA D-loop, suggests that D might play a role in the folding of functional RNA structures.

To investigate the functions D might have in RNA folding, I collaborated with a graduate student in Karla Neugeubauer's group, Leonard Schärfen. First, to directly test the impact of D on RNA folding, we generated a library of mutagenized MS2 RNA hairpins. As MS2 hairpin RNA is known to fold into a stable, well behaved structure (Helgstrand et al., 2002), we generated MS2 variants with only a single U or D in each hairpin, and tested the impact of D at each position in the structure using high-throughput chemical
probing with DMS. Consistent with previous reports (Dyubankova et al., 2015) that D can alter the folding of small RNA structures, we observed changes in the folding of some of our MS2 variants in the presence of D.

To determine if D impacts RNA folding in vivo, and to dissect the specific impacts of D on RNA structure from possible indirect effects downstream of DUS knockout (KO) in cells, Leonard Schärfen and I performed transcriptome wide DMS-MaPseq on in vitro re-folded RNA from wild type and DUS KO yeast strains. Our in vitro DMS-MaPseq data revealed hundreds of regions of RNA with differential DMS reactivity between wild type and DUS KO. Many of the differentially DMS reactive sites are adjacent to Ds in H/ACA box snoRNAs, indicating that D may play a role in snoRNA structure and function. To test if D impacts H/ACA box snoRNA function, I performed quantitative pseudouridine profiling using eRBS-MaP (Khoddami et al., 2019, Christian Fagre, unpublished method) on ribosomal RNA from wild type and DUS KO yeast. I am currently waiting for sequencing results from this experiment.

Beyond the snoRNA Ds, Leonard and I also detect differentially DMS reactive sites in multiple mRNAs. Several of the mRNAs with differentially reactive regions encode for aminoacyl tRNA synthetases (aaRS). In yeast, several aaRS mRNAs are known to contain folded RNA domains that are structurally similar to tRNAs (Levi and Arava, 2019). These structures are known be bound by aaRS proteins and are thought to play a role in aaRS autoregulation. It is tempting to speculate that the tRNA-like domains in these aaRS mRNAs are DUS substrates and exhibit differential DMS reactivity because they lack D in the DUS KO. In the future, determining if these mRNAs contain D (I lack coverage to inspect them in the D-seq dataset), and if D-deficient strains have defects
in autoregulation of the aaRS, could illuminate a function for mRNA D in gene regulation.

Why is CysGCA specifically sensitive to DUS2 levels?

A major question remaining from the DUS2 NSCLC experiments is why tRNA cysGCA is specifically sensitive to DUS2 expression. The selective reduction in tRNA cysGCA levels in the DUS2 knockout could arise either from a tRNA synthesis defect (e.g. a failure to process and produce mature tRNA cysGCA) or alternatively, instability and decay of the mature tRNA cysGCA.

Loss of several different tRNA body modifications in yeast is known to trigger rapid tRNA decay (RTD) of only a specific subset of tRNAs (Alexandrov et al., 2006; Tasak and Phizicky, 2022; Zoysa and Phizicky, 2020). Though I do not detect evidence for accumulation of tRNA cysGCA precursors in the DUS2 KO cells, this does not conclusively rule out a defect in tRNA synthesis and processing. Several experiments could help here. First, perturbing the human orthologs of the RTD machinery (primarily the 5'-3' exonucleases Rat1 and Xrn1 (Chernyakov et al., 2008)) and testing to see if that rescued the defect in tRNA cysGCA levels in the DUS2 KO cells would demonstrate that mature tRNA cysGCA is an RTD substrate and provide evidence for the mature tRNA decay model. Alternatively, a metabolic labeling TimeLase-seq (Schofield et al., 2018) style experiment on tRNAs from DUS2 WT and KO would measure tRNA half-lives and rule in or out the mature tRNA decay model.

Concluding Remarks

In addition to the work I present in Chapter 2, several recent studies have investigated the links between specific tRNA-modifying enzymes and certain cancers (Goodarzi et al., 2016; Orellana et al., 2021; Passarelli et al., 2022). While each of these studies focused a link from a specific tRNA modifying enzyme to a specific cancer, my reanalysis of a large tumor sequencing data set from the Cancer Genome Atlas (TCGA) suggests these are only the tip of the iceberg. My reanalysis of TCGA data connects high expression of dozens of tRNA-modifying enzymes to worse patient outcomes in more than 15 cancer types.

Figure 1: Specific tRNA modifying enzymes are overexpressed in certain cancers

For the majority of these disease-associated tRNA-modifying enzymes, we lack a mechanistic explanation for how their dysregulation drives disease progression and pathology. I believe this is fertile ground for future investigation, and I eagerly await future work to untangle these links.

References

Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. 2006. Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Molecular Cell 21:87-96. doi:10.1016/j.molcel.2005.10.036

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. 2017. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639-643. doi:10.1038/nature24637

Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee H-J, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, Decker AR, Sastra SA, Palermo CF, Andrade LR, Sajjakulnukit P, Zhang L, Tolstyka ZP, Hirschhorn T, Lamb C, Liu T, Gu W, Seeley ES, Stone E, Georgiou G, Manor U, luga A, Wahl GM, Stockwell BR, Lyssiotis CA, Olive KP. 2020. "Cysteine depletion induces pancreatic tumor ferroptosis in mice." Science 368:85-89. doi:10.1126/science.aaw9872

Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, Hon CS-Y, Munoz B, Bittker JA, Stockwell BR, Khabele D, Stern AM, Clemons PA, Shamji AF, Schreiber SL. 2013. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154:1151-1161. doi:10.1016/j.cell.2013.08.003

Batt RD, Martin JK, Ploeser JMcT, Murray J. 1954. Chemistry of the Dihydropyrimidines. Ultraviolet Spectra and Alkaline Decomposition1a. J Am Chem Soc 76:3663-3665. doi:10.1021/ja01643a018

Bebber CM, Thomas ES, Stroh J, Chen Z, Androulidaki A, Schmitt A, Höhne MN, Stüker L, de Pádua Alves C, Khonsari A, Dammert MA, Parmaksiz F, Tumbrink HL, Beleggia F, Sos ML, Riemer J, George J, Brodesser S, Thomas RK, Reinhardt HC, von Karstedt S. 2021. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat Commun 12:2048. doi:10.1038/s41467-021-22336-4

Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume A-M, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW. 2015. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications 6:10127. doi:10.1038/ncomms10127

Behm-Ansmant I, Helm M, Motorin Y. 2011. Use of Specific Chemical Reagents for Detection of Modified Nucleotides in RNA. Journal of Nucleic Acids 2011. doi:10.4061/2011/408053

Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho Y-J, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao M-S, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M,

Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463:899-905. doi:10.1038/nature08822

Bushnell B. n.d. BBMap. SourceForge. https://sourceforge.net/projects/bbmap/
Bushnell B, Rood J, Singer E. 2017. BBMerge - Accurate paired shotgun read merging via overlap. PLOS ONE 12:e0185056. doi:10.1371/journal.pone. 0185056

Carlile TM, Rojas-Duran MF, Gilbert WV. 2015. Pseudo-Seq: Genome-Wide Detection of Pseudouridine Modifications in RNA. Meth Enzymol 560:219-245. doi:10.1016/bs.mie.2015.03.011

Cerutti P, Kondo Y, Landis WR, Witkop B. 1968. Photoreduction of uridine and reduction of dihydrouridine with sodium borohydride. J Am Chem Soc 90:771775. doi:10.1021/ja01005a039

Cerutti P, Miller N. 1967. Selective reduction of yeast transfer ribonucleic acid with sodium borohydride. Journal of Molecular Biology 26:55-66. doi:10.1016/0022-2836(67)90260-4

Chen P-H, Wu J, Xu Y, Ding C-KC, Mestre AA, Lin C-C, Yang W-H, Chi J-T. 2021. Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis 12:198. doi:10.1038/s41419-021-03482-5

Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. 2008.
Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the $5^{\prime}-3^{\prime}$ exonucleases Rat1 and Xrn1. Genes Dev 22:1369-1380. doi:10.1101/gad. 1654308

Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. 2015. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nature Methods 12:879-884.
doi:10.1038/nmeth. 3508
Creighton CJ, Christopher J. Ricketts, Ramaprasad Srinivasan, Spellman PT, Linehan WM. 2016. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine 374:135-145.
doi:10.1056/NEJMoa1505917
Creighton CJ, Morgan M, Gunaratne PH, Wheeler DA, Gibbs RA, Gordon Robertson A, Chu A, Beroukhim R, Cibulskis K, Signoretti S, Vandin Hsin-Ta Wu F, Raphael BJ, Verhaak RGW, Tamboli P, Torres-Garcia W, Akbani R, Weinstein JN, Reuter V, Hsieh JJ, Rose Brannon A, Ari Hakimi A, Jacobsen A, Ciriello G, Reva B, Ricketts CJ, Marston Linehan W, Stuart JM, Kimryn Rathmell W, Shen H, Laird PW, Muzny D, Davis C, Morgan M, Xi L, Chang K, Kakkar N, Treviño LR, Benton S, Reid JG, Morton D, Doddapaneni H, Han Y, Lewis L, Dinh H, Kovar C, Zhu Y, Santibanez J, Wang M, Hale W, Kalra D, Creighton CJ, Wheeler DA, Gibbs RA, Getz G, Cibulskis K, Lawrence MS, Sougnez C, Carter SL, Sivachenko A, Lichtenstein L, Stewart C, Voet D, Fisher S, Gabriel SB, Lander E, Beroukhim R, Schumacher SE, Tabak B, Saksena G, Onofrio RC, Carter SL, Cherniack AD, Gentry J, Ardlie K, Sougnez C, Getz G, Gabriel SB, Meyerson M, Gordon Robertson A, Chu A, Chun H-JE, Mungall AJ, Sipahimalani P, Stoll D, Ally A, Balasundaram M, Butterfield YSN, Carlsen R, Carter C, Chuah E, Coope RJN, Dhalla N, Gorski S, Guin R, Hirst C, Hirst M, Holt RA, Lebovitz C, Lee D, Li HI,

Mayo M, Moore RA, Pleasance E, Plettner P, Schein JE, Shafiei A, Slobodan JR, Tam A, Thiessen N, Varhol RJ, Wye N, Zhao Y, Birol I, Jones SJM, Marra MA, Auman JT, Tan D, Jones CD, Hoadley KA, Mieczkowski PA, Mose LE, Jefferys SR, Topal MD, Liquori C, Turman YJ, Shi Y, Waring S, Buda E, Walsh J, Wu J, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Balu S, Parker JS, Neil Hayes D, Perou CM, Kucherlapati R, Park P, Shen H, Triche Jr T, Weisenberger DJ, Lai PH, Bootwalla MS, Maglinte DT, Mahurkar S, Berman BP, Van Den Berg DJ, Cope L, Baylin SB, Laird PW, Creighton CJ, Wheeler DA, Getz G, Noble MS, DiCara D, Zhang H, Cho J, Heiman DI, Gehlenborg N, Voet D, Mallard W, Lin P, Frazer S, Stojanov P, Liu Y, Zhou L, Kim J, Lawrence MS, Chin L, Vandin F, Wu H-T, Raphael BJ, Benz C, Yau C, Reynolds SM, Shmulevich I, Verhaak RGW, Torres-Garcia W, Vegesna R, Kim H, Zhang W, Cogdell D, Jonasch E, Ding Z, Lu Y, Akbani R, Zhang N, Unruh AK, Casasent TD, Wakefield C, Tsavachidou D, Chin L, Mills GB, Weinstein JN, Jacobsen A, Rose Brannon A, Ciriello G, Schultz N, Ari Hakimi A, Reva B, Antipin Y, Gao J, Cerami E, Gross B, Arman Aksoy B, Sinha R, Weinhold N, Onur Sumer S, Taylor BS, Shen R, Ostrovnaya I, Hsieh JJ, Berger MF, Ladanyi M, Sander C, Fei SS, Stout A, Spellman PT, Rubin DL, Liu TT, Stuart JM, Ng S, Paull EO, Carlin D, Goldstein T, Waltman P, Ellrott K, Zhu J, Haussler D, Gunaratne PH, Xiao W, Shelton C, Gardner J, Penny R, Sherman M, Mallery D, Morris S, Paulauskis J, Burnett K, Shelton T, Signoretti S, Kaelin WG, Choueiri T, Atkins MB, Penny R, Burnett K, Mallery D, Curley E, Tickoo S, Reuter V, Kimryn Rathmell W, Thorne L, Boice L, Huang M, Fisher JC, Marston Linehan W, Vocke CD, Peterson J, Worrell R, Merino MJ, The Cancer Genome

Atlas Research Network, Analysis working group: Baylor College of Medicine, BC Cancer Agency, Broad Institute, Brigham \& Women’s Hospital, Brown University, The University of Texas MD Anderson Cancer Center, Memorial Sloan-Kettering Cancer Center, National Cancer Institute, University of California Santa Cruz, University of North Carolina CH, University of Southern California, Genome sequencing centres: Baylor College of Medicine, Genome characterization centres: Broad Institute, Harvard Medical School, University of Southern California \& Johns Hopkins University, Genome data analysis: Baylor College of Medicine, Buck Institute for Research on Aging, Institute for Systems Biology, Oregon Health \& Science University, Stanford University, University of Houston, Biospecimen core resource: International Genomics Consortium, Tissue source sites: Brigham \& Women's Hospital, Dana-Farber Cancer Institute, Georgetown University, International Genomics Consortium, University of North Carolina at Chapel Hill. 2013. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43-49. doi:10.1038/nature12222

Daher B, Parks SK, Durivault J, Cormerais Y, Baidarjad H, Tambutte E, Pouysségur J, Vučetić M. 2019. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer research 79:3877-3890.

Dai Q, Zheng G, Schwartz MH, Clark WC, Pan T. 2017. Selective Enzymatic Demethylation of N2 ,N2 -Dimethylguanosine in RNA and Its Application in HighThroughput tRNA Sequencing. Angew Chem Int Ed Engl 56:5017-5020.
doi:10.1002/anie. 201700537

Dalluge JJ, Hashizume T, Sopchik AE, McCloskey JA, Davis DR. 1996. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res 24:1073-1079.

Delaunay S, Pascual G, Feng B, Klann K, Behm M, Hotz-Wagenblatt A, Richter K, Zaoui K, Herpel E, Münch C, Dietmann S, Hess J, Benitah SA, Frye M. 2022. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 1-11. doi:10.1038/s41586-022-04898-5

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR. 2012. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 149:1060-1072. doi:10.1016/j.cell.2012.03.042

Dixon SJ, Stockwell BR. 2019. The Hallmarks of Ferroptosis. Annu Rev Cancer Biol 3:35-54. doi:10.1146/annurev-cancerbio-030518-055844

Drummen GPC, van Liebergen LCM, Op den Kamp JAF, Post JA. 2002. C11BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine 33:473-490. doi:10.1016/S0891-5849(02)00848-1

Dyubankova N, Sochacka E, Kraszewska K, Nawrot B, Herdewijn P, Lescrinier E. 2015. Contribution of dihydrouridine in folding of the D-arm in tRNA. Org Biomol Chem 13:4960-4966. doi:10.1039/c5ob00164a

Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, Kramm A, Chen S, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B, Neuhaus R, Eheim AL, Viswanathan VS, Schreiber SL. 2020. Selective covalent targeting of GPX4 using
masked nitrile-oxide electrophiles. Nat Chem Biol 16:497-506.
doi:10.1038/s41589-020-0501-5
Eaton JK, Ruberto RA, Kramm A, Viswanathan VS, Schreiber SL. 2019. Diacylfuroxans Are Masked Nitrile Oxides That Inhibit GPX4 Covalently. J Am Chem Soc 141:20407-20415. doi:10.1021/jacs.9b10769

Ellis SR, Morales MJ, Li JM, Hopper AK, Martin NC. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J Biol Chem 261:9703-9709.

Emerson J, Sundaralingam M. 1980. Structure of the potassium salt of the modified nucleotide dihydrouridine 3'-monophosphate hemihydrate: correlation between the base pucker and sugar pucker and models for metal interactions with ribonucleic acid loops. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 36:537-543. doi:10.1107/S0567740880003780

Eyler DE, Franco MK, Batool Z, Wu MZ, Dubuke ML, Dobosz-Bartoszek M, Jones JD, Polikanov YS, Roy B, Koutmou KS. 2019. Pseudouridinylation of mRNA coding sequences alters translation. PNAS 116:23068-23074. doi:10.1073/pnas. 1821754116

Finet O, Yague-Sanz C, Krüger LK, Tran P, Migeot V, Louski M, Nevers A, Rougemaille M, Sun J, Ernst FGM, Wacheul L, Wery M, Morillon A, Dedon P, Lafontaine DLJ, Hermand D. 2021. Transcription-wide mapping of dihydrouridine reveals that
mRNA dihydrouridylation is required for meiotic chromosome segregation.
Molecular Cell. doi:10.1016/j.molcel.2021.11.003
Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. 2016. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell 165:1416-1427. doi:10.1016/j.cell.2016.05.046

Hadian K, Stockwell BR. 2021. A roadmap to creating ferroptosis-based medicines. Nat Chem Biol 17:1113-1116. doi:10.1038/s41589-021-00853-z

Hanahan D, Weinberg RA. 2000. The Hallmarks of Cancer. Cell 100:57-70. doi:10.1016/S0092-8674(00)81683-9

Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR. 2016. Loss of cysteinyltRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270-278. doi:10.1038/cdd. 2015.93

Helgstrand C, Grahn E, Moss T, Stonehouse NJ, Tars K, Stockley PG, Liljas L. 2002. Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins. Nucleic Acids Res 30:26782685.

Hickey KL, Dickson K, Cogan JZ, Replogle JM, Schoof M, D’Orazio KN, Sinha NK, Hussmann JA, Jost M, Frost A, Green R, Weissman JS, Kostova KK. 2020. GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control. Molecular Cell 79:950-962.e6. doi:10.1016/j.molcel.2020.07.007

Homann OR, Johnson AD. 2010. MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8:49. doi:10.1186/1741-7007-8-49

Hurnanen D, Chan HM, Kubow S. 1997. The Protective Effect of Metallothionein Against Lipid Peroxidation Caused by Retinoic Acid in Human Breast Cancer Cells 283:9.

Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R. 2020. METTL6 is a tRNA m3C methyltransferase that regulates pluripotency and tumor cell growth. Science Advances 6:eaaz4551. doi:10.1126/sciadv.aaz4551

Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. 2018. ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Molecular Cell 72:469-481.e7. doi:10.1016/j.molcel.2018.08.037

Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y. 2005. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res 65:5638-5646. doi:10.1158/0008-5472.CAN-05-0600

Kaur J, Raj M, Cooperman BS. 2011. Fluorescent labeling of tRNA dihydrouridine residues: Mechanism and distribution. RNA 17:1393-1400. doi:10.1261/rna. 2670811

Khanna M, Wu H, Johansson C, Caizergues-Ferrer M, Feigon J. 2006. Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. RNA 12:40-52. doi:10.1261/rna. 2221606

Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. 2019. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A 116:6784-6789. doi:10.1073/pnas. 1817334116

Kligun E, Mandel-Gutfreund Y. 2015. The role of RNA conformation in RNA-protein recognition. RNA Biology 12:720-727. doi:10.1080/15476286.2015.1040977

Kowalak JA, Bruenger E, McCloskey JA. 1995. Posttranscriptional Modification of the Central Loop of Domain V in Escherichia coli 23 S Ribosomal RNA (*). Journal of Biological Chemistry 270:17758-17764. doi:10.1074/jbc.270.30.17758

Krężel A, Maret W. 2017. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Int J Mol Sci 18:1237. doi:10.3390/ijms18061237

Kuchino Y, Borek E. 1978. Tumour-specific phenylalanine tRNA contains two supernumerary methylated bases. Nature 271:126-129. doi:10.1038/271126a0

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364-1368. doi:10.1126/science. 1089427

Kwok CK, Tang Y, Assmann SM, Bevilacqua PC. 2015. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40:221-232. doi:10.1016/j.tibs.2015.02.005

Levi O, Arava Y. 2019. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol 17:e3000274. doi:10.1371/journal.pbio. 3000274

Leys C, Ley C, Klein O, Bernard P, Licata L. 2013. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology 49:764-766. doi:10.1016/j.jesp.2013.03.013

Lu Z, Chang HY. 2016. Decoding the RNA structurome. Current Opinion in Structural Biology, Folding and binding • Nucleic acids-protein complexes 36:142-148. doi:10.1016/j.sbi.2016.01.007

Magrath DI, Shaw DC. 1967. The occurrence and source of β-alanine in alkaline hydrolysates of sRNA: A sensitive method for the detection and assay of 5,6dihydrouracil residues in RNA. Biochemical and Biophysical Research Communications 26:32-37. doi:10.1016/0006-291X(67)90248-3

McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. 2018. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Research 46:5776-5791. doi:10.1093/nar/gky029

Mitchell SF, Jain S, She M, Parker R. 2013. Global analysis of yeast mRNPs. Nat Struct Mol Biol 20:127-133. doi:10.1038/nsmb. 2468

Miura T, Muraoka S, Ogiso T. 1997. Antioxidant activity of metallothionein compared with reduced glutathione. Life Sciences 60:301-309. doi:10.1016/S0024-3205(97)00156-2

Nesvizhskii AI, Keller A, Kolker E, Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646-4658. doi:10.1021/ac0341261

Network TCGAR, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics. doi:10.1038/ng. 2764

Ng KP, Hillmer AM, Chuah CTH, Juan WC, Ko TK, Teo ASM, Ariyaratne PN, Takahashi N, Sawada K, Fei Y, Soh S, Lee WH, Huang JWJ, Allen JC, Woo XY, Nagarajan N, Kumar V, Thalamuthu A, Poh WT, Ang AL, Mya HT, How GF, Yang LY, Koh LP, Chowbay B, Chang C-T, Nadarajan VS, Chng WJ, Than H, Lim LC, Goh YT, Zhang S, Poh D, Tan P, Seet J-E, Ang M-K, Chau N-M, Ng Q-S, Tan DSW, Soda M, Isobe K, Nöthen MM, Wong TY, Shahab A, Ruan X, Cacheux-Rataboul V, Sung W-K, Tan EH, Yatabe Y, Mano H, Soo RA, Chin TM, Lim W-T, Ruan Y, Ong ST. 2012. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 18:521-528. doi:10.1038/nm. 2713

Orct T, Lazarus M, Ljubojević M, Sekovanić A, Sabolić I, Blanuša M. 2015.
Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium. Biometals 28:701-712. doi:10.1007/s10534-015-9859-3

Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA, Gu M, Ali R, Gutierrez A, Mikutis S, Bernardes GJL, Fischer ES, Bradley A, Vassiliou GS, Slack FJ, Tzelepis K, Gregory RI. 2021.

METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Molecular Cell 81:3323-3338.e14.
doi:10.1016/j.molcel.2021.06.031
Pan D, Qin H, Cooperman BS. 2009. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. RNA 15:346-354.
doi:10.1261/rna. 1257509
Passarelli MC, Pinzaru AM, Asgharian H, Liberti MV, Heissel S, Molina H, Goodarzi H, Tavazoie SF. 2022. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol 24:307-315. doi:10.1038/s41556-022-00856-5

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Res 29:e45.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841-842. doi:10.1093/bioinformatics/btq033

Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CS-Y, Munoz B, Liefeld T, Dančík V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL. 2016. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 12:109-116. doi:10.1038/nchembio. 1986

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43:e47. doi:10.1093/nar/gkv007

Roundtree IA, Evans ME, Pan T, He C. 2017. Dynamic RNA modifications in gene expression regulation. Cell 169:1187-1200. doi:10.1016/j.cell.2017.05.045

Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701-705. doi:10.1038/nature12894

Ryu H-H, Jung S, Jung T-Y, Moon K-S, Kim I-Y, Jeong Y-I, Jin S-G, Pei J, Wen M, Jang $\mathrm{W}-\mathrm{Y} .2012$. Role of metallothionein 1E in the migration and invasion of human glioma cell lines. International Journal of Oncology 41:1305-1313. doi:10.3892/ijo.2012.1570

Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD. 2018. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat Methods 15:221-225. doi:10.1038/nmeth. 4582

Schwarz MA, Lazo JS, Yalowich JC, Reynolds I, Kagan VE, Tyurin V, Kim YM, Watkins SC, Pitt BR. 1994. Cytoplasmic metallothionein overexpression protects NIH 3T3 cells from tert-butyl hydroperoxide toxicity. Journal of Biological Chemistry 269:15238-15243. doi:10.1016/S0021-9258(17)36597-3

Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CS-Y, Munoz B, Liefeld T, Dančík V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. 2015. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 5:1210-1223. doi:10.1158/2159-8290.CD-15-0235

Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, Nawrot B. 2007. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13:1301-1316. doi:10.1261/rna. 538907

Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM. 2015. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis. Nat Protoc 10:16431669. doi:10.1038/nprot. 2015.103

Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D. 2016. Metallothionein-1G Facilitates Sorafenib Resistance through Inhibition of Ferroptosis. Hepatology 64:488-500. doi:10.1002/hep. 28574

Sutherland DEK, Willans MJ, Stillman MJ. 2012. Single domain metallothioneins: supermetalation of human MT 1a. J Am Chem Soc 134:3290-3299. doi:10.1021/ja211767m

Tasak M, Phizicky EM. 2022. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLOS Genetics 18:e1010215. doi:10.1371/journal.pgen. 1010215

Thornalley PJ, Vašák M. 1985. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 827:36-44. doi:10.1016/0167-4838(85)90098-6

Vallee BL. 1995. The function of metallothionein. Neurochemistry International 27:2333. doi:10.1016/0197-0186(94)00165-Q

Watkins NJ, Dickmanns A, Lührmann R. 2002. Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5 K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 22:8342-8352. doi:10.1128/mcb.22.23.8342-8352.2002

Westhof E, Dumas P, Moras D. 1988. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta crystallographica Section A, Foundations of crystallography 44 (Pt 2):112-23.

White SA, Hoeger M, Schweppe JJ, Shillingford A, Shipilov V, Zarutskie J. 2004. Internal loop mutations in the ribosomal protein L30 binding site of the yeast L30 RNA transcript. RNA 10:369-377. doi:10.1261/rna. 2159504

Wiernicki B, Dubois H, Tyurina YY, Hassannia B, Bayir H, Kagan VE, Vandenabeele P, Wullaert A, Vanden Berghe T. 2020. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis 11:1-11. doi:10.1038/s41419-020-03118-0

Wintermeyer W, Zachau HG. 1979. Fluorescent Derivatives of Yeast tRNAPhe. European Journal of Biochemistry 98:465-475. doi:10.1111/j.14321033.1979.tb13207.x

Wohlhieter CA, Richards AL, Uddin F, Hulton CH, Quintanal-Villalonga À, Martin A, de Stanchina E, Bhanot U, Asher M, Shah NS, Hayatt O, Buonocore DJ, Rekhtman N, Shen R, Arbour KC, Donoghue M, Poirier JT, Sen T, Rudin CM. 2020. Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and

SCD1 Dependence in Lung Cancer. Cell Reports 33:108444.
doi:10.1016/j.celrep.2020.108444
Xing F, Hiley SL, Hughes TR, Phizicky EM. 2004. The Specificities of Four Yeast Dihydrouridine Synthases for Cytoplasmic tRNAs. J Biol Chem 279:1785017860. doi:10.1074/jbc.M401221200

Xing F, Martzen MR, Phizicky EM. 2002. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8:370381.

Xiong R, He R, Liu B, Jiang W, Wang B, Li N, Geng Q. 2021. Ferroptosis: A New Promising Target for Lung Cancer Therapy. Oxidative Medicine and Cellular Longevity 2021:e8457521. doi:10.1155/2021/8457521

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317-331. doi:10.1016/j.cell.2013.12.010

You HJ, Lee KJ, Jeong HG. 2002. Overexpression of human metallothionein-III prevents hydrogen peroxide-induced oxidative stress in human fibroblasts. FEBS Lett 521:175-179. doi:10.1016/s0014-5793(02)02870-3

Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T. 2015. Efficient and quantitative high-throughput transfer RNA sequencing. Nat Methods 12:835837. doi:10.1038/nmeth. 3478

Zoysa TD, Phizicky EM. 2020. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but
with different consequences. PLOS Genetics 16:e1008893.
doi:10.1371/journal.pgen. 1008893
Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S. 2017. DMSMaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75-82. doi:10.1038/nmeth. 4057

