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	 Single-stranded,	positive-sense	RNA	viruses	are	a	class	of	pathogens	that	

pose	a	serious	danger	to	human	health.	As	a	group,	they	have	been	the	focus	of	

research	exploring	how	they	infect,	evade,	and	hijack	host	cellular	machinery	to	

propagate.	Though	these	studies	have	primarily	focused	on	viral	proteins,	the	past	

two	decades	have	seen	a	resurgence	of	interest	in	the	RNA	genomes	themselves.	

This	is	because	RNA	viral	genomes	contain	functional	RNA	structures	that	expand	

their	functional	repertoire.	While	studies	of	viral	RNA	structure	were	originally	

restricted	to	5’	and	3’	viral	termini,	recent	methodological	advancements	have	

facilitated	the	search	for	functional	structure	within	extensive	viral	open-reading	

frames.	Here,	these	methods	are	applied	to	the	genomes	of	two	RNA	viruses,	SARS-

CoV-2	and	West	Nile	virus.	In	pursuit	of	this	work,	several	methodological	

advancements	were	made	that	will	facilitate	future	studies	of	functional	RNA	

structure.	

	 In	Chapter	2,	this	methodology	is	applied	to	the	genome	of	SARS-CoV-2,	the	

etiological	agent	responsible	for	the	ongoing	global	pandemic.	We	develop	a	novel	

long-amplicon	strategy	for	the	collection	of	SHAPE-MaP	data	using	a	highly	

processive	reverse	transcriptase,	greatly	facilitating	structural	studies	of	extremely	

long	viral	RNAs.	The	resulting	genomic	secondary	structure	model	reveals	

functional	motifs	at	the	viral	termini	that	are	structurally	homologous	to	other	
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coronaviruses,	thereby	fast-tracking	our	understanding	of	the	SARS-CoV-2	life	cycle.	

We	uncover	elaborate	networks	of	well-folded	RNA	secondary	structures	and	reveal	

features	of	the	SARS-CoV-2	genome	architecture	that	distinguish	it	from	other	

single-stranded,	positive-sense	RNA	viruses.	Evolutionary	analysis	of	the	full-length	

SARS-CoV-2	secondary	structure	model	suggests	that,	not	only	do	these	

architectural	features	appear	to	be	conserved	across	the	β-coronavirus	family,	but	

individual	regions	of	well-folded	RNA	may	be	as	well.	Using	structure-disrupting,	

antisense	locked	nucleic	acids	(LNAs),	we	demonstrate	that	RNA	motifs	within	these	

well-folded	regions	play	functional	roles	in	the	SARS-CoV-2	life	cycle.		

	 In	Chapter	3,	we	extend	this	methodology	to	the	genome	of	West	Nile	virus,	

an	arthropod-borne	virus	that,	due	to	climate	change,	poses	an	increasing	global	

health	risk.	We	report	for	the	first	time	the	complete	secondary	structure	of	the	

WNV	genome	in	both	arthropod	and	mammalian	cell	lines.	The	resulting	genomic	

secondary	structure	model	recapitulates	a	conserved	motif	in	the	5’UTR	required	

for	viral	replication.	Along	with	our	SHAPE-MaP	data,	our	structural	models	provide	

novel	insights	into	previously	studied	but	poorly	understood	aspects	of	flaviviral	

biology.	We	describe	a	global	genome	architecture	that,	along	with	specific	regions	

of	well-folded	RNA,	folds	with	minimal	host	dependence.	Owing	to	weak	signals	of	

evolutionary	conservation,	we	instead	relied	on	patterns	of	structural	homology	to	

prioritize	specific	RNA	structures	for	functional	validation.	Using	a	highly	optimized	

workflow,	we	used	structure-disrupting	LNAs	to	demonstrate	that	a	subset	of	novel	

well-folded	RNA	structures	plays	both	conserved	and	host-specific	functional	roles.	

	 Taken	together,	the	work	presented	in	this	dissertation	deepens	our	
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understanding	of	viral	biology	and	functional	RNA	structure,	identifies	conserved	

aspects	of	the	viral	life	cycle	that	are	readily	targetable	by	a	novel	class	of	nucleic	

acids,	and	therefore	represents	an	important	step	forward	in	our	fight	against	

expanding	global	health	threats.	Methodological	improvements	and	innovations	

presented	in	this	dissertation	have	broad	applications	beyond	the	study	of	viral	

RNAs	and	will	therefore	greatly	facilitate	the	discovery	and	study	of	functional	RNA	

structure.	
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1.	Introduction	

	 As	the	last	three	years	have	acutely	demonstrated,	single-stranded,	positive-

sense	RNA	viruses	pose	a	serious	global	health	risk.	While	representing	an	

incredibly	diverse	class	of	pathogens,	the	genomes	of	RNA	viruses	share	a	general	

architecture.	Typically,	the	vast	majority	of	sequence	space	in	viral	genome	is	

dedicated	to	protein-coding	information,	sequence	that	is	flanked	on	either	side	by	

relatively	small,	untranslated	regions	(UTRs).	Though	much	work	has	been	devoted	

to	the	study	of	viral	proteins	and	the	functions	they	effect,	it	is	the	UTRs	of	viruses	

that	led	researchers	to	first	appreciate	a	second	type	of	information	encoded	in	viral	

genomes:	higher-order	RNA	structure.		

	 One	of	the	best-studied	examples	of	higher-order	viral	RNA	structure	is	the	

internal	ribosomal	entry	site	(IRES)	of	Hepatitis	C	Virus	(HCV).	Resident	in	the	

5’UTR	of	the	HCV	genome,	work	spanning	multiple	decades	has	demonstrated	the	

IRES	plays	a	fundamental	role	in	promoting	selective	viral	translation	(Fraser	and	

Doudna,	2007).		Elegant	structural	studies,	culminating	in	a	high-resolution	Cryo-

EM	structure	of	the	IRES	in	complex	with	the	human	40s	ribosomal	subunit,	have	

revealed	that	it	is	the	specific	tertiary	fold	of	the	IRES	that	allows	it	to	fulfill	its	

function	(Quade	et	al.,	2015).	In	fact,	a	detailed	understanding	the	HCV	IRES’s	

structure-function	relationship	has	facilitated	the	development	of	a	diverse	class	of	

therapeutics	that	specifically	inhibit	HCV	translation	by	disrupting	the	IRES’	native	

structure	(Dibrov	et	al.,	2014).			

	 In	this	way,	the	HCV	IRES	represents	a	powerful	case	study.	Beyond	shedding	

light	on	a	novel	mechanism	by	which	viruses	co-opt	host	cellular	machinery,	it	



	 2	

highlights	the	central	role	structured	RNAs	can	play	in	viral	life	cycles.	Even	more,	it	

demonstrates	how	research	directed	towards	a	mechanistic	understanding	of	RNA	

structure-function	relationships	can	pave	the	way	for	development	of	much-needed	

antivirals.	As	such,	it	serves	as	both	motivation	and	road	map	for	studies	devoted	to	

exploring	other	viral	RNA	genomes	for	functional	RNA	structure.	It	is	not	an	

accident,	however,	that	some	of	the	best-studied	examples	of	functional	viral	RNA	

structure	to	date	are	found	in	viral	UTRs.	Indeed,	the	exploration	of	viral	open	

reading	frames	(ORFs)	for	functional	RNA	structure	has	only	been	recently	made	

possible	due	to	methodological	advancements	in	RNA	structure-probing	

methodologies.		

	

1.1	Probing	long	viral	RNA	genomes		

	 At	the	most	basic	level,	the	goal	of	all	RNA	structure	probing	methods	is	to	

assess	the	stranded-ness	of	given	RNA	nucleotide	in	a	larger	RNA	chain.	In	practice,	

methods	developed	for	RNA	structure	probing	rely	on	a	variety	of	strategies	to	

make	this	measurement,	and	not	all	of	them	afford	direct	read-outs	of	stranded-

ness.	Though	enzymatic	and	spectroscopic	methods	have	been	successfully	

deployed	to	probe	RNA	structure,	the	methods	that	have	proved	most	useful	for	the	

study	of	long	viral	RNAs	instead	rely	on	chemical	modification	of	RNA	bases	(Hart	et	

al.,	2008;	Lockard	and	Kumar,	1981).	

	 SHAPE	reagents,	named	both	for	both	the	chemistry	they	enable	(selective	2’-

hydroxyl	acylation)	and	the	method	by	which	data	collected	is	collected	(primer	

extension),	are	currently	most	commonly	used	for	probing	the	structure	of	long	
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viral	RNAs.	These	electrophilic	reagents	react	preferentially	with	2’-hydroxyl	(2’-

OH)	moieties	of	flexible	nucleotides,	regardless	of	base	identity.	Owing	to	the	close	

proximity	of	the	negatively	charged	phosphate	backbone,	the	2’-OH	of	inflexible	

nucleotides	reacts	poorly	with	SHAPE	reagents.	Importantly,	studies	have	shown	

that	per-nucleotide	flexibility,	and	by	extension	reactivity,	serves	as	a	reliable	proxy	

for	nucleotide	stranded-ness	(Merino	et	al.,	2005).	While	a	separate	class	of	reagents	

reports	directly	on	nucleotide	stranded-ness	by	selective	modification	of	unpaired	

nucleotides,	they	exhibit	base-specificity	that	necessitates	the	use	of	multiple	

reagents	to	collect	data	on	all	four	nucleotides	(Wang	et	al.,	2019;	Wells	et	al.,	2000).		

	 In	all	cases,	the	reaction	between	the	chemical	and	nucleic	acid	results	in	

deposition	of	a	bulky	adduct	on	that	nucleotide.	In	the	original	iterations	of	chemical	

probing	methods,	these	bulky	adducts	were	read	out	using	primer	extension,	as	they	

cause	chain	termination	events	when	the	modified	RNA	molecule	is	subsequently	

reverse	transcribed	into	complimentary	DNA	(cDNA).	By	resolving	truncated	cDNA	

products	on	sequencing	gels,	modified	nucleotides	can	be	identified	and	assessed	

for	modification	level.	However,	due	to	size	constraints	imposed	by	the	pore	size	of	

polyacrylamide	gels,	viral	genomes	cannot	be	analyzed	using	this	strategy	as	they	

often	exceed	10kb	(Green	and	Sambrook,	2021).		

	 	It	was	not	until	these	chemical	probing	methods	were	adapted	for	high-

throughput	sequencing	(HTS)	that	studies	of	whole	viral	genomes	became	tractable.	

First	pass	attempts	at	high-throughput	collection	of	SHAPE	data	involved	addition	of	

a	probe	ligation	step	following	primer	extension	and	chain	termination.	These	

ligated	probes,	added	at	the	3’	ends	of	nascent	cDNAs,	preserved	the	location	of	
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chain	termination	events	and	facilitated	down-stream	library	preparation	for	HTS	

(Lucks	et	al.,	2011).	However,	SHAPE	signal	decay	necessitates	the	use	of	RT	

primers	spaced	every	~200nt,	rendering	these	so-called	“stop-based”	methods	

experimentally	intractable	for	long	viral	RNAs	(Adams	et	al.,	2019;	Karabiber	et	al.,	

2013).		

	 To	bypass	the	issues	of	stop-based	HTS	probing	methods,	researchers	in	the	

Weeks	lab	discovered	that	in	the	presence	of	manganese,	a	non-native	metal	

cofactor,	the	bulky	adducts	deposited	on	RNA	molecules	did	not	result	in	chain	

termination	events	(Siegfried	et	al.,	2014).	Instead,	mutations	were	deposited	on	

nascent	cDNAs	at	the	locations	of	RNA	adducts.	This	method,	called	mutational	

profiling	(MaP),	allows	for	per-nucleotide	reactivity	information	to	be	read	out	by	

calculating	mutation	rates	in	HTS	data-sets,	and	was	readily	adapted	for	other	

chemical	probing	reagents	(Zubradt	et	al.,	2016).	Most	importantly,	because	MaP	

strategies	no	longer	relied	on	cDNA	truncations	to	read	out	per-nucleotide	reactivity	

information,	studying	the	structural	content	of	large	viral	RNA	genomes	no	longer	

represents	the	methodological	hurdle	it	once	did.		

	 		

1.2	Secondary	structure	predictions	of	long	viral	RNA	genomes	

	 On	its	own,	the	data	collected	using	any	RNA	structure	probing	experiment	is	

of	limited	utility	for	structure	discovery.	Instead,	it	is	most	useful	when	used	to	

experimentally	constrain	RNA	structure	prediction	algorithms.	And	much	like	

chemical	probing	methodologies,	a	subset	of	these	RNA	structure	prediction	

algorithms	have	proved	particularly	useful	for	the	study	of	long	viral	RNAs.	
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	 The	most	commonly	used	RNA	structure	prediction	algorithm	relies	on	an	

algorithmic	framework	originally	developed	in	the	1980s.	Called	nearest-neighbor	

minimum	free	energy	(MFE)	optimization,	these	algorithms	use	a	dynamic	

programming	strategy	to	compute	an	RNA	secondary	structure	with	the	largest	free	

energy	change	(ΔG)	relative	to	the	linear	sequence	(Zuker	and	Stiegler,	1981).	

Importantly,	these	algorithms	are	parameterized	with	terms	that	reflect	the	free	

energy	change	of	individual	nucleotides,	whether	base-paired	or	single-stranded,	is	

fundamentally	dependent	on	the	identity	and	stranded-ness	of	its	nearest	neighbors	

(Mathews	and	Turner,	2002;	Mathews	et	al.,	1999;	Xia	et	al.,	1998).	It	is	the	sum	of	

the	free	energy	changes	associated	with	formation	of	each	individual	RNA	helix	or	

loop	that	allows	for	determination	of	a	minimum	free	energy	structure	for	the	entire	

RNA	sequence.	In	spite	of	constant	refinement	of	the	energy	terms,	single	MFE	

predictions	have	only	~73%	accuracy	when	predicting	known	structures,	and	the	

accuracy	decreases	for	longer	RNA	sequences	(Mathews,	2004).	

	 Two	strategies	were	implemented	almost	in	parallel	that	drastically	

improved	the	accuracy	of	RNA	secondary	structure	predictions.	The	first	strategy	is	

based	on	the	observation	that,	for	a	given	nucleic	acid	sequence,	sub-optimal	

structures	may	exist	that	are	very	close	in	energy	to	the	computed	MFE	structure,	

but	that	differ	drastically	in	connectivity	(Zuker,	1989).	As	this	lead	to	uncertainty	in	

the	overall	accuracy	of	any	given	MFE	structure	prediction,	sub-optimal	or	not,	

researchers	implemented	partition	function	calculations	(Mathews,	2004).	These	

calculations	allow	for	identification	of	individual	base	pairs	that	are	predicted	to	

fold	with	a	high	probability	and,	by	extension,	afford	an	empirical	way	to	identify	
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high-confidence	MFE	structures.	When	considering	MFE	predictions	of	known	RNA	

structures,	base	pairs	predicted	with	>99%	probability	during	partition	function	

calculations	are	correctly	predicted	90%	of	the	time.	As	a	result,	partition	function	

calculations	have	become	integral	aspects	of	widely	used	RNA	structure	prediction	

algorithms.	

	 The	second	strategy	implemented	involved	allowing	for	the	inclusion	of	

experimental	data,	such	as	chemical	probing	data,	as	constraints	during	both	MFE	

structure	prediction	and	partition	function	calculation	steps.	In	the	context	of	

SHAPE	reagents,	experimentally	determined	reactivities	are	included	as	pseudo-free	

energy	terms	(Mathews,	2004;	Mathews	et	al.,	2004).	In	the	simplest	terms,	the	

inclusion	of	SHAPE	constraints	rewards	prediction	of	highly	reactive	nucleotides	as	

single-stranded	and	lowly	reactive	nucleotides	as	double-stranded.	Regardless	of	

how	SHAPE	constraints	are	used	to	constrain	predictions	(i.e.,	‘soft’	v.	‘hard’	

constraints),	their	inclusion	improves	the	accuracy	of	structure	prediction	(Swenson	

et	al.,	2013).	

	 While	significant	improvements	have	been	made	to	individual	algorithmic	

components,	the	relatively	large	size	of	viral	RNA	genomes	still	presents	a	

fundamental	barrier	to	RNA	structure	prediction.	This	is	owed	in	part	to	the	

computational	time	and	power	required	to	compute	partition	functions	and	MFE	

predictions	for	long	nucleic	acid	sequences.	At	a	more	fundamental	level,	however,	

this	is	because	prediction	accuracy	deteriorates	for	RNAs	of	increasing	size,	falling	

off	drastically	for	RNAs	>800nt	(Mathews,	2004).	To	resolve	this	issue,	a	prediction	

pipeline	called	SuperFold	was	developed	that	predicts	both	SHAPE-constrained	
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partition	function	calculations	and	MFE	predictions	in	sliding	windows	of	1200	and	

3000nt,	respectively	(Smola	et	al.,	2015).	Though	this	pipeline	requires	that	

individual	MFE	predictions	are	stitched	back	together,	this	is	achieved	with	a	fairly	

elegant	strategy.	Specifically,	base	pairs	identified	by	the	partition	function	

calculation	to	fold	with	>99%	probability	are	forced	double-stranded	during	

subsequent	MFE	prediction	steps,	essentially	nucleating	predictions	of	the	

remaining	sequence	around	these	high	confidence	base	pairs.	The	result	is	an	

experimentally	constrained,	consensus	secondary	structure	prediction	for	every	

single	nucleotide	in	a	given	sequence,	with	no	upper	limit	placed	on	size.	

	

1.3	Identifying	RNA	secondary	structures	with	functional	potential	

	 Considering	the	difficulty	associated	with	generating	secondary	structure	

predictions	of	whole	viral	genomes,	it	is	ironic	that	sorting	through	these	

predictions	to	identify	structures	of	interest	represents	its	own	separate	challenge.	

As	with	structure	prediction,	two	strategies	have	been	developed	that	allow	for	

identification	of	RNA	structures	with	functional	potential.	

	 The	first	strategy	rests	on	the	assumption	the	RNA	structures	with	conserved	

functional	roles	in	a	viral	life	cycle	should	be	1)	highly	structured	and	2)	well-

determined.	Both	of	these	characteristics	are	reflected	in	specific	data	types	

generated	during	the	process	of	constrained	secondary	structure	prediction.	As	

highly	structured	RNA	should	contain	a	large	proportion	of	base-paired	nucleotides,	

the	relative	structured-ness	of	an	RNA	is	captured	by	the	SHAPE	reactivity	data	
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captured	during	structure	probing	steps.	By	searching	for	stretches	of	RNA	with	low	

SHAPE	reactivity	relative	to	the	rest	of	the	RNA,	these	regions	can	be	identified.		

	 As	well-determined	RNA	should	contain	base	pairs	that	fold	with	a	high	

probability,	this	information	is	captured	during	the	partition	function	calculation	in	

a	data	type	called	Shannon	Entropy.	Shannon	entropy	is	calculated	for	individual	

nucleotides,	and	reflects	the	probabilities	of	all	possible	pairing	interactions	

determined	for	that	nucleotide	in	its	conformational	ensemble.	Nucleotides	whose	

conformational	ensembles	are	dominated	by	a	single,	high-probability	pairing	

interaction	will	have	low	Shannon	entropy	(Smola	et	al.,	2015).	Therefore,	by	

searching	for	regions	that	have	low	Shannon	entropy	relative	to	the	rest	of	the	RNA,	

well-determined	regions	can	be	identified.	In	concert,	these	so-called	low	

Shannon/SHAPE	(lowSS)	data	signatures	have	been	effective	in	identifying	

functional	RNA	in	single-stranded	viral	genomes	(Dethoff	et	al.,	2018;	Madden	et	al.,	

2020;	Mauger	et	al.,	2015;	Siegfried	et	al.,	2014).	

	 The	second	strategy	for	identifying	regions	of	structured	RNA	with	functional	

potential	relies	on	identifying	evolutionary	signals	of	secondary	structure	

conservation.	Comparative	sequence	analysis	is	often	considered	the	gold-standard,	

and	relies	on	identifying	base-pairs	that	co-mutate	at	a	rate	that	exceeds	random	

chance	in	a	process	called	covariation	(Rivas	et	al.,	2016;	Yao	et	al.,	2018).	Several	

software	packages	have	been	developed	to	provide	statistical	measures	of	

covariation,	but	they	all	involve	constructing	alignments	of	related	RNAs.	For	RNAs	

with	rich	databases	of	related	sequences,	like	bacterial	riboswitches,	construction	of	

these	alignments	is	not	difficult	(Weinberg	et	al.,	2017).	However,	for	RNAs	such	as	
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human	long,	non-coding	RNAs	(lncRNAs),	building	these	alignments	is	much	more	

difficult.	Indeed,	specific	adjustments	have	had	to	be	made	to	existing	pipelines	to	

identify	covariation	in	highly	homologous	or	sparse	sequence	alignments	(Tavares	

et	al.,	2018).	It	is	an	ongoing	debate	in	the	field	whether	a	lack	of	statistical	

covariation	reflects	a	lack	of	evolutionary	conservation	or	simply	a	low-information	

alignment	(Rivas	et	al.,	2020).	A	separate	method	uses	preferential	accumulation	of	

synonymous	mutations	at	single-stranded	regions	relative	to	double-stranded	

regions	as	a	signal	of	evolutionary	conservation,	and	it	has	been	successfully	applied	

to	studies	of	viral	RNA	structure	(Assis,	2014;	Simmonds	and	Smith,	1999;	Tuplin	et	

al.,	2002).	However,	as	this	mode	of	analysis	also	fundamentally	relies	on	sequence	

alignments,	low-information	alignments	may	render	it	similarly	underpowered.	As	

such,	there	is	an	ongoing	need	for	alternate	strategies	that	can	identify	a	subset	of	

regions	with	functional	potential	from	consensus	predictions	of	whole	viral	

genomes.	

	

1.4	Functional	validation	of	viral	RNA	secondary	structures	

	 Through	the	use	of	both	lowSS	metrics	and	signals	of	evolutionary	

conservation,	it	is	possible	to	flag	a	subset	of	RNA	secondary	structures	with	

functional	potential.	Absent	any	experimental	follow-up,	however,	delineation	of	

these	candidate	structures	is	purely	descriptive.	In	this	way,	functional	validation	

represents	the	most	important	aspect	of	the	structure	discovery	process,	and	is	the	

avenue	of	inquiry	from	which	we	stand	to	learn	the	most	about	both	functional	RNA	

structure	and	viral	biology.	However,	functional	studies	of	RNA	structures	in	viral	
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ORFs	are	complicated	by	the	fact	that	they	contain	a	code-within-a-code;	in	addition	

to	carrying	protein-coding	information,	they	also	contain	the	information	for	

functional	RNA	secondary	structure.	While	a	fascinating	observation	in	its	own	

right,	this	feature	of	viral	ORFs	severely	constrains	studies	that	rely	on	classical	viral	

genetics	strategies	to	validate	the	functionality	of	individual	structures.	

	 Classically,	RNA	structures	were	functionally	assessed	by	engineering	

mutations	into	the	viral	genome	that	disrupt	an	RNA	structure	of	interest,	and	assay	

the	effect	of	disruption	on	various	aspects	of	viral	growth.	However,	in	order	to	

unambiguously	link	defects	observed	to	RNA	structure	disruption,	researchers	

avoid	mutations	that	alter	the	viral	coding	potential,	including	those	that	introduce	

synonymous	mutations	but	also	rare	codons.	This	constraint,	exemplified	in	

Pirakitikulr	et	al.,	2016,	not	only	restricts	the	types	of	mutations	that	can	be	

introduced,	but	also	limits	the	severity	of	structure	disruption.	These	clunky	

mutational	strategies	similarly	complicate	introduction	of	compensatory	mutations	

that	restore	RNA	structure,	a	standard	aspect	of	structure	validation	workflows.	Of	

more	recent	concern	is	the	possibility	of	accidentally	engineering	gain-of-function	

mutations,	though	these	typically	require	swapping	large	viral	domains	(Menachery	

et	al.,	2015).		

	 At	a	more	fundamental	level,	these	mutagenic	strategies	require	that	full-

length	infectious	clones	are	available	to	mutate.	This	presents	a	profound	problem	

for	the	study	of	emerging	viruses,	which	often	pose	serious	global	health	risks.	In	

the	case	of	SARS-CoV-2,	the	first	infectious	clone	was	not	constructed	until	almost	6	
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months	after	the	virus	first	emerged,	and	even	then	availability	of	the	infectious	

clone	to	other	researchers	was	not	guaranteed	(Xie	et	al.,	2020).			

	 The	status	of	many	viruses	as	biosafety	level	3	and	4	pathogens	has	also	

necessitated	construction	of	non-infectious	viral	replicons.	In	these	systems,	viral	

proteins	required	for	completion	of	full	infectious	cycles	are	often	replaced	with	

reporter	genes,	allowing	for	viral	replication	in	cells	but	preventing	production	of	

infectious	virions	(Lo	et	al.,	2003;	Phan	et	al.,	2009).	However,	while	these	

subgenomic	replicons	allow	for	the	study	of	these	viruses	at	a	lower	biosafety	level,	

any	region	of	the	genome	excised	cannot	be	probed	or	assayed	for	functional	RNA	

structure.	Taken	together,	these	methodological	shortcomings	highlight	the	need	for	

strategies	to	validate	candidate	RNA	structures	that	do	not	rely	on	infectious	clones,	

replicon	systems,	or	clunky	mutational	strategies.	

	

1.5	Chapter	Overview	

	 My	dissertation	focuses	on	applying	the	methods	described	above	to	the	

genomes	of	SARS-CoV-2	and	West	Nile	virus,	two	single-stranded,	positive	sense	

RNA	viruses	that	represent	serious	and	ongoing	global	health	risks.	Experimental	

difficulties	encountered	while	pursuing	this	research	forced	the	development	of	

methodological	improvements	that	will	facilitate	future	studies	of	other	viral	RNA	

genomes.	More	importantly,	the	application	of	these	methods	has	provided	novel	

insights	into	the	function	of	the	RNA	genome	in	the	viral	life	cycle	of	both	viruses,	

deepening	our	understanding	of	both	viral	biology	and	functional	RNA	structure.	
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	 In	Chapter	2,	this	methodology	is	applied	to	the	genome	of	SARS-CoV-2,	the	

etiological	agent	responsible	for	the	ongoing	global	pandemic.	We	develop	a	novel	

long-amplicon	strategy	for	the	collection	of	SHAPE-MaP	data	using	a	highly	

processive	reverse	transcriptase,	greatly	facilitating	future	structural	studies	of	

extremely	long	viral	RNAs	(Guo	et	al.,	2020).	The	resulting	genomic	secondary	

structure	model	reveals	functional	motifs	at	the	viral	termini	that	are	structurally	

homologous	to	other	coronaviruses,	thereby	fast-tracking	our	understanding	of	the	

SARS-CoV-2	life	cycle.	We	also	uncover	elaborate	networks	of	well-folded	RNA	

secondary	structures,	and	reveal	features	of	the	SARS-CoV-2	genome	architecture	

that	distinguish	it	from	other	single-stranded,	positive-sense	RNA	viruses.	

Evolutionary	analysis	of	the	full-length	SARS-CoV-2	secondary	structure	model	

suggests	that,	not	only	do	its	architectural	features	appear	to	be	conserved	across	

the	β-coronavirus	family,	but	individual	regions	of	well-folded	RNA	may	be	as	well.	

Using	structure-disrupting,	antisense	locked	nucleic	acids	(LNAs),	we	demonstrate	

that	RNA	motifs	within	these	well-folded	regions	play	functional	roles	in	the	SARS-

CoV-2	life	cycle.	Importantly,	this	method	circumvents	the	need	for	molecular	

cloning.	

	 In	Chapter	3,	we	extend	this	methodology	to	the	genome	of	West	Nile	virus,	

an	arthropod-borne	virus	that,	due	to	climate	change,	poses	an	increasing	global	

health	threat.	We	report	for	the	first	time	the	complete	secondary	structure	of	the	

WNV	genome	in	both	arthropod	and	mammalian	cell	lines.	The	resulting	genomic	

secondary	structure	model	recapitulates	a	conserved	motif	in	the	5’UTR	required	

for	viral	replication.	Along	with	the	SHAPE-MaP	data,	it	provides	novel	insights	into	
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previously	studied	but	poorly	understood	aspects	of	flaviviral	biology	including	

genome	cyclization	and	the	structure	of	the	3’UTR.	We	describe	a	global	genome	

architecture	that,	along	with	specific	regions	of	well-folded	RNA,	folds	with	minimal	

host	dependence.	Owing	to	weak	signals	of	evolutionary	conservation,	we	instead	

rely	on	patterns	of	structural	homology	to	prioritize	specific	RNA	structures	for	

functional	validation.	Using	a	highly	optimized	workflow,	we	use	structure-

disrupting	LNAs	to	show	that	a	subset	of	these	well-folded	RNA	structures	plays	

both	pan-	and	host-specific	functional	roles.	

	 Taken	together,	the	work	presented	in	this	dissertation	deepens	our	

understanding	of	viral	biology	and	functional	RNA	structure,	identifies	conserved	

aspects	of	the	viral	life	cycle	that	are	readily	targetable	by	a	novel	class	of	nucleic	

acids,	and	therefore	represents	an	important	step	forward	in	our	fight	against	

expanding	global	health	threats.	
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Chapter	2:	Comprehensive	in	vivo	secondary	structure	of	the	SARS-CoV-2	
genome	reveals	novel	regulatory	motifs	and	mechanisms	

	

2.1	Preface	

	 This	work	presented	in	Chapter	1	represents	a	collaborative	effort	between	

several	contributors:	Nicholas	C.	Huston,	Han	Wan,	Madison	S.	Strine,	Rafael	de	

Cesaris	Araujo	Tavares,	Craig	Wilen,	and	Anna	Marie	Pyle	are	all	authors	on	the	

original	publication.	This	work	would	not	have	been	possible	without	the	additional	

help	of	Dr.	Li-Tao	Guo	(Pyle	Lab,	Yale	University)	for	preparing	and	sharing	

MarathonRT	enzyme,	Dr.	Mark	Boerneke	(Weeks	Lab,	UNC	Chapel	Hill)	for	

providing	data	upon	request,	and	Dr.	Ananth	Kumar	and	Gandhar	Mahadeshwar	

(Pyle	Lab,	Yae	University)	for	thoughtful	comments	on	the	manuscript.	A	version	of	

the	work	was	published	in	Molecular	Cell,	and	is	available	at	online	at	

https://doi.org/10.1016/j.molcel.2020.12.041.			

	

2.2	Abstract	

SARS-CoV-2	is	the	positive-sense	RNA	virus	that	causes	COVID-19	disease.	

The	genome	of	SARS-CoV-2	is	unique	among	viral	RNAs	in	its	vast	potential	to	form	

RNA	structures	and	yet,	as	much	as	97%	of	its	30	kilobases	have	not	been	

structurally	explored.	Here,	we	apply	a	novel	long	amplicon	strategy	to	determine	

for	the	first	time	the	secondary	structure	of	the	SARS-CoV-2	RNA	genome	at	single-

nucleotide	resolution	in	infected	cells.	Our	in-depth	structural	analysis	reveals	

networks	of	well-folded	RNA	structures	throughout	Orf1ab,	and	reveals	aspects	of	

SARS-CoV-2	genome	architecture	that	distinguish	it	from	other	RNA	viruses.	
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Evolutionary	analysis	shows	that	several	features	of	the	SARS-CoV-2	genomic	

structure	are	conserved	across	beta	coronaviruses	and	we	pinpoint	regions	of	well-

folded	RNA	structure	that	merit	downstream	functional	analysis.	The	native,	

secondary	structure	of	SARS-CoV-2	presented	here	is	a	roadmap	that	will	facilitate	

focused	studies	on	the	viral	life	cycle,	facilitate	primer	design,	and	guide	the	

identification	of	RNA	drug	targets	against	COVID-19.	

	

2.3	Introduction	

	 Severe	acute	respiratory	syndrome	related	coronavirus	2	(SARS-CoV2),	

which	is	responsible	for	the	current	global	pandemic(Zhu	et	al.,	2020),	is	a	positive	

strand	RNA	virus	in	the	genus	β-coronavirus.	To	date,	the	outbreak	of	SARS-CoV2	

has	infected	millions	of	people	globally,	causing	great	economic	loss	and	posing	an	

ongoing	public	health	threat(Dong	et	al.,	2020).	Included	in	the	β-coronavirus	genus	

are	two	related	viruses,	SARS-CoV	and	Middle	East	respiratory	syndrome	

coronavirus	(MERS-CoV),	that	caused	global	outbreaks	in	2003	and	2012,	

respectively(de	Wit	et	al.,	2016).	Despite	the	continued	risk	posed	by	β-

coronaviruses,	mechanistic	studies	of	the	family	are	limited,	highlighting	the	need	

for	research	that	facilitates	the	development	of	therapeutics.	With	most	research	

efforts	focusing	on	viral	proteins	(Lan	et	al.,	2020a,	Yin	et	al.,	2020,	Wan	et	al.,	

2020),	little	is	known	about	the	viral	RNA	genome,	especially	its	structural	content.		

							Like	other	coronaviruses,	the	genome	of	SARS-CoV-2	is	incredibly	large	(Maier	

et	al.,	2015,	Zhu	et	al.,	2020).		The	~30kb	genome	is	comprised	of	two	open	reading	

frames	(ORFs)	for	viral	nonstructural	proteins	(Nsps)	and	9	small	ORFs	that	encode	
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structural	proteins	and	accessory	genes	(Kim	et	al.,	2020).	This	extended	ORF	region	

is	flanked	by	5’	and	3’	untranslated	regions	(UTRs)	that	have	been	shown	in	other	

coronaviruses	to	contain	conserved	RNA	structures	with	important	functional	roles	

in	the	viral	life	cycle	(Madhugiri	et	al.,	2018,	Chen	and	Olsthoorn,	2010)(Zust	et	al.,	

2008).	

One	of	the	best-studied	functional	RNA	elements	in	β-coronavirus	genomes	is	

the	programmed	ribosomal	frameshifting	pseudoknot	(PRF)	that	sits	at	the	

boundary	between	Orf1a	and	Orf1b(Plant	and	Dinman,	2008).	The	PRF,	found	in	all	

coronaviruses,	induces	a	-1	ribosomal	frameshift	that	allows	for	bypassing	of	the	

Orf1a	stop	codon	and	production	of	the	orf1ab	polyprotein,	which	includes	the	viral	

replicase.	Extensive	mutational	analysis	has	revealed	a	three-stemmed	pseudoknot	

structure	conserved	across	group	II	β-coronaviruses(Plant	et	al.,	2005).	However,	

neither	the	mechanism	of	frameshifting	regulation	nor	the	three-stem	pseudoknot	

PRF	conformation	has	been	validated	in	cells.		

While	recent	computational	studies	suggest	the	5’UTR,	3’UTR,	and	PRF	

functional	elements	are	conserved	in	the	SARS-CoV-2	genome(Rangan	et	al.,	2020,	

Andrews	et	al.,	2020),	these	regions	account	for	a	vanishingly	small	fraction	of	the	

total	nucleotide	content.	Studies	of	other	positive-sense	viral	RNA	genomes	such	as	

Hepatitis	C	virus	(HCV)	and	Human	Immunodeficiency	Virus	(HIV)	have	revealed	

extensive	networks	of	regulatory	RNA	structures	contained	within	viral	

ORFs(Siegfried	et	al.,	2014,	Pirakitikulr	et	al.,	2016,	Friebe	and	Bartenschlager,	

2009,	Li	et	al.,	2018,	You	et	al.,	2004)	which	direct	critical	aspects	of	viral	function.	It	

is	therefore	vital	to	characterize	structural	features	of	the	SARS-CoV-2	ORF	as	this	
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knowledge	will	enhance	our	understanding	of	coronavirus	mechanism,	improve	

diagnostics,	and	identify	riboregulatory	regions	that	can	be	targeted	with	antivirals	

drugs.		

Recent	advances	in	high-throughput	structure	probing	methods	(SHAPE-

MaP,	DMS-MaP)	have	greatly	facilitated	the	structural	studies	of	long	viral	RNAs	

(Siegfried	et	al.,	2014,	Zubradt	et	al.,	2017).	Recently,	Manfredonia	et	al.	performed	

full-length	SHAPE-MaP	analysis	on	ex	vivo	extracted	and	refolded	SARS-CoV-2	

RNA(Manfredonia	et	al.,	2020).	However,	structural	studies	on	both	viral	and	

messenger	RNA	have	highlighted	the	importance	of	probing	RNAs	in	their	natural	

cellular	context(Simon	et	al.,	2019,	Rouskin	et	al.,	2014).	Lan	et	al	performed	full-

length	in	vivo	DMS-MaPseq	on	SARS-CoV2	infected	cells(Lan	et	al.,	2020b),	but	as	

DMS	only	reports	on	A	and	C	nucleotides,	the	data	coverage	is	necessarily	sparse.	

While	both	studies	reveal	important	features	of	the	structural	content	in	the	SARS-

CoV-2	genome	and	its	evolutionary	conservation,	to	date	no	work	has	been	

published	that	captures	information	for	every	single	nucleotide	in	an	in	vivo	context.	

Here,	we	report	for	the	first	time	the	complete	secondary	structure	of	SARS-

CoV-2	RNA	genome	using	in	SHAPE-MaP	data	obtained	in	living	cells.	We	deploy	a	

novel	long	amplicon	method,	readily	adapted	to	other	long	viral	RNAs,	made	

possible	by	the	highly	processive	reverse	transcriptase	MarathonRT	(Guo	et	al.,	

2020).	The	resulting	genomic	secondary	structure	model	reveals	functional	motifs	

at	the	viral	termini	that	are	structurally	homologous	to	other	coronaviruses,	thereby	

fast-tracking	our	understanding	of	the	SARS-CoV-2	life	cycle.	We	reveal	

conformational	variability	in	the	PRF,	highlighting	the	importance	of	studying	viral	
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structures	in	their	native	genomic	context	and	underscoring	their	dynamic	nature.	

We	also	uncover	elaborate	networks	of	well-folded	RNA	secondary	structures	

dispersed	across	Orf1ab,	and	we	reveal	features	of	the	SARS-CoV-2	genome	

architecture	that	distinguish	it	from	other	single-stranded,	positive-sense	RNA	

viruses.	Evolutionary	analysis	of	the	full-length	SARS-CoV-2	secondary	structure	

model	suggests	that,	not	only	do	its	architectural	features	appear	to	be	conserved	

across	the	β-coronavirus	family,	but	individual	regions	of	well-folded	RNA	may	be	as	

well.	Using	structure-disrupting,	antisense	locked	nucleic	acids	(LNAs),	we	

demonstrate	that	RNA	motifs	within	these	well-folded	regions	play	functional	roles	

in	the	SARS-CoV-2	life	cycle.	Our	work	reveals	the	unique	genomic	architecture	of	

SARS-CoV-2	in	infected	cells,	points	to	important	viral	strategies	for	infection	and	

persistence,	and	identifies	potential	drug	targets.	The	full-length	structure	model	we	

present	here	thus	serves	as	an	invaluable	roadmap	for	future	studies	on	SARS-CoV-2	

and	other	coronaviruses	that	emerge	in	the	future.	

	

2.4	Results	

In	vivo	SHAPE-MaP	workflow	yields	high	quality	data	suitable	for	structure	

prediction.		

To	study	the	SARS-CoV-2	structure	in	the	context	of	infected	cells,	the	SARS-

CoV-2	isolate	USA-WA1/2020,	isolated	from	a	symptomatic	patient	who	had	

returned	to	the	United	States	from	China,	was	used	to	infect	VeroE6	cells	in	a	BSL3	

facility	(BEI	Resources	#NR-52281).	At	four	days	post-infection,	cells	were	collected	

and	treated	with	either	NAI,	which	will	preferentially	modifies	flexible	nucleotides	
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at	the	2’OH,	or	DMSO	as	a	control.	RNA	was	then	extracted	and	purified.	To	generate	

sequencing	libraries,	2000	nucleotide	(nt)	overlapping	amplicons	were	tiled	across	

the	entire	SARS-CoV-2	genome	(Fig	2.1A).	This	efficient	approach	is	made	possible	

by	the	ultra-high	processive	reverse	transcriptase	MarathonRT.	Previous	work	from	

our	lab	demonstrated	that	MarathonRT	successfully	encodes	NAI	adducts	as	cDNA	

mutations,	and	that	structural	features	of	the	HCV	IRES	are	perfectly	recapitulated	

when	in	cell	SHAPE-MaP	reactivities	are	used	for	structure	prediction(Guo	et	al.,	

2020).			

Two	independent	biological	replicates	of	in	cell	SHAPE-MaP	data	were	

generated	and	analyzed	using	the	ShapeMapper	pipeline(Smola	et	al.,	2015b).	

Comprehensive	datasets	were	obtained,	with	median	effective	read	depth	>	70,000x	

and	effective	reactivity	data	for	99.7%	(29813/29903)	of	nucleotides	in	the	SARS-

CoV-2	genome	in	both	replicate	experiments.		To	check	the	SHAPE-MaP	data	quality,	

we	analyzed	the	relative	mutation	rates	of	NAI-treated	and	DMSO-treated	RNA	

samples,	revealing	a	significant	elevation	of	mutation	rates	for	NAI-treated	samples	

(Fig	2.1B,	p-value	<	0.0001).	This	confirms	that	the	full-length	SARS-CoV-2	RNA	was	

successfully	modified	in	vivo	and	that	these	modifications	were	encoded	as	cDNA	

mutations.		

To	understand	the	relative	SHAPE	reactivity	agreement	within	local	regions	

of	the	genome,	we	calculated	Pearson	correlation	coefficients	between	two	

biological	replicates.	The	Pearson’s	correlation	across	the	entire	span	of	Orf1ab	is	

0.628	(Fig	A2.1A),	consistent	with	those	previously	reported	for	reactivities	

calculated	from	in	vivo	modified	RNAs	of	this	size(Smola	et	al.,	2016).	Across	the	sub	
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genomic	RNA	ORFs,	the	Pearson	‘s	correlation	is	poor	(Fig	A2.1B).	We	believe	this	

reflects	the	fact	that	Amplicons	13	-	16	will	amplify	both	full-length	and	sub-

genomic	RNAs,	and	the	difference	in	context	will	result	in	different	secondary	

structures(Tavares	et	al.,	2020).	For	this	reason,	despite	the	fact	all	data	have	been	

obtained	globally,	subsequent	discrete	structural	analysis	will	focus	on	shared	

features	of	the	viral	termini	and	the	Orf1ab	region.	

	
Figure	2.1.	Tiled-amplicon	in	vivo	SHAPE-MaP	workflow	yields	high	quality	
data	for	de	novo	full-length	structure	prediction.	Structure	prediction	identifies	
conserved	functional	elements	at	the	5’	and	3’	viral	termini.	A)	Workflow	of	in	vivo	
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SHAPE-MaP	probing	of	full-length	SARS-CoV-2	genomic	RNA.	The	schematic	of	the	
SARS-CoV-2	genome	is	colored	by	protein	coding	domain.	B)	Mutation	rates	for	two	
biological	replicates	across	the	entire	SARS-CoV-2	genome.	(Box	=	interquartile	
range	(IQR);	median	indicated	by	line;	average	indicated	by	“x”;	whiskers	are	drawn	
in	the	Tukey-style,	and	values	outside	this	range	are	not	shown).	C)	Consensus	
structure	prediction	for	the	5’	terminus	of	SARS-CoV-2,	colored	by	SHAPE	Reactivity.	
Functional	domains	are	labeled	(TRS	sequence	=	black	line;	uORF	start	codon	=	grey	
line;	Orf1a	start	codon	=	green	line).	Inset	–	mapping	of	SHAPE	reactivity	data	to	
single-	and	double-stranded	regions.	Line	indicates	median,	and	whiskers	indicate	
standard	deviation.]	D)	Structure	prediction	for	the	3’	terminus	of	SARS-CoV-2,	
colored	by	SHAPE	reactivity.	Functional	domains	are	labeled.	The	putative	
pseudoknot	is	indicated	by	solid	black	lines.		Inset	–	mapping	of	SHAPE	reactivity	to	
single-	and	double-stranded	regions.	Data	are	plotted	as	in	C.	****p<0.0001	by	equal	
variance	unpaired	student	t	test.		

	

De	novo	structure	prediction	on	full-length	SARS-CoV-2	RNA	identifies	

conserved	functional	elements	at	the	5’	and	3’	genomic	termini	

We	performed	secondary	structure	prediction	with	the	SuperFold	

pipeline(Smola	et	al.,	2015b),	using	the	in	vivo	SHAPE	reactivities	to	generate	an	

experimentally	constrained	consensus	secondary	structure	prediction	for	the	entire	

SARS-CoV-2	genome.	As	an	extensive	body	of	research	has	elucidated	structured	

RNA	elements	at	the	5’	and	3’	viral	termini	with	conserved	functions	across	β-

coronaviruses,	we	first	examined	these	regions	from	our	consensus	prediction	to	

determine	whether	they	were	stably	folded	and	well-determined	in	the	SARS-CoV-2	

genome.	

The	5’	genomic	terminus	includes	seven	regions	that	have	been	identified	

and	studied	in	other	coronaviruses	(Yang	and	Leibowitz,	2015).		While	sequence	

conservation	suggested	that	these	elements	might	be	conserved	in	SARS-CoV-2,	our	

consensus	structure	prediction	shows	this	to	be	the	case,	and	we	derived	a	specific	

experimentally-determined	secondary	structure	for	this	section	of	the	genome.		The	
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in-vivo	SHAPE	reactivity	data	correspond	well	with	the	resulting	structural	model	

(Fig	2.1C,	inset)	and	the	low	overall	Shannon	entropy	values	in	this	region	

(determined	from	base	pair	probability	calculation	during	the	SuperFold	prediction	

pipeline(Smola	et	al.,	2015b))	support	a	well-determined	structure	for	the	5’	

genomic	terminus	(medianNuc(1-400)		=	2.7x10-5	;	global	median	=	0.022).		

Individual	features	that	typify	coronavirus	structures	are	evident	in	the	

secondary	structure	of	the	SARS-CoV-2	5’-UTR	with	good	SHAPE	reactivity	

agreement	(Fig	2.1C,	inset).		For	example,	a	trifurcated	stem	is	observed	at	the	top	

of	SL5	(Fig	2.1C),	including	UUCGU	pentaloop	motifs	in	SL5A	and	SL5B,	and	a	GNRA	

tetraloop	in	SLC,	as	predicted	in	other	coronaviruses.	Previous	reports	suggest	that	

SL5	may	represent	a	packaging	signal	for	GroupIIB	CoVs	(Chen	and	Olsthoorn,	

2010).	Similarity	between	SL5	structures	reported	for	other	coronaviruses	and	the	

experimentally-determined	structure	reported	here	suggests	that	SL5	plays	a	

similar	role	in	the	SARS-CoV-2	life	cycle.	The	structural	homology	to	other	

coronaviruses	exemplified	by	the	SL5	structure	model	extends	to	every	other	stem	

loop	labeled	in	Fig.	1C	(SL1-4,	SL6-7),	suggesting	these	structures	also	play	similar	

functional	roles	despite	having	been	identified	and	elucidated	other	

coronaviruses(Yang	and	Leibowitz,	2015).	

The	3’	genomic	terminus	includes	three	well-studied	stems,	including	the	

bulged-stem	loop	(BSL),	Stem	Loop	1	(SLI),	and	a	long-bulge	stem	that	includes	the	

hypervariable-region	(HVR),	the	S2M	domain,	the	octanucleotide	motif	(ONM)	

subdomains,	and	a	pseudoknot	(Yang	and	Leibowitz,	2015).	The	consensus	

structure	recapitulates	the	secondary	structure	of	all	the	three	stems	with	good	
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SHAPE	reactivity	agreement	(Fig	2.1D,	inset)	and	overall	low	Shannon	entropy	

(medianNuc(29,472-29,870)		=	0.016).		While	the	BSL	is	well	determined	in	our	structure	

model,	the	low	reactivity	for	bulged	nucleotides	suggests	the	possibility	of	protein	

binding-partners	(Fig	2.1D).	

A	pseudoknot	structure	is	proposed	to	exist	between	the	base	of	the	BSL	

stem	loop	and	the	loop	of	SL1	in	coronaviruses(Yang	and	Leibowitz,	2015).	While	

pseudoknot	formation	is	mutually	exclusive	with	the	base	of	the	BSL,	studies	in	MHV	

have	suggested	that	both	structures	contribute	to	viral	replication	and	may	function	

as	molecular	switches	in	different	steps	of	RNA	synthesis(Goebel	et	al.,	2004).	

However,	our	in	vivo	determined	secondary	structure	is	inconsistent	with	formation	

of	the	pseudoknot	(Fig	2.1D).	The	low	SHAPE	reactivities	for	the	nucleotides	at	the	

base	of	the	BSL	support	formation	of	the	extended	BSL	stem,	while	high-reactivities	

of	the	nucleotides	in	the	loop	of	SLI	indicate	that	it	is	highly	accessible.	Using	the	

SHAPEKnots	program	(Hajdin	et	al.,	2013)),	we	found	that	a	pseudoknot	is	never	

predicted	in	three	windows	that	cover	the	pseudoknotted	region.	Taken	together,	

our	data	strongly	support	the	extended	BSL	conformation,	indicating	it	is	probably	

the	dominant	conformation	in	vivo.	

The	third	stem	in	the	3’	UTR	includes	three	sub-domains.	The	HVR,	poorly	

conserved	across	group	II	coronaviruses(Goebel	et	al.,	2007),	is	predicted	to	be	

mostly	single-stranded	in	our	secondary	structure,	and	the	high	reactivities	across	

the	span	of	this	region	lends	strong	experimental	support	for	an	unstructured	

region	(Fig	2.1D).	The	fact	that	this	region	is	relatively	unstructured	may	explain	
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why	it	tolerates	deletions,	rearrangements,	and	point	mutations	in	MHV(Goebel	et	

al.,	2007).	

The	S2M	region	is	contained	within	the	apical	part	of	the	third	stem.	We	

observe	that	the	first	three	helices	of	S2M	from	SARS-CoV-2	exactly	match	the	

crystal	structure	determined	for	S2M	from	SARS-CoV	(Robertson	et	al.,	2005).	

However,	our	in-vivo	secondary	structure	model	deviates	significantly	at	the	top	of	

the	stem	(Fig	2.1D).	It	is	possible	that	the	SARS-CoV-2	S2M	folds	into	a	unique	S2M	

conformation	despite	differing	by	only	a	two	bases,	both	of	which	are	transversions.	

(Fig	2.1D,	base-changes	indicated	by	arrows;	SARS-CoV	base	identity	shown	in	red).	

Any	base-pairing	interaction	involving	these	nucleotides	in	the	SARS-CoV	S2M	could	

not	be	maintained	in	SARS-CoV-2.		Alternatively,	this	site	could	interact	with	factors	

in	vivo	that	are	not	captured	in	the	crystallographic	study.		

Finally,	we	predict	a	different	structure	for	the	terminal	stem	in	the	viral	

3’UTR	(adjacent	to	the	poly-A	tail)	than	previously	reported	for	other	

coronaviruses(Zust	et	al.,	2008).	However,	structure	prediction	of	the	complete	

stem	is	not	highly	accurate,	as	reactivity	information	for	the	downstream	stem	(nts	

29853-29870)	is	occluded	by	primer	binding	and	is	not	constrained	by	

experimental	data	(Fig	2.1D).		In	addition,	the	complete	stem	region	(nts	29472-nts	

29870)	is	predicted	to	have	high	Shannon	entropy	(medianNuc(29472-29495,29853-29870)		=	

0.2154),	supporting	the	notion	that	this	substructure	is	not	well-ordered	in	the	

cellular	environment.	
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Structure	prediction	of	the	programmed	ribosomal	frame-shifting	element	

reveals	conformational	flexibility		

One	of	the	most	well-studied	RNA	structures	in	the	coronavirus	coding	

region	is	the	programmed	frame-shifting	pseudoknot	(PRF).	It	is	located	between	

orf1a	and	orf1b	and	plays	an	important	role	in	inducing	a	-1	frameshift	in	a	

translating	ribosome,	resulting	in	the	synthesis	of	the	polyprotein	ab,	which	

includes	the	SARS-CoV-2	replicase	(Plant	and	Dinman,	2008).		

The	PRF	element	previously	characterized	in	SARS-CoV	is	proposed	to	

contain	three	parts:	an	attenuator	stem	loop	(AS),	a	conserved	heptanucleotide	

“slippery”	sequence	(HSS),	and	a	H-type	pseudoknot	(Plant	and	Dinman,	2008).	We	

performed	SHAPEKnots	predictions(Hajdin	et	al.,	2013)	over	four	windows	that	

cover	the	pseudoknotted	region	in	the	SARS-CoV-2.	We	found	that	the	pseudoknot	is	

successfully	predicted	in	3	out	of	4	windows	tested.	Moreover,	the	nucleotides	

predicted	to	be	involved	in	the	pseudoknotted	helix	have	low	SHAPE-reactivity	(Fig	

2.2A,	red	lines).	The	frame-shifting	pseudoknot	was	thereafter	included	as	a	hard	

constraint	during	secondary	structure	prediction.		

The	most	probable,	dominant	structure	of	the	PRF	region,	extracted	from	the	

full-length	in	vivo	secondary	structure,	is	shown	in	Fig	2.2A.	In	our	model,	the	

SHAPE	reactivity	and	Shannon	entropy	calculation	support	a	well-folded	AS	

immediately	upstream	of	the	HSS	(Fig	2.2A).	The	AS	has	been	demonstrated	to	be	

important	for	attenuating	frameshifting	in	SARS-CoV(Cho	et	al.,	2013),	and	previous	

reports	suggested	that	the	AS	structure	is	not	well	conserved	between	SARS-CoV	

and	SARS-CoV-2(Kelly	et	al.,	2020).	By	contrast,	our	results	suggest	a	SARS-CoV-2-
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specific	fold	for	the	AS.	The	highly	conserved	HSS	is	predicted	to	be	single-stranded	

in	our	in-vivo	structural	model,	which	is	consistent	with	studies	on	other	

coronaviruses(Plant	et	al.,	2005,	Plant	and	Dinman,	2008).	

Figure	2.2.	Structure	prediction	of	the	programmed	ribosomal	frame-shifting	
(PRF)	element	suggests	conformational	variability	of	Stem	Loop	2.	A)	Dominant	
PRF	structural	architecture	colored	by	SHAPE	Reactivity.	AS	=	Attenuator	Stem;	HSS	
=	Heptanucleotide	Slippery	Sequence;	SL1	=	Stem	Loop	1;	dotted	line	indicates	
region	that	forms	stem	loop	2	(SL2)	or	long-range	interactions	outside	the	PRF;	SL3	
=	Stem	Loop	3;	Red	lines	indicate	pseudoknot	interaction.	B)	Lower	probability	PRF	
conformation,	with	fully-formed	SL2,	colored	by	SHAPE	Reactivity	C)	Dominant	PRF	
structure	prediction	colored	by	Shannon	entropy,	labeled	as	in	Panel	A.	D)	Base-
pairing	probability	for	alternate	SL2	conformation.		Each	dot	represents	an	
individual	base	pair	in	SL2.		
	

Overall,	the	dominant	structure	predicted	for	the	H-type	pseudoknot	in	our	

structural	model	differs	from	the	one	proposed	for	SARS-CoV.	In	SARS-CoV-2,	SL1	is	

well	folded,	as	indicated	by	SHAPE	reactivity	mapping	(Fig	2.2A)	and	Shannon	

entropy	(Fig	2.2C).	However,	the	region	reported	to	contain	the	SL2	stem(Rangan	et	
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al.,	2020,	Plant	et	al.,	2005)	is	predicted	as	single-stranded	in	our	consensus	

structure.	Indeed,	the	dominant	structure	predicted	for	the	PRF	contains	a	different	

stem,	which	we	designate	SL3,	and	this	includes	the	downstream	pseudoknot	arm	

(Fig	2.2A).	The	single-stranded	region	expected	to	contain	SL2	is	not	well-

determined	in	our	consensus	structure,	as	indicated	by	Shannon	entropy	mapping	

to	the	region	(Fig	2.2C).				

As	SuperFold	calculates	a	partition	function,	low	probability	base-pairing	

interactions	can	be	captured	during	structure	prediction	steps.	We	therefore	

checked	the	partition	function	output	for	alternative,	low	probability	base-pair	

interactions	captured	for	the	PRF	region.	We	found	that	the	single-stranded	region	

(Fig	2.2A)	forms	base-pairing	interactions	with	as	many	as	6	different	regions	in	the	

SARS-CoV-2	genome	(Fig	A2.2A),	Among	these	possible	interactions	is	a	PRF	

structure	containing	the	three-stemmed	pseudoknot	conformation	identified	across	

coronaviruses,	including	a	helical	SL2	(Fig	2.2B)	(Plant	et	al.,	2005).	The	median	

base-pairing	probability	calculated	for	SL2	is	20%	(Fig	2.2D;	individual	base-pairs	

indicated	with	grey	dots).	In	contrast,	the	SL3	stem	is	predicted	to	form	with	at	least	

80%	base-pairing	probability.		

The	apparent	pairing	promiscuity	and	low	SHAPE	reactivities	within	the	SL2	

region	suggests	that	the	PRF	region	has	complex	conformational	dynamics	that	are	

not	accurately	represented	by	the	single,	static	structures	calculated	in	SuperFold.	

We	reasoned	that	explicit	modeling	of	the	structural	ensemble	of	the	PRF	region	

would	reveal	more	information	about	the	architecture	and	distribution	of	actual	

structural	isoforms.	To	that	end,	we	re-calculated	the	partition	function	for	a	749nt	
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window	in	the	SARS-CoV-2	genome	that	surrounds	the	PRF	(Fig	A2.2A).	This	

partition	function	calculation	was	then	inserted	into	an	ensemble	structure	

modeling	framework	implemented	within	RNAstructure(Ding	and	Lawrence,	2003,	

Ding	et	al.,	2005,	Spasic	et	al.,	2018).	

Using	this	mode	of	analysis,	a	single	conformational	cluster	overwhelmingly	

dominates	the	PRF	conformational	ensemble.	As	implied	by	our	previous	analysis	

(Fig	2.2A),	this	conformational	cluster	contains	the	AS,	a	single-stranded	HSS,	SL1,	

the	pseudoknotted	helix,	and	SL3.	However,	the	SL2	region	is	base-paired	with	a	

region	located	470nt	upstream	(Fig	A2.2B).	The	second-best	populated	cluster	

contains	a	nearly	identical	domain	architecture,	except	that	the	SL2	region	is	base-

paired	with	a	region	260nt	upstream	(Fig	A2.2C).	Together,	these	two	clusters	

represent	99.2%	of	the	PRF	conformational	ensemble.	The	least	populated	cluster	is	

the	one	that	contains	the	SL2	region	imbedded	in	the	canonical	three-stemmed	

pseudoknot	conformation,	representing	0.8%	of	the	PRF	conformational	ensemble	

(Fig	A2.2D).		

Taken	together,	these	data	suggest	that	the	frame-shifting	pseudoknot	of	

SARS-CoV-2	in	infected	cells	includes	a	well-folded	AS,	SL1,	and	the	pseudoknot	

helix,	but	that	the	region	containing	the	putative	SL2	is	conformationally	variable,	

with	the	potential	to	form	a	diversity	of	long-range	interactions.	Therefore,	the	

three-stem	pseudoknot	conformation	that	is	conventionally	used	to	characterize	β-

coronavirus	PRFs	represents	a	minority	conformation	for	the	SARS-CoV-2	PRF.		

	



	 32	

The	secondary	structure	of	SARS-CoV-2	Orf1ab	reveals	a	network	of	RNA	

structural	elements	

While	the	successful	identification	of	known,	functional	RNA	structural	

elements	lends	strong	support	for	our	methodology	and	for	the	overall	secondary	

structural	model,	these	known	regions	account	for	only	3%	of	the	total	nucleotide	

content	of	the	SARS-CoV-2	genome;	little	is	known	about	remaining	97%.		

Here	we	report	the	first	in	vivo-derived,	SHAPE-constrained	secondary	

structural	model	that	includes	a	description	of	the	base-pairing	interactions	for	all	

nucleotides	within	a	coronavirus	genome	(Fig	2.3A).	To	check	whether	our	

secondary	structure	model	is	in	good	agreement	with	experimentally	determined	in	

vivo	SHAPE	reactivities,	we	analyzed	the	normalized	reactivities	of	each	nucleotide	

separated	by	strandedness	as	determined	in	our	model.	We	observe	that,	for	all	four	

nucleobases,	single-stranded	nucleotides	have	significantly	higher	reactivities	than	

their	double-stranded	counterparts,	which	reflects	the	high	quality	of	the	model	

(Fig	A2.3)(Siegfried	et	al.,	2014,	Guo	et	al.,	2020).	Representative	secondary	

structural	maps	of	small	regions	extracted	from	the	consensus	prediction	exemplify	

the	types	of	substructures	that	are	observed	in	the	SARS-CoV-2	Orf1ab	(Fig	2.3B).	

To	discover	additional,	well-folded	RNA	structures	within	the	SARS-CoV-2	

genome,	we	calculated	the	local	median	Shannon	Entropy	and	correlated	these	

values	with	experimentally-determined	SHAPE	reactivities	(Fig	2.3A).	Only	regions	

with	both	median	Shannon	entropy	and	SHAPE	reactivity	signals	below	the	global	

median	for	stretches	longer	than	40nt,	and	which	appear	in	both	replicate	data	sets,	

were	considered	well-determined	and	stable.	In	total,	we	identify	40	such	regions	in		
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Figure	2.3.	Full-length	genome	structure	prediction	of	SARS-CoV-2	Orf1ab	
reveals	a	network	of	well-folded	regions.	A)	Analysis	of	Shannon	Entropy	and	
SHAPE	reactivities	reveals	40	highly	structured,	well-determined	domains	in	Orf1ab.	
Nucleotide	coordinates	are	indicated	on	the	x-axis.	Local	median	SHAPE	reactivity	
and	Shannon	Entropy	are	indicated	by	blue	and	orange	lines,	respectively.	Well-
folded	regions	are	shaded	with	grey	boxes.	Arc	plots	for	predicted	base-pairing	
interactions	in	the	structural	model	are	shown	below	the	x-axis.	The	5’UTR	and	non-
structural	protein	(Nsp)	domains	are	indicated	by	colored	bars	underneath	arc	plot	
diagrams.	B)	Representative	secondary	structure	predictions	of	two	regions	
extracted	from	the	full-length	consensus	structure	generated	for	the	SARS-CoV-2	
genome.	
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Orf1ab	(Fig	2.3A,	shaded).	Hereafter,	any	structured	region	that	meets	these	above	

criteria	will	be	referred	to	as	“well-folded.”	

To	understand	architectural	organization	of	the	overall	“structuredness”,	or	

base-pair	content	(BPC)	within	orf1ab,	we	calculated	the	double-strand	content	of	

individual	protein	domains	within	this	region	of	the	genome	(Fig	2.4A,	grey	bars).	

We	find	that	all	protein	domains	have	comparable	BPC,	with	an	average	of	56%	(+/-	

6.09%)	of	nucleotides	involved	in	base-pairing	interactions.	However,	the	RNA	

sequences	within	each	protein	domain	are	not	equivalently	well-folded	(Fig	2.4A,	

black	bars).	For	example,	we	observe	that	~50%	of	nucleotides	within	the	5’UTR,	

Nsp1,	Nsp6,	Nsp8,	and	Nsp12	are	concentrated	in	well-folded	regions,	suggesting	

these	domains	may	be	hubs	for	regulatory	RNA	structures.	By	contrast,	Nsp13,	

Nsp14,	and	Nsp16	have	<15%	of	their	nucleotide	content	lies	in	discretely	well-

folded	regions.	At	the	most	extreme	end,	Nsp10	contains	no	nucleotides	in	well-

folded	regions.	

While	analyzing	the	resulting	secondary	structural	map,	we	noticed	that	the	

SARS-CoV-2	genome	contains	long-stretches	of	short,	locally-folded	stem	loops	(for	

example	-	Fig	2.3B)	with	few	long-distance	base-pairing	interactions.	To	determine	

if	this	was	a	quantifiable	feature	unique	to	the	SARS-CoV-2	genome,	we	calculated	

the	distance	between	base-paired	nucleotides	for	every	base-pairing	interaction	in	

our	SARS-CoV-2	structural	model.	We	compared	these	base-pairing	distances	to	

those	we	calculated	from	published	full-length	structural	models	for	HCV	(Mauger	

et	al.,	2015)	and	dengue	virus	(Dethoff	et	al.,	2018),	that	used	the	same	structure	

prediction	pipeline	and	constraints.	Interestingly,	the	median	base-pairing	distance	
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in	our	SARS-CoV-2	consensus	model	is	25nt	and	is	significantly	smaller	than	the	

median	base-pairing	distance	in	the	HCV	(median=40nt)	and	Dengue	Virus	

(median=33nt)	consensus	models	(Fig	2.4B).	This	suggests	SARS-CoV-2	has	fewer	

long-distance	base-paring	interactions	compared	to	Dengue	and	HCV	genome.	

	
Figure	2.4	Full-length	genome	structure	prediction	of	SARS-CoV-2	Orf1ab	
reveals	unique	and	conserved	genome	architecture.		A)	Base-paired	RNA	
content	(grey	bars)	and	well-folded	RNA	content	(black	bars)	of	individual	Nsp	
domains.	A	dotted	line	at	50%	nucleotide	content	has	been	added	for	clarity.	B)	
Median	base-pairing	distance	of	the	SARS-CoV-2,	Hepatitis	C	virus,	and	Dengue	
virus.	Dare	presented	as	in	Fig	2.1C	inset	C)	Median	base-pairing	distance	across	
well-folded	regions	identified	in	SARS-CoV-2	and	HIV	genomes	D)	Synonymous	
mutation	rates	(dS)	calculated	across	β-coronaviruses	for	single-	and	double-
stranded	nucleotides	of	Orf1ab.	E)	Non-synonymous	mutation	rates	calculated	
across	all	β-coronaviruses	for	single-	and	double-stranded	nucleotides	of	Orf1ab.	
F)	Comparison	of	dS	for	single-	and	double-stranded	nucleotides	within	individual	
protein	domains,	calculated	across	all	β-coronaviruses.	Data	are	presented	as	in	Fig	
2.1B.	n.s.	not	significant,*p<0.05,	***p<0.001	****p<0.0001	by	equal	variance	
unpaired	student	t	test.	
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We	also	calculated	the	median	base-pairing	distance	for	the	well-folded	

regions	of	the	SARS-CoV-2	genome	and	compared	the	result	to	well-folded	regions	

previously	identified	using	the	same	Low	Shannon/Low	SHAPE	signatures	in	the	

HIV	genome(Siegfried	et	al.,	2014).	We	found	that	although	there	is	no	significant	

difference	in	the	size	of	well-folded	regions	in	the	SARS-CoV2	and	HIV	genomes	

(data	not	shown),	the	median	base-pairing	distance	in	the	well-folded	regions	of	

SARS-CoV-2	(median	=	26nt)	is	significantly	lower	than	the	base-pairing	distance	in	

well-folded	regions	of	HIV	(median	=	34nt)	(Fig	2.4C).	

Taken	together,	these	results	suggest	that	the	SARS-CoV-2	genome	folds	into	

a	series	of	local	secondary	structures	and	it	contains	fewer	long-range	base-pairing	

interactions	than	observed	for	positive-sense	RNA	viruses	for	which	full-length	

genome	structure	predictions	are	available.		Given	the	exceptional	size	of	the	

coronavirus	genome	(~30kb)	relative	to	those	of	the	positive-sense	RNA	viruses	

compared	here	(~10kb),	it	is	possible	that	the	short	base-pairing	distance	of	SARS-

CoV2	may	carry	functional	implications	for	maintaining	genomic	stability,	

preserving	fidelity	of	translation,	and	evading	innate	immune	response.	

	

The	overall	structured-ness	of	the	SARS-CoV-2	genome	is	conserved	across	β-

coronaviruses	

Synonymous	mutations	rates	(dS)	have	been	used	previously	to	lend	

evolutionary	support	for	well-folded	RNA	secondary	structures	in	other	positive-

sense	RNA	viruses(Dethoff	et	al.,	2018,	Tuplin	et	al.,	2002,	Assis,	2014,	Simmonds	

and	Smith,	1999).	This	body	of	work	has	suggested	lower	dS	for	double-stranded	
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nucleotides	when	compared	to	single-stranded	nucleotides,	likely	reflecting	an	

evolutionary	pressure	to	maintain	base-pairing	interactions	of	double-stranded	

nucleotides.	We	therefore	computed	relative	dS	to	determine	how	evolutionary	

pressure	is	applied	to	single-	and	double-stranded	regions	of	the	SARS-CoV2	

genome.		

Using	an	“All	β-Coronavirus”	alignment,	we	observed	a	significantly	lower	dS	

for	double-stranded	codons	when	compared	to	single-stranded	codons	in	our	

consensus	model	(Fig	2.4D).	In	contrast,	there	was	no	significant	difference	

observed	for	non-synonymous	mutation	rates	(dN)	at	single-	or	double-stranded	

codons	(Fig	2.4E)	as	dN	reflects	changes	at	the	amino	acid	level.	This	suggests	that	

double-stranded	regions	of	the	SARS-CoV-2	genome	experience	stronger	selective	

pressure	against	synonymous	mutations	than	single-stranded	regions.	Because	an	

all	β-coronavirus	alignment	was	used,	our	results	indicate	that	the	structural	

organization	and	overall	base-pairing	content	of	Orf1ab	is	a	conserved	feature	of	the	

β-coronavirus	family.	

When	analyzing	relative	dS	within	individual	protein	domains,	we	observed	

significantly	decreased	dS	for	double-stranded	codons	in	Nsp1,	Nsp2,	Nsp3,	Nsp4,	

Nsp6,	Nsp8,	Nsp12,	Nsp13,	and	Nsp15	(Fig	2.4F).	Consistent	with	this,	Nsp1,	Nsp6,	

Nsp8,	and	Nsp12	have	>50%	of	their	nucleotides	localized	within	well-folded	

regions	(Fig	2.4A,	black	bars).	Taken	together,	this	suggests	that	certain	protein-

coding	domains	contain	regions	of	RNA	secondary	structure	that	are	conserved	

across	β-Coronaviruses.	For	example,	Nsp8,	which	is	the	most	well	folded	domain	in	

SARS-CoV-2,	is	likely	well-folded	in	other	β-Coronaviruses.	
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By	contrast,	the	base	pairing	content	of	Nsp5,	Nsp7,	Nsp9,	Nsp10,	Nsp14,	and	

Nsp16	does	not	appear	to	be	conserved,	as	there	is	no	significant	difference	in	dS	

(Fig	2.4F).	Consistent	with	this,	Nsp14	and	Nsp16	were	shown	to	have	<15%	of	

their	nucleotides	in	well-folded	regions,	while	Nsp10	does	not	contain	any	well-

folded	nucleotides	(Fig	2.4A).	Not	only	does	this	analysis	support	the	observation	

that	these	regions	of	RNA	are	not	well-folded	in	SARS-CoV-2,	our	data	suggest	these	

regions	may	not	be	well	folded	in	other	β-Coronaviruses.		

	

Evolutionary	analysis	for	individual	well-folded	regions	of	the	SARS-CoV-2	

genome	identifies	several	conserved	regions	

To	further	prioritize	structural	elements	that	may	have	conserved	functional	

roles	in	the	SARS-CoV-2	life	cycle,	we	next	applied	our	dS	analysis	to	each	of	the	40	

discrete	well-folded	domains	(Fig	2.3A,	Table	A2.1).		Four	regions	showed	

significantly	decreased	dS	at	double-stranded	codons	across	the	β-coronavirus	

alignment	(Fig	2.5A,	2.5B).		Among	those	well-folded	domains,	region	25	and	34	are	

found	at	protein	domain	boundaries.	Region	25	ends	exactly	at	the	Nsp8/9	domain	

boundary,	while	Region	34	spans	the	Nsp12/13	boundary.	Region	23,	34,	and	36	

(Fig	2.5C,	2.5E,	2.5F)	contain	a	series	of	stem-loops	with	small	bulges.	Region	25	

contains	a	long-range	duplex	that	closes	a	clover-leaf	like	structure	with	8	stem-

loops	radiating	from	a	central	loop	(Fig	2.5D).	This	hub,	or	multi-helix	junction	

might	represent	a	promising	drug	target,	as	multi-helix	junctions	often	contain	

binding	pockets	with	high	binding	affinity	and	selectivity	for	small	

molecules(Warner	et	al.,	2018).			
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Figure	2.5.	Analysis	of	synonymous	mutation	rates	(dS)	within	individual	well-
folded	regions	of	the	SARS-CoV-2	genome	across	β-coronaviruses.	A)	Schematic	
of	well-folded	regions	in	SARS-COV2	genome	supported	by	dS	analysis	in	β-
coronaviruses.		B)	dS	separated	by	stranded-ness	in	four	individual	well-folded	
regions.	Data	are	plotted	with	as	in	Fig	2.1C	inset.	*p<0.05,	**p<0.01	by	equal	
variance	unpaired	student	t-test.		C),	D),	E),	F)	RNA	secondary	structure	diagrams	of	
four	well-folded	regions	with	dS	support,	colored	by	SHAPE	reactivities,	with	
genomic	coordinates	indicated	below	and	in	(A).	
	

Within	the	Sarbecovirus	subgenus,	we	were	able	to	identify	five	well-folded	

regions	with	significantly	decreased	dS	in	double-stranded	codons	(Fig	2.6A,	2.6B).		

Among	these	well-folded	domains,	Region	24	contains	two	discrete	multi-helix	

junctions,	each	with	at	least	three	stems	radiating	from	large	central	loops	(Fig	

2.6C).	Region	27	contains	a	series	of	six	stem-loops	(Fig	2.6D).	Region	15,	like	

Region	24,	contains	several	well-determined	long-range	duplexes	that	segment	the	

region	into	two	discrete	multi-helix	junctions	(Fig	2.6E).	Region	22	contains	a	series		
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Figure	2.6.	Analysis	of	synonymous	mutation	rates	(dS)	and	covariation	within	
individual	regions	of	the	SARS-CoV-2	genome	within	the	sarbecovirus	
subgenus.	A)	Schematic	of	well-folded	regions	in	the	SARS-COV2	genome	
supported	by	dS	analysis.	B)	dS	separated	by	stranded-ness	in	five	individual	well-
folded	regions.	Data	are	plotted	Fig	2.1C	inset.	*p<0.05,	**p<0.01	by	equal	variance	
unpaired	student	t	test.		C),	D)	RNA	secondary	structures	of	two	well-folded	regions	
colored	by	SHAPE	reactivity	E),	F),	G)	RNA	secondary	structure	diagrams	of	three	
well-folded	regions	supported	by	both	synonymous	mutation	rate	analysis	and	
covariation	in	sarbecoviruses,	colored	by	SHAPE	reactivities.	Green	boxes	indicate	
significantly	covarying	base	pairs	tested	by	Rscape-RAFSp	(e-value<0.05).	
Consensus	nucleotides	are	colored	by	degree	of	sequence	conservation	(75%	=	gray;	
90%	=	black;	97%	=	red).	Circles	indicate	positional	conservation	and	percentage	
occupancy	thresholds	(50%	=	white,	75%	=	grey;	90%		=	black;	97%	=	red).		
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of	well-folded	loops	and	it	spans	the	Nsp5/6	boundary	(Fig	2.6F).	Region	30	is	a	

single	stem-loop	with	bulges	that	divide	the	stem	into	distinct	duplexes	(Fig	2.6G).	

To	look	for	evolutionary	evidence	that	directly	supports	conservation	of	

specific	base-pairing	interactions	and	secondary	structures,	we	performed	

covariation	analysis	on	the	5	well-folded	regions	that	are	supported	by	

Sarbecovirus-specific	dS.	We	identified	3	regions	(15,	22,	and	30)	that	have	

covariation	support	(Fig	2.6E-G;	covarying	pairs	shaded	green).	Taken	together,	

these	results	suggest	the	existence	of	stable,	evolutionarily	conserved	structural	

elements	that	merit	subsequent	functional	analysis.	

	

Functional	validation	of	candidate	structures	by	targeted	LNA	disruption	

To	provide	a	rapid	method	for	evaluating	the	functional	significance	of	

predicted	RNA	structures,	we	developed	an	antisense-based	reporter	method	that	

relies	on	the	use	of	locked	nucleic	acids	(LNAs)	to	disrupt	putative	structures	within	

the	genome.	An	infectious	clone	of	SARS-CoV-2	with	mNeonGreen	inserted	into	Orf7	

was	used	to	monitor	viral	growth(Xie	et	al.,	2020).	LNAs	are	non-natural	base	

analogues	that	enhance	the	Tm	of	a	given	paired	duplex	by	2-8°C	for	each	LNA	

nucleotide(Lundin	et	al.,	2013),	enabling	them	to	dominate	over	competing	RNA-

RNA	duplexes.	This	strategy	has	been	successfully	deployed	to	study	functional	RNA	

structures	in	both	the	hepatitis	C	virus	(HCV)	and	dengue	virus	genomes	(Dethoff	et	

al.,	2018,	Tuplin	et	al.,	2015).	

For	functional	targets,	we	focused	on	two	well-folded	ORF	regions,	15	and	22,	

each	of	which	has	strong	evolutionary	support	(Fig	2.6E,	2.6F).	LNAs	targeted	to	
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Figure	2.7.	RNA	structures	disrupted	by	locked	nucleotide	acids	(LNA)	exhibit	
defects	in	SARS-CoV-2	viral	growth.	A)	Schematic	showing	Region	15	LNA	
targeted	to	the	covarying	stem	(red	line)	and	control	LNA	(blue	line).	B)	Schematic	
showing	region	22	LNA	targeted	to	stem	(red	line)	and	the	control	LNA	(blue	line).	
C)	Schematic	showing	LNA	targeted	to	the	PRF	SL1	region	and	the	conformationally	
flexible	SL2	region	in	SARS-CoV-2	PRF.	D,	E,	F)	Virus	growth	as	measured	and	
quantified	by	mNeonGreen	expression	at	24hpi.		All	LNAs	were	tested	concurrently,	
and	are	split	into	subpanels	for	clarity.	The	same	negative	controls	(Scrambled	LNA,	
Reagent	Only)	are	shown	in	all	subpanels	for	comparison.	Individual	data	points	
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represent	technical	replicates.	Asterisk	definitions	are;	*p<0.05,	**p<0.01,	
****p<0.0001	by	ordinary	one-way	ANOVA	with	multiple	comparisons.		
	
these	regions	were	designed	for	maximal	structure	disruption,	hybridizing	to	the	

top	of	the	stem	loop	as	well	as	duplex	RNA	flanking	the	loop	(Fig	2.7A,	1.7B;	red	

lines).	Importantly,	we	also	designed	a	negative	control	that	targets	high	Shannon	

entropy	regions	immediately	downstream	of	each	well-folded	region,	but	still	within	

the	ORF	(Fig	2.7A,	2.7B;	blue	lines).	We	do	not	expect	hybridization	of	negative	

control	LNAs	to	have	an	effect	on	viral	growth	unless	overall	translation	is	

disrupted.	We	included	a	scrambled	LNA	that	should	not	bind	to	the	SARS-CoV-2	

genome	as	a	global	negative	control.		

As	shown	in	Fig	2.7D,	the	LNA	targeting	the	covarying	stem	in	region	15	

results	in	a	40%	decrease	in	GFP+	cells	when	compared	to	the	region	15	control	and	

a	35%	decrease	when	compared	to	the	scrambled	LNA	control.	The	region	15	

control	LNA	has	no	effect	on	viral	growth	relative	to	the	scrambled	LNA	control.	A	

similar	trend	is	observed	for	region	22	(Fig	2.7E).	The	LNA	targeting	the	stem	

within	Region	22	results	in	a	22%	decrease	in	GFP+	cells	when	compared	to	the	

region	22	LNA	control	and	a	30%	reduction	when	compared	to	the	scrambled	LNA	

control.	As	before,	there	is	no	significant	difference	observed	between	the	region	22	

control	and	the	scrambled	LNA	control.		

Our	structural	modeling	of	the	PRF	suggests	it	contains	a	conformationally	

flexible	SL2.	In	order	to	evaluate	the	functional	importance	of	SL2,	we	tested	

whether	an	LNA	targeted	against	the	SL2	region	resulted	in	a	measurable	defect	in	

viral	growth	(Fig	2.7C;	red	line).	In	addition,	we	designed	a	LNA	targeted	against	the	

PRF	pseudoknot	(SL1)	(Fig	2.7C;	blue	line)	as	disruption	of	the	SARS-CoV	PRF	has	
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been	demonstrated	to	reduce	viral	growth	(Plant	et	al.,	2013,	Plant	et	al.,	2005).	This	

LNA	results	in	an	18%	reduction	in	GFP+	cells	relative	to	the	scrambled	LNA	control	

(Fig	2.7F).	Interestingly,	the	LNA	targeted	against	the	SL2	region	results	in	a	17%	

decrease	in	GFP+	cells	when	compared	to	the	scrambled	LNA	control.		

Taken	together,	our	data	suggest	that	RNA	stem	loops	in	region	15	and	22	

play	functional	roles	in	the	SARS-CoV-2	viral	life	cycle,	as	their	disruption	results	in	

a	significant	decrease	in	GFP+	cells.	Even	more,	this	data	lends	strong	support	for	a	

model	in	which	well-folded	regions	with	evolutionary	support	represent	hubs	of	

regulatory	RNA	secondary	structures.	Finally,	our	data	confirm	that	both	the	PRF	

pseudoknot	and	base-pairing	interactions	involving	the	SL2	region	are	crucial	for	

viral	growth.	

	

2.5	Discussion		

										Here	we	establish	that	the	SARS-CoV-2	genomic	RNA	has	a	complex	molecular	

architecture,	filled	with	elaborate	secondary	and	tertiary	structural	features	that	

persist	in	vivo	and	which	are	conserved	through	time,	suggesting	that	this	network	

of	RNA	secondary	structural	elements	plays	a	functional	role	in	the	virus	life	cycle.		

This	RNA	secondary	structural	complexity	is	not	just	confined	to	untranslated	

regions	of	the	genome,	as	protein-coding	sections	of	the	SARS-CoV-2	open	reading	

frame	are	among	the	most	well-structured	regions.		Thus,	as	observed	for	HCV,	

coronavirus	reading	frames	experience	evolutionary	pressure	that	simultaneously	

shapes	both	protein	sequence	and	the	surrounding	RNA	structures	in	which	the	

proteins	are	encoded	(a	“code	within	the	code”)(Pirakitikulr	et	al.,	2016).		The	
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secondary	structure	that	we	report	is	well-determined	based	on	available	metrics	in	

the	field(Siegfried	et	al.,	2014).		It	is	both	a	roadmap	for	navigating	the	vast	RNA	

landscape	in	coronaviruses,	and	a	resource	for	orthogonal	studies	by	others.		As	

such,	the	data	reported	here	are	all	publicly	available	for	analysis	and	comparison	

by	others	https://github.com/pylelab/SARS-CoV-2_SHAPE_MaP_structure.					

Well-determined	secondary	structures	of	long	RNA	molecules	are	typically	

difficult	to	obtain	in	vivo(Mitchell	et	al.,	2019,	Leamy	et	al.,	2016).	Experimental	

secondary	structures	are	usually	derived	from	transcripts	that	have	been	refolded	

and	probed	in	vitro,	or	from	isolated	cellular	transcripts	that	have	been	stripped	of	

cellular	components(Smola	et	al.,	2015a,	Siegfried	et	al.,	2014).	What	is	particularly	

surprising	about	this	SARS-CoV-2	study,	and	the	high	quality	of	the	resulting	

secondary	structure,	is	the	fact	that	it	was	entirely	determined	in	vivo,	using	infected	

cells	that	were	treated	directly	with	chemical	probes.	The	success	of	this	effort	is	

likely	attributable	to	the	fact	that	SARS-CoV-2	genomic	RNA	is	so	abundant	in	the	

infected	cell,	ultimately	becoming	~65%	of	the	total	cellular	RNA(Kim	et	al.,	2020).		

The	abundance	of	SARS-CoV-2	RNA	may	overwhelm	the	cell’s	ability	to	coat	

transcripts	with	nonspecific	RNA	binding	proteins,	which	can	otherwise	limit	

accessibility	of	chemical	probes.		That	said,	it	will	be	interesting	to	compare	the	

consensus	structure	reported	here	with	that	obtained	“ex	vivo”	(stripped	of	protein),	

as	the	∆SHAPE	approach	provides	a	useful	way	to	flag	possible	protein	binding	

sites(Smola	et	al.,	2015a).				

One	important	cautionary	observation	from	our	work	is	the	poor	correlation	

of	SHAPE	reactivities	between	two	in	vivo	biological	replicates	for	regions	encoding	
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the	subgenomic	RNAs.	Previous	in	silico	work	from	our	lab	has	shown	that	

individual	subgenomic	RNAs	(sgRNAs),	such	as	the	N	sgRNA,	fold	differently	than	

the	corresponding	regions	in	the	genomic	RNA	due	to	differences	in	upstream	

sequence	context(Tavares	et	al.,	2020).	Though	our	tiled-amplicon	design	affords	

sequencing	coverage	for	the	entire	SARS-CoV-2	genome,	it	precludes	deconvolution	

of	reactivity	signals	for	regions	shared	between	genomic-	and	subgenomic	RNAs.	

This	underscores	the	need	for	methodological	innovations	that	accurately	assess	the	

structural	content	specific	to	individual	subgenomic	RNA	molecules.		Absent	such	

methodological	advances,	we	caution	others	when	interpreting	reactivities	from	the	

subgenomic	region	from	bulk	sequencing	data	

	 	The	resulting	experimental	secondary	structure	provides	new	insights	into	

known	coronaviral	RNA	motifs,	and	leads	to	the	prediction	of	new	ones	that	are	

likely	to	regulate	viral	function.	The	near	perfect	structural	homology	of	motifs	at	

the	5’	terminus	for	SARS-CoV-2	and	other	β-coronavirus	genomes	suggests	that	the	

function	of	these	upstream	elements	is	conserved	in	coronaviruses	(reviewed	in	

(Yang	and	Leibowitz,	2015)).		Furthermore,	because	our	SARS-CoV-2	secondary	

structure	was	determined	in	vivo,	our	findings	validate	previous	coronavirus	

structural	models	of	5’-elements,	as	our	data	were	obtained	in	a	biologically	

relevant	context.		

Our	SARS-CoV-2	secondary	structure	at	the	3’	viral	terminus	largely	agrees	

with	previous	studies	on	other	β-coronavirus	genomes	(reviewed	in(Yang	and	

Leibowitz,	2015)).	However,	our	model	of	the	3’	viral	terminus	deviates	in	one	

important	way.		Neither	the	raw	SHAPE	reactivity	data	nor	the	subsequent	
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secondary	structure	prediction	supports	formation	of	a	pseudoknot	proposed	

between	the	base	of	the	BSL	and	SLI.		Indeed,	the	putative	pseudoknot	conformation	

is	mutually	exclusive	with	the	well-structured	stem	that	we	report	at	the	base	of	the	

BSL.	However,	both	conformations	are	proposed	to	be	essential	in	MHV(Goebel	et	

al.,	2004),	so	it	is	possible	that	the	pseudoknot	exists	as	a	minority	conformation,	or	

is	transiently	folded	in	SARS-CoV-2.		

Arguably	the	best-studied	structural	element	in	coronaviruses	is	the	

programmed	ribosomal	frameshifting	pseudoknot	(PRF).		Required	for	proper	

replicase	translation	in	all	coronavirus	family	members,	the	PRF	adopts	different	

conformations	in	the	various	coronaviruses,	including	three-stemmed,	two-

stemmed,	and	kissing-loop	pseudoknots	(Baranov	et	al.,	2005,	Plant	and	Dinman,	

2008).		The	core	of	the	SARS-CoV	PRF,	which	shares	an	almost	identical	sequence	

with	SARS-CoV-2,	is	predicted	to	form	a	three-stem	pseudoknot	comprised	of	SLI,	

SL2,	and	a	pseudoknotted	helix,	with	an	additional	upstream	attenuator	stem	that	is	

poorly	conserved	in	SARS-CoV-2(Kelly	et	al.,	2020).	Our	SHAPE	reactivity	and	

structure	prediction	are	consistent	with	the	existence	of	an	attenuator	stem,	SL1,	

and	the	pseudoknot.	However,	our	consensus	model	suggests	that	the	region	

containing	SL2	is	conformationally	flexible.	When	the	PRF	is	modeled	explicitly	as	a	

conformational	ensemble,	the	three-stemmed	pseudoknot	of	the	SARS-CoV-2	PRF	

appears	as	a	minority	conformation.	Consistent	with	our	reported	distribution	of	

structural	isoforms,	Kelly	et	al.	use	a	reporter	assay	to	confirm	that	frameshifting	

mediated	by	the	SARS-CoV-2	PRF	occurs	in	a	minority	of	read-through	events	by	the	

ribosome	(Kelly	et	al.,	2020),	indicating	that	the	observed	conformational	variability	
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of	SL2	may	be	functional.	Indeed,	SL2	might	function	like	a	switch:	When	SL2	is	

formed	(a	minority	of	the	time),	frameshifting	occurs.	When	unfolded	or	forming	

base-pairs	with	structures	outside	the	PRF	region,	frameshifting	would	not	occur.	

LNA	hybridization	results	in	this	region	are	consistent	with	this	model.	However,	

further	studies	are	required	to	fully	explore	the	relationship	between	SL2	formation	

and	SARS-CoV-2	frame-shifting	efficiency.	

The	study	reported	here	provides	a	structure	prediction	for	every	nucleotide	

in	the	SARS-CoV-2	genome,	enabling	us	to	simultaneously	interrogate	both	global	

and	local	features	of	genome	architecture.	One	can	make	two	major	observations	

about	the	global	architecture	the	SARS-CoV-2	genome.	First,	this	in	vivo	derived,	

SHAPE-constrained	model	strongly	agrees	with	the	high	double-strand	RNA	content	

predicted	from	the	entirely	in	silico	model	recently	reported	by	our	lab(Tavares	et	

al.,	2020).	Because	the	data	herein	were	obtained	in	vivo,	this	work	confirms	that	the	

unusually	high	double-strand	content	is	maintained	in	a	cellular	context.	Secondly,	

analysis	of	the	experimental	secondary	structure	reveals	that	the	SARS-CoV-2	

genome	has	a	shorter	median	base-pairing	distance	when	compared	with	other	

positive-sense	RNA	viruses	for	which	full-length	genome	structure	predictions	are	

available,	suggesting	a	role	for	extreme	compaction	in	the	function	of	coronaviral	

genomes.	Downstream	analysis	of	synonymous	mutation	rates	suggests	that	global	

architectural	features	are	conserved	across	β-coronaviruses.	Considering	the	

exceptional	size	of	these	genomes,	the	high	degree	of	dsRNA	content	may	represent	

an	evolutionary	strategy	to	enhance	genome	stability,	as	duplex	RNA	undergoes	

self-hydrolysis	at	a	much	slower	rate	than	single-stranded	RNA	and	it	is	more	
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resistant	to	cellular	nucleases(Regulski	and	Breaker,	2008,	Wan	et	al.,	2011).	

Interestingly,	single-stranded	regions	in	mRNA	have	been	shown	to	mediate	phase	

separation	at	high	cellular	RNA	concentrations(Van	Treeck	et	al.,	2018).	Because	

SARS-CoV-2	RNA	is	very	abundant	in	vivo	(up	to	65%	of	total	cellular	RNA	content	

(Kim	et	al.,	2020))	it	is	possible	the	high	dsRNA	content	may	provide	a	strategy	to	

avoid	phase	separation	during	infection.		The	preference	for	abundant	locally	folded,	

short	stem-loop	structures	in	β-coronavirus	genomes	may	also	provide	a	conserved	

strategy	for	innate	immune	evasion.		Pattern	recognition	receptors	such	as	

MDA5(Dias	Junior	et	al.,	2019)	and	ADAR	modification(Nishikura,	2010)	proteins	

recognize	long	RNA	duplexes	as	part	of	host	defense	processes,	which	could	

obviously	be	avoided	by	keeping	duplex	lengths	short.			

	 Analysis	of	local	features	within	the	genome	pinpoints	40	well-folded	regions	

within	the	SARS-CoV-2	orf1ab	region.	Of	these	40	regions,	four	are	conserved	across	

all	β-coronaviruses	and	five	are	sarbecovirus	specific.	Four	of	the	nine	regions	span	

boundaries	between	non-structural	proteins,	which	may	have	relevance	for	

polyprotein	translation.	Previous	studies	have	shown	that	RNA	secondary	

structures	can	slow	the	rate	of	ribosome	translocation(Chen	et	al.,	2013)	and	

ribosome	stalling	is	known	to	be	important	for	proper	folding	of	nascent	

polypeptides(Collart	and	Weiss,	2020).	Conserved,	well-folded	regions	at	protein	

domain	boundaries	may	therefore	slow	or	stall	translocating	ribosomes,	thus	

allowing	individual	non-structural	proteins	in	the	large	Orf1a	and	Orf1ab	poly-

proteins	to	fold	into	their	native	conformations.	



	 50	

Intriguingly,	three	of	the	nine	well-folded	regions	contain	complex,	multi-

helix	junctions,	or	structural	hubs.	This	is	significant	because	multi-helix	junctions	

often	comprise	the	core	of	RNA	tertiary	structures,	like	group	II	self-splicing	introns,	

riboswitches	and	other	regulatory	elements.		Because	these	elements	are	likely	to	

contain	well-defined	pockets,	they	often	bind	specifically	to	small	molecules,	and	

therefore	serve	as	possible	drug	targets	(Warner	et	al.,	2018,	Hewitt	et	al.,	2019,	

Fedorova	et	al.,	2018).	

To	explore	structure-function	relationships	of	representative,	conserved	

RNA	secondary	structures,	we	used	targeted	antisense	locked	nucleic	acids	(LNAs)	

to	induce	structure	disruption.	Not	only	is	this	method	faster	than	reverse	genetics,	

it	is	more	scalable	and	can	be	used	in	cases	for	which	genetic	systems	have	not	yet	

been	optimized.	Using	this	strategy,	we	showed	that	disruption	of	RNA	stems	in	

regions	15	and	22	result	in	significant	inhibition	of	viral	growth,	indicating	they	

likely	play	novel	regulatory	roles	in	the	SARS-CoV-2	life	cycle.	Importantly,	the	

magnitude	of	reduction	we	observe	in	these	cases	is	the	same	as	that	reported	for	

cases	of	pharmacological	inhibition	(~30%)	of	the	same	icSARS-CoV-2-mNG	

construct(Son	et	al.,	2020,	Wei	et	al.,	2020).	This	indicates	that	the	LNAs	developed	

in	this	study	may	themselves	have	potential	as	antiviral	therapeutics.	

						The	in	vivo-determined	SARS-CoV2	secondary	structure	presented	here	provides	

a	roadmap	for	functional	studies	of	the	SARS-CoV2	genome	and	insights	into	

mechanisms	of	the	SARS-CoV-2	life	cycle.		Evolutionary	support	for	consensus	

model	across	β-coronaviruses	hints	at	conserved	strategies	for	genome	stability,	

translation	fidelity,	and	innate	immune	evasion.	Finally,	the	identification	of	
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individual	well-folded	regions	conserved	across	β-coronaviruses,	and	within	the	

sarbecovirus	subgenus,	provide	potential	targets	for	the	study	of	regulatory	

elements,	and	the	search	for	much-needed	therapeutically	active	small	molecules.	

	

2.6	Methods	

Experimental	Model	and	Subject	Details	

To	generate	SARS-CoV-2	viral	stocks,	Huh7.5	cells	were	inoculated	with	

SARS-CoV-2	isolate	USA-WA1/2020	(BEI	Resources	#NR-52281)	at	an	MOI	of	0.01	

for	three	days	to	generate	a	PI	stock.	The	P1	stock	was	used	to	inoculate	Vero-E6	

(ATCC)	cells	for	three	days.	Supernatant	was	harvest	and	clarified	by	centrifuging	at	

450g	for	5min.	Clarified	supernatant	was	filtered	through	a	0.45-micron	filter,	

aliquoted,	and	stored	at	-80°C.		

Virus	titer	was	determined	by	plaque	assay.	VeroE6	cells	were	seeded	at	7.5	

x	105	cells/well	in	6-well	plates.The	following	day,	media	were	removed	and	

replaced	with	100µL	of	10-fold	serially	diluted	viral	stock.	Plates	were	incubated	at	

37°C	for	1	hour	with	gentle	rocking.	Following	the	incubation,	each	well	was	

overlaid	with	overlay	media	(DMEM,	2%FBS,	0.6%	Avicel	RC-581).		Two	days	post-

infection,	plates	were	fixed	with	10%	formaldehyde	for	30min	followed	by	staining	

with	crystal	violet	solution	(0.5%	crystal	violet	in	20%	EtOH)	for	30min.	After	

staining,	wells	were	rinsed	with	deionized	water	to	visualize	plaques.	

	

Method	Details	

Cell	Culture	and	SARS-CoV-2	Infection	
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VeroE6	cells	were	cultured	in	Dulbecco’s	Modified	Eagle	Medium	(DMEM)	

with	10%	heat-inactivated	fetal	bovine	serum	(FBS).	Approximately	5x106	cells	

were	plated	in	each	of	four	T150	tissue	culture	treated	flasks.	The	following	day	

media	was	removed	and	105	PFU	in	4mL	of	media	of	SARS-CoV-2	isolate	USA-

WA1/2020	(BEI	Resources	#NR-52281)	was	added	to	each	flask.	Virus	was	

adsorbed	for	1	hour	at	37°C	and	then	16mL	of	fresh	media	was	added	to	each	flask.			

	

RNA	Probing	and	Purification	

Four	days	post-infection	(dpi),	the	supernatant	was	aspirated	from	each	

flask,	cells	were	washed	with	10mL	of	cold	PBS-/-	and	then	dislodged	in	10ml	PBS-

/-	with	a	cell	scraper.	The	contents	were	collected	and	centrifuged	at	450g	x	5	min	

at	4°C.	The	supernatant	was	removed	and	the	cell	pellet	was	resuspended	into	2ml	

of	PBS-/-	with	200µl	DMSO	or	2ml	PBS	with	200µl	of	2M	NAI	(final	concentration	=	

200mM).		Cells	were	incubated	for	10	minutes	at	room	temperature	followed	by	

addition	of	6mL	of	Trizol.	RNA	was	extracted	with	the	addition	of	1.2mL	of	

chloroform:isoamyl	alcohol	(24:1).	The	aqueous	phase	was	transferred	to	a	new	

tube,	followed	by	the	addition	of	12mL	of	100%	EtOH	(70%	final)	and	incubated	

overnight	at	-20°C.	RNA	was	pelleted	at	20,000g	for	30min	at	4°C,	washed	once	with	

70%	EtOH,	and	spun	again	at	20,000g	for	15min	at	4°C.		RNA	was	resuspended	in	

1xME	buffer	and	purified	using	the	Qiagen	RNeasy	kit	according	to	the	

manufacturer’s	protocol.	RNA	was	eluted	in	1xME	buffer	(8mM	MOPS,	0.1mM	EDTA,	

pH	6.5).	
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Tiled-Amplicon	Design	

Leveraging	the	extreme	processivity	of	MarathonRT,	a	highly	processive	

group	II	intron-encoded	RT(Guo	et	al.,	2020),	we	designed	fifteen	2000nt	amplicon	

and	a	single	1300nt	amplicons	tiled	across	the	SARS-CoV-2	genome	for	full	

sequencing	coverage.	Adjacent	amplicons	were	designed	with	a	100nt	overlap	to	

ensure	data	is	collected	for	regions	otherwise	masked	by	primer	binding.	Primers	

for	reverse	transcription	(RT)	were	designed	using	the	OligoWalk	tool(Lu	and	

Mathews,	2008)	to	avoid	highly-structured	primers	and	highly-structured	regions	of	

the	SARS-CoV-2	genome.	Forward	and	reverse	primer	sets	were	designed	for	an	

optimal	Tm	of	58°C.	Reverse	primers	were	inset	3nt	from	the	5’end	of	the	RT	primer	

to	enhance	specificity	of	the	PCR	reaction.				

	

Reverse	Transcription	with	MarathonRT		

MarathonRT	purification	was	performed	as	described	in	(Guo	et	al.,	2020).	

For	each	amplicon,	500ng	of	total	cellular	RNA	was	mixed	with	1µL	of	the	

corresponding	1µM	RT	primer.	Gene-specific	primers	used	for	RT	are	listed	in	Table	

A2.2.	Primers	were	annealed	at	65°C	for	5min	then	cooled	to	room	temperature,	

followed	by	addition	of	8µL	of	2.5x	MarathonRT	SHAPE-Map	Buffer	(125mM	1M	

Tris-HCl	pH	7.5,	500mM	KCl,	12.5mM	DTT,	1.25mM	dNTPs,	2.5mM	Mn2+),	4µL	of	

100%	glycerol,	and	0.5µL	of	MarathonRT.	RT	reactions	were	incubated	at	42°C	for	3	

hours.	1µL	3M	NaOH	was	added	to	each	reaction	and	incubated	at	95°C	for	5min	to	

degrade	the	RNA,	followed	by	the	addition	of	1µL	3M	HCl	to	neutralize	the	reaction.	

cDNA	was	purified	using	AmpureXP	beads	(Cat.	No.	A63880)	according	to	
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manufacturer’s	protocol	and	a	1.8x	bead-to-sample	ratio.	Purified	cDNA	was	eluted	

in	10µL	nuclease-free	water.	

	

SHAPE-MaP	Library	Construction	

Amplicons	tiling	the	SARS-CoV-2	genome	were	generated	using	NEBNext	

UltraII	Q5	MasterMix	(Cat.	No.	M0544L),	gene-specific	forward	and	reverse	PCR	

primers,	and	5µL	of	purified	cDNA.	Gene-specific	primers	used	for	PCR	are	listed	in	

Table	A2.3.	Touchdown	cycling	PCR	conditions	were	used	to	enhance	PCR	

specificity	(68-58°C	annealing	temperature	gradient)	(Korbie	and	Mattick,	2008).	

PCR	reaction	products	were	purified	with	Monarch	PCR&DNA	Clean-up	Kits	(NEB,	

Cat.	No.	T1030S)	with	a	binding	buffer:sample	ratio	of	2:1	to	remove	products	

smaller	than	2kb.	PCR	products	were	visualized	on	0.8%	agarose	gels	to	confirm	

production	of	correctly	sized	amplicons.	Amplicons	were	diluted	to	0.2ng/uL	and	

then	pooled	into	two	odd	and	two	even	amplicon	pools	for	downstream	library	

preparation.	Sequencing	libraries	were	generated	using	a	NexteraXT	DNA	Library	

Preparation	Kit	(Illumina)	according	to	manufacturer’s	protocol,	but	with	1/5th	the	

recommended	volume.	Libraries	were	quantified	using	a	Qubit	dsDNA	HS	Assay	Kit	

(ThermoFisher,	Cat.	No.	Q32851)	to	determine	the	concentration	and	a	BioAnalyzer	

High	Sensitivity	DNA	Analysis	(Agilent,	Cat.	No.	5067-4626)	to	determine	average	

library	member	size.	Using	these	two	values,	libraries	were	diluted	to	4nM,	

denatured,	and	final	library	dilutions	prepared	according	to	manufacturer’s	

protocols.	Amplicon	pools	were	recombined	and	sequenced	on	a	NextSeq	500/550	

platform	using	a	150	cycle	mid-output	kit.		
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Structure	Prediction	

All	libraries	were	analyzed	using	ShapeMapper	2(Busan	and	Weeks,	2018),	

aligning	reads	to	SARS-CoV-2	genome	(accession	number:	MN908947).	The	default	

read-depth	threshold	setting	of	5000x	was	used	as	a	quality	control	benchmark.	

Mutation	rates	between	NAI-modified	and	unmodified	samples	were	tested	for	

significance	using	the	equal	variance	t-test.	Using	reactivities	output	from	

ShapeMapper,	ShapeKnots(Hajdin	et	al.,	2013)	was	used	to	determine	whether	two	

previously	reported	pseudoknots	contained	in	the	SARS-CoV-2	genome	were	

predicted	with	experimental	SHAPE	constraints.	The	two	pseudoknots	tested	were	

the	programmed	ribosomal	frameshifting	element	that	exists	at	the	Orf1a/b	

boundary,	and	a	pseudoknot	in	the	3’UTR	that	was	identified	in	the	MHV	and	B-CoV	

genomes(Goebel	et	al.,	2004).	We	analyzed	all	500nt	windows	separated	by	a	100nt	

slide	that	contained	each	of	the	putative	pseudoknots	to	determine	if	the	

pseudoknot	was	successfully	predicted.	

SuperFold	(Smola	et	al.,	2015b)	was	used	to	generate	a	consensus	structure	

prediction	for	the	entire	SARS-CoV-2	genome	with	both	replicate	data	sets.	We	

imposed	a	maximum	pairing	distance	of	500nt.	As	our	data	only	supported	

formation	of	the	pseudoknot	contained	in	the	programmed	ribosomal	frameshifting	

element,	only	this	pseudoknot	was	forced	in	this	prediction.	All	structures	output	

from	the	SuperFold	prediction	were	visualized	and	drawn	using	StructureEditor,	a	

tool	in	the	RNAStructure	software	suite(Reuter	and	Mathews,	2010).		
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Base-pairing	distances	were	calculated	from	.ct	structure	files	output	from	

SuperFold	full-length	SARS-CoV-2	consensus	predictions,	and	compared	to	

previously	published,	publically	available	full-length	genome	structures	for	dengue	

and	hepatitis	c	Virus	generated	with	SHAPE	constraints,	a	max-pairing	distance	of	

500nt,	and	the	SuperFold	pipeline	(Mauger	et	al.,	2015,	Dethoff	et	al.,	2018).		

	

Ensemble	structure	modeling	for	the	PRF	region	

A	region	surrounding	the	SARS-CoV2	PRF	(Genomic	coordinate:	12886-

13635)	was	used	to	model	the	structural	ensemble	of	the	PRF.	The	region	

boundaries	were	determined	based	on	base-paring	probabilities	output	from	

partition	function	calculation	performed	in	the	SuperFold	pipeline.		Specifically,	we	

ensured	all	nucleotides	involved	in	base-pairing	interactions	with	the	PRF	were	

included	for	the	ensemble	modeling.	

To	perform	ensemble	structure	modeling,	we	followed	step	6,	7	and	8	from	

the	Rsample	program(Spasic	et	al.,	2018).	To	elaborate,	first	we	used	the	Partition	

program	(implemented	in	RNA	structure	v6.1,	Mathews	(Mathews,	2004))	to	

generate	the	partition	saved	file	(PFS)	for	the	region	described.		Replicate	1	SHAPE	

reactivity	was	used	as	a	soft	constraint	(using	the	same	slope	and	intercept	as	we	

used	in	the	Superfold	prediction)	and	the	pseudoknotted	base	pairs	were	forced	

single	strand.	The	PFS	file	was	used	to	sample	1000	probable	structures	in	

proportion	to	their	Boltzmann	weights	using	the	stochastic	program	(implemented	

in	RNA	structure	v6.1)(Ding	and	Lawrence,	2003).	This	sample	was	then	clustered	

using	the	hierarchical	divisive	method(Ding	et	al.,	2005)	and	was	asked	to	output	10	
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clusters	with	a	representative	conformation.	A	cluster	is	defined	as	a	subset	of	

structures	with	similar	base	pairs.	The	PFS	file	was	visualized	using	IGV	

v2.8.2(Busan	and	Weeks,	2017).	

	

Identification	of	Well-Folded	Regions	

Two	data	signatures	were	used	to	identify	well-folded	regions:	The	first	is	

the	SHAPE	reactivity	data	generated	with	the	SHAPE-MaP	workflow	and	the	

ShapeMapper	analysis	tool(Busan	and	Weeks,	2018).	The	second	is	the	Shannon	

entropy	calculated	from	base-pairing	probabilities	determined	during	the	SuperFold	

partition	function	calculation(Smola	et	al.,	2015b).	Two	replicate	data	sets	were	

used,	including	separate	SuperFold	predictions.	

Local	median	SHAPE	reactivity	and	Shannon	Entropy	were	calculated	in	55nt	

sliding	windows.	The	global	median	SHAPE	reactivity	or	Shannon	Entropy	were	

subtracted	from	calculated	values	to	aid	in	data	visualization.	Regions	with	local	

SHAPE	and	Shannon	Entropy	signals	1)	below	the	global	median	2)	for	stretches	

longer	than	40	nucleotides	3)	that	appear	in	both	replicate	data	sets	were	

considered	well-folded.	Disruptions,	or	regions	where	local	SHAPE	or	Shannon	

Entropy	rose	above	the	global	median,	are	not	considered	to	disqualify	well-folded	

regions	if	they	extended	for	less	than	40	nucleotides.	Arc	plots	generated	from	each	

replicate	consensus	structure	predication	were	compared	for	regions	that	meet	

sorting	criteria	described	above	in	order	to	ensure	agreement	between	secondary	

structure	models	generated	from	each	replicate	SHAPE-MaP	dataset.		
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Base-pairing	distances	of	well-folded	regions	were	calculated	from	.ct	

structure	files	output	from	SuperFold	consensus	predictions,	and	compared	to	

previously	published,	publicly	available	structures	for	well-folded	regions	of	the	HIV	

genome	generated	with	SHAPE	constraints,	a	max-pairing	distance	of	500nt,	and	the	

SuperFold	pipeline	(Siegfried	et	al.,	2014).	

	

Multiple	sequence	alignment	

To	analyze	evolutionary	support	for	our	consensus	secondary	structure	

prediction	of	the	SARS-CoV-2	genome,	we	generated	two	codon-based	multiple	

sequence	alignments	(MSA)	for	Orf1a	and	Orf1b	constructed	from	genomes	of	

closely	related	viral	species(Ranwez	et	al.,	2018).	All	sequences	were	chosen	based	

on	a	phylogenetic	study	of	SARS-CoV-2	(Ceraolo	and	Giorgi,	2020).	All	sequences	

referenced	below	were	downloaded	from	the	NCBI	Taxonomy	browser(Benson	et	

al.,	2018).		

A	sarbecovirus	MSA	was	generated	using	SARS-CoV-2	isolate	Wuhan-Hu-1	

(MN908947.3),	four	bat	coronaviruses	(MG772934.1,	JX993987.1,	DQ022305.2,	

DQ648857.1),	and	five	human	SARS	coronaviruses	(AY515512.1,	AY274119.3,	

NC_004718.3,	GU553363.1,	DQ182595.1).		

We	also	generated	an	“All	β-coronavirus	Alignment”	using	the	sarbecovirus	

sequences	described	above	in	addition	to	four	MERS-CoV	sequences	(MK129253,	

KP209307,	MF598594,	MG987420),	one	HKU-4	sequence	(MH002337),	three	HKU-

5	sequence	(MH002342,	NC009020,	MH002341),	four	HKU1	sequences	(KY674942,	

KF686343,	AY597011,	DQ415903),	three	murine	hepatitis	virus	sequences	
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(AY700211,	AF208067,	AB551247),	three	human	coronavirus	OC43	sequences	

(AY585229,	NC006213,	MN026164),	two	bovine	coronavirus	sequences	

(KU558922,	KU558923),	and	one	camel	coronavirus	sequence	(MN514966).		

The	orf1a	and	orf1b	region	were	extracted	from	the	full-length	sequences	

based	on	the	GenBank	annotation.	Separate	codon	alignments	for	both	Orf1a	and	

orf1b	were	generated	using	MACSE	v2.0.3(Ranwez	et	al.,	2018)		and	default	

parameters	(-prog	alignSequences).	

	

Synonymous	mutation	rate	analysis	

All	codon	alignments	were	visualized	and	edited	using	Jalview	v	

2.11.0(Waterhouse	et	al.,	2009).	Synonymous	mutation	rates	for	each	codon	were	

estimated	using	the	phylogenetic-based	parametric	maximum	likelihood	(FUBAR)	

method(Murrell	et	al.,	2013).	Each	codon	was	categorized	as	base-paired	or	

unpaired	depending	on	strandedness	of	the	nucleotide	at	the	third	position	of	each	

codon	in	our	SARS-CoV-2	consensus	structure	model(Dethoff	et	al.,	2018).		The	

significance	of	synonymous	mutation	rates	between	single-	and	double-stranded	

regions	was	determined	using	two-tailed,	equal	variance	t-test.				

	

Covariation	analysis	

Covariation	calculation	and	visualization	was	performed	using	R-chie(Lai	et	

al.,	2012).	The	Sarbecovirus	codon	alignment	described	above	was	used	for	

covariation	analysis.	Identification	of	base-pairs	with	statistically	significant	

evidence	of	covariation	was	performed	on	individual	structures	using	R-Scape	
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(version	0.2.1)(Rivas	et	al.,	2017)	with	the	RAFSp	statistics	by	using	the	“--RAFSp”	

flag(default	E-value:0.05	)(Tavares	et	al.,	2019).		

	

Design	of	antisense	Locked	Nucleic	Acids	

	 Antisense	locked	nucleic	acids	(LNAs,	Integrated	DNA	Technologies)	were	

designed	to	anneal	to	target	sequences	within	the	SARS-CoV-2	genome	(accession	

number:	MN908947).	All	LNAs	were	designed	with	three	consecutive	LNA	bases	at	

the	5’	and	3’	ends	of	each	oligonucleotide,	with	stretches	of	unlocked	bases	within	

the	oligonucleotide	limited	to	three	consecutive	nucleotides.	All	LNAs	were	

designed	with	similar	thermodynamic	properties,	including	length,	%GC	content,	

%LNA	content,	and	LNA:RNA	duplex	Tm	(Table	A2.4).		

	

LNA	Transfection	and	icSARS-CoV-2-mNG	Infection	

	 Vero-E6	were	grown	in	DMEM+10%	FBS+1%	PBS	and	incubated	at	37°C/5%	

CO2.	Approximately	7.5x105	Vero-E6	cells	were	plated	per	well	in	a	6-well	plate	

prior	to	transfection.	LNAs	were	transfected	at	a	final	concentration	of	400nM	per	

well	using	the	TransIT-Oligo	reagent,	including	a	reagent	only	transfection	control	

(Mirus,	MIR	2164).	One	day	post-transfection,	transfected	or	control	Vero-E6	cells	

were	plated	at	2.5	x	103	cells	per	well	in	a	384-well	plate	in	phenol	free	media	and	

were	then	infected	with	icSARS-CoV-2mNG	at	a	MOI	of	1.0	(Xie	et	al.,	2020)	

	 Infected	cell	frequencies,	as	quantified	by	mNeonGreen	expression,	were	

assessed	at	24	hours	post-infection	by	high	content	imaging	(Cytation	5,	BioTek)	

configured	with	bright	field	and	GFP	cubes.	Total	cell	numbers	were	determined	
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from	bright	field	images	using	Gen5	software.	Object	analysis	measured	the	number	

of	mNeonGreen	positive	cells.	Percent	infection	was	calculated	as	the	ratio	between	

the	total	number	of	mNeonGreen+	cells	and	total	cells.			

	

Quantification	and	Statistical	Analysis	

Graphs	and	statistical	analysis	were	made	using	GraphPad	Prism	8	and	

Microsoft	Excel	v16.	The	results	are	expressed	as	Tukey	plots	with	median	and	

interquartile	range	indicated	with	bars.	Specific	values	are	reported	in	the	Results.	

All	statistically	significant	differences	were	calculated	using	the	unpaired	t-test	

assuming	both	populations	have	equal	variance	unless	otherwise	stated.	

Significance	of	comparisons	is	indicated	in	figures	and	supplemental	data	as	*,	p	<	

0.05;	**,	p	<	0.01;	***,	p	<	0.001;	****,	p	<	0.0001.		
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2.7	Appendix		

	
	
Figure	A2.1.	Analysis	of	correlation	of	normalized	SHAPE	reactivity	reveals	
good	agreement	between	biological	replicates	across	Orf1ab,	but	not	the	
subgenomic	RNA	region.	Related	to	Figure	1.	A),	B)	Correlation	plot	of	normalized	
SHAPE	reactivities	from	two	biological	replicates	determined	for	the	Orf1ab	region	
or	subgenomic	RNA	region,	respectively.	Lines	represent	linear	regressions	fit	to	the	
data.	Pearson’s	correlation	for	each	dataset	is	shown.	
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Figure	A2.2.	Ensemble	analysis	of	the	region	containing	the	SARS-CoV-2	PRF	
confirms	that	the	canonical	three-stem	pseudoknot	structure	represents	a	
minority	conformation.	Related	to	Figure	3.	A)	Base-pair	probabilities	calculated	
with	the	partition	function	implemented	in	the	SuperFold	pipeline	for	the	region	of	
the	SARS-CoV-2	genome	containing	the	PRF.	Arcs	corresponding	to	individual	base-
pairs	are	colored	by	base-pairing	probability	(green	=	>80%;	blue	=	80%	>	base-pair	
probability	>	30%;	yellow	=	30%	>	base-pair	probability	>	10%;	grey	=	10%	>	base-
pair	probability	>	3%).	A	black	arc	indicates	the	PRF	pseudoknot.	Shannon	
Entropies	for	individual	nucleotides,	represented	as	a	heat	map,	are	shown	
underneath	the	corresponding	nucleotides	in	the	arc	plots.	B),	C),	D)	Structural	
clusters	that	comprise	the	conformational	ensemble	representing	the	SARS-CoV-2	
PRF.	Relative	abundances	of	each	cluster	are	shown	as	percentages.	AS	=	Attenuator	
Stem;	HSS	=	Heptanucleotide	Slippery	Sequence;	SL1	=	Stem	Loop	1;	SL2	=	Stem	
Loop	2;	SL3	=	Stem	Loop	3;	Red	lines	indicate	pseudoknot	interaction.		
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Figure	A2.3.	Reactivities	separated	by	nucleotide	identity	and	binned	by	
stranded-ness	reveals	strong	agreement	between	experimentally	determined	
reactivities	and	the	resulting	structure	prediction	for	each	nucleotide.	Related	
to	Figure	4.	A)	Normalized	SHAPE	reactivity	determined	by	ShapeMapper	separated	
by	nucleotide	identity	and	binned	by	stranded-ness	as	determined	in	our	consensus	
structure	model.	****p<0.0001	by	equal	variance	unpaired	student	t	test.		
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Table	A2.1.	Well-determined	region	in	Orf1ab	region,	related	to	Figure	2.4.	

Region	 Window	 Start	 End	 Size	 Protein	Domain	
Median	Shannon	
Entropy	

1	 1	 1	 622	 622	 5'UTR,	Nsp1	 7.69E-05	
2	 1	 944	 1026	 83	 Nsp2	 1.75E-06	
3	 1	 1478	 1572	 95	 Nsp2	 2.62E-02	
4	 1	 1968	 2188	 221	 Nsp2	 5.07E-04	
5	 1	 2682	 2800	 119	 Nsp2,	Nsp3	 9.19E-03	
6	 1	 3416	 3597	 182	 Nsp3	 5.24E-05	
7	 1	 4169	 4232	 64	 Nsp3	 3.01E-06	
8	 1	 4471	 4713	 243	 Nsp3	 4.82E-04	
9	 1	 4791	 5162	 372	 Nsp3	 4.55E-04	
10	 1	 5693	 6013	 321	 Nsp3	 2.07E-03	
11	 1	 6116	 6549	 434	 Nsp3	 4.24E-04	
12	 1	 6786	 6887	 102	 Nsp3	 4.88E-03	
13	 1	 7025	 7072	 48	 Nsp3	 1.06E-03	
14	 2	 7413	 7518	 106	 Nsp3	 1.55E-04	
15	 2	 7717	 8230	 514	 Nsp3	 1.29E-03	
16	 2	 8350	 8512	 163	 Nsp3	 4.90E-04	
17	 2	 8702	 8789	 88	 Nsp4	 6.45E-04	
18	 2	 9295	 9398	 104	 Nsp4	 2.76E-02	
19	 2	 9612	 9886	 275	 Nsp4	 1.70E-02	
20	 2	 10129	 10312	 184	 Nsp5	 3.00E-04	
21	 2	 10630	 10687	 58	 Nsp5	 3.53E-04	
22	 2	 10798	 11039	 242	 Nsp5,	Nsp6	 7.67E-04	
23	 2	 11221	 11470	 250	 Nsp6	 2.34E-03	
24	 2	 11552	 11908	 357	 Nsp6,	Nsp7	 2.09E-03	
25	 2	 12230	 12686	 457	 Nsp8,	Nsp9	 1.86E-03	
26	 2	 12895	 13030	 136	 Nsp9,	Nsp10	 1.55E-02	
27	 2	 13594	 13920	 327	 Nsp12	 7.39E-04	
28	 2	 13993	 14230	 238	 Nsp12	 1.19E-02	
29	 3	 14444	 14532	 89	 Nsp12	 4.27E-04	
30	 3	 14557	 14641	 85	 Nsp12	 1.05E-05	
31	 3	 14973	 15136	 164	 Nsp12	 9.07E-04	
32	 3	 15510	 15608	 99	 Nsp12	 1.59E-04	
33	 3	 15767	 16005	 239	 Nsp12	 4.29E-04	
34	 3	 16114	 16260	 147	 Nsp12,	13	 2.69E-03	
35	 3	 17580	 17677	 98	 Nsp13	 1.64E-04	
36	 3	 17854	 17938	 85	 Nsp13	 6.09E-04	
37	 3	 19373	 19550	 178	 Nsp14	 1.52E-02	
38	 3	 19665	 19735	 71	 Nsp15	 2.32E-05	
39	 3	 20248	 20408	 161	 Nsp15	 7.72E-03	
40	 3	 20668	 20792	 125	 Nsp16	 4.91E-06	
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Table	A2.2.	Gene-specific	RT	primers,	related	to	Methods.	
Primer	Name	 Sequence	

RT_SC2_Amplicon_1	 TTAGTCAAATTCTCAGTGC	

RT_SC2_Amplicon_2	 TTTGTTGACTATCATCATC	

RT_SC2_Amplicon_3	 AAACATAAAATGTTTTACC	

RT_SC2_Amplicon_4	 AATTAGACATTAAAACACC	

RT_SC2_Amplicon_5	 TACCAACTGCACTAAAAAC	

RT_SC2_Amplicon_6	 TATCTAAAACGGCAATTCC	

RT_SC2_Amplicon_7	 AAGCAGTTTGTGTAGTACC	

RT_SC2_Amplicon_8	 TTAGTAAGTGCAGCTACTG	

RT_SC2_Amplicon_9	 TAACATTATCGCTACCAAC	

RT_SC2_Amplicon_10	 TAACTCTGGAAAAATCTGT	

RT_SC2_Amplicon_11	 AACCACCTAACTGACTATG	

RT_SC2_Amplicon_12	 TAATACCTATTGGCAAATC	

RT_SC2_Amplicon_13	 AATCATTTCATCTGTGAGC	

RT_SC2_Amplicon_14	 TAACATGTTCAACACCAGT	

RT_SC2_Amplicon_15	 ATGTTGAGTACATGACTGT	

RT_SC2_Amplicon_16	 TTTTTTTTTGTCATTCTCC	
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Table	A2.3.	Gene-specific	PCR	Primers,	related	to	Methods.	
Primer	Name	 Sequence	

F_PCR_SC2_Amplicon_1	 ATTAAAGGTTTATACCTTCCCAG	

F_PCR_SC2_Amplicon_2	 CTCATGAAGTGTGATCATTGTGG	

F_PCR_SC2_Amplicon_3	 GATTACCAAGGTAAACCTTTGGA	

F_PCR_SC2_Amplicon_4	 TATGGACAACAGTTTGGTCCAAC	

F_PCR_SC2_Amplicon_5	 ATAAATATTATAATTTGGTTTTTACTATTA	

F_PCR_SC2_Amplicon_6	 AAGAGAAGTGGGTTTTGTCG	

F_PCR_SC2_Amplicon_7	 TGTGGCTATGAAGTACAATTATG	

F_PCR_SC2_Amplicon_8	 TGTAACAGCTTTAAGGGCCAATT	

F_PCR_SC2_Amplicon_9	 TAAGGAATTACTTGTGTATGCTG	

F_PCR_SC2_Amplicon_10	 TTATTGTAAATCACATAAACCAC	

F_PCR_SC2_Amplicon_11	 ACAGCTAGGTTTTTCTACAGGTG	

F_PCR_SC2_Amplicon_12	 TTAGAATTAGCTATGGATGAATT	

F_PCR_SC2_Amplicon_13	 TATATTCTAAGCACACGCCTATT	

F_PCR_SC2_Amplicon_14	 GTGATTGCCTTGGTGATATT	

F_PCR_SC2_Amplicon_15	 TCTGGAGTAAAAGACTGTGTTGT	

F_PCR_SC2_Amplicon_16	 GTCACGCCTAAACGAACATG	

R_PCR_SC2_Amplicon_1	 AGTCAAATTCTCAGTGCCACAA	

R_PCR_SC2_Amplicon_2	 TGTTGACTATCATCATCTAACCA	

R_PCR_SC2_Amplicon_3	 ACATAAAATGTTTTACCTTCATG	

R_PCR_SC2_Amplicon_4	 TTAGACATTAAAACACCTAAAGC	

R_PCR_SC2_Amplicon_5	 CCAACTGCACTAAAAACTCTAGG	

R_PCR_SC2_Amplicon_6	 CTAAAACGGCAATTCCAGTT	

R_PCR_SC2_Amplicon_7	 CAGTTTGTGTAGTACCGGCA	

R_PCR_SC2_Amplicon_8	 GTAAGTGCAGCTACTGAAAAGCA	

R_PCR_SC2_Amplicon_9	 CATTATCGCTACCAACACATGTA	

R_PCR_SC2_Amplicon_10	 CTCTGGAAAAATCTGTATTATTAGG	

R_PCR_SC2_Amplicon_11	 CACCTAACTGACTATGACTAAAA	

R_PCR_SC2_Amplicon_12	 TACCTATTGGCAAATCTACCAAT	

R_PCR_SC2_Amplicon_13	 CATTTCATCTGTGAGCAAAG	

R_PCR_SC2_Amplicon_14	 CATGTTCAACACCAGTGTCTGTA	

R_PCR_SC2_Amplicon_15	 TTGAGTACATGACTGTAAACTACAT	

R_PCR_SC2_Amplicon_16	 TTTTTTGTCATTCTCCTAAGAAG	
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Table	A2.4.	LNAs	used	in	this	study	(LNA	bases	are	indicated	with	a	“+”	on	the	left),	
related	to	Methods.  

Region	 LNA	
LNA	

content	 %GC	 RNA	Tm	
PRF,	SL1	 	+A+C+GG+GC+TGC+ACT+TA+CA+C+C+G	 57.9	 63.2	 90	
PRF,	SL2	 	+C+A+GTAC+TAG+TG+CC+TG+TGC+C+G+C	 52.4	 61.9	 89	
Region	15	 	+A+C+AAA+CCC+TTG+CCG+AG+CT+G+C+T	 52.4	 57.1	 91	
Region	15,	
Control	 	+G+T+TT+TCA+ACT+TTG+TTA+TAG+G+T+G	 50.0	 31.8	 86	
Region22	 	+G+T+CTA+ACA+ACA+TCA+AA+AG+G+T+G	 52.4	 38.1	 86	
Region	22,	
Control	

	
+G+C+TAC+AG+TGG+CAA+GAG+AA+G+G+T	 52.4	 52.4	 86	

Scrambled	
LNA	 	+G+C+GGC+ACG+TTG+CG+AGT+A+C+T	 52.6	 63.2	 N/A	
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Chapter	3:	West	Nile	virus	genome	harbors	essential	riboregulatory	elements	
with	conserved	and	host-specific	functional	roles	

	
3.1	Preface	

	 This	work	presented	in	Chapter	2	represents	a	collaborative	effort	between	

several	contributors:	Nicholas	C.	Huston,	Douglas	Brackney,	and	Anna	Marie	Pyle.	

This	work	would	not	have	been	possible	without	the	additional	help	of	Han	Wan,	

Rafael	Tavares,	and	Benjamin	Gottë	for	thoughtful	comments	and	advice	on	

experimental	design,	and	Olga	Fedorova	and	Sarah	Fergione	for	synthesizing	LNAs.	

	

3.2	Abstract	

	 West	Nile	virus	(WNV)	is	an	arthropod-borne,	positive-sense	RNA	virus	that,	

due	to	warming	climates	and	lack	of	effective	therapeutics,	poses	an	increasing	

global	threat.	Like	other	enzootic	viruses,	very	little	is	known	about	how	host	

context	affects	the	structure	of	the	WNV	RNA	genome	beyond	the	extreme	viral	

termini.	Here,	we	report	a	complete	secondary	structure	of	the	WNV	genome	in	

mammalian	and	arthropod	cell	lines.	Our	detailed	analysis	affords	novel	structural	

insights	into	multiple,	conserved	aspects	of	flaviviral	biology.	By	comparing	

structures	obtained	in	different	cellular	contexts,	we	reveal	a	genome	that	folds	with	

minimal	host-dependence,	including	regions	of	well-folded	RNA.	Using	structural	

homology	as	a	guide,	we	prioritize	well-folded	regions	for	functional	validation	

using	structure-disrupting,	anti-sense	locked	nucleic	acids.	We	demonstrate	that	the	

WNV	genome	contains	riboregulatory	structures	with	conserved	and	host-specific	

functional	roles,	highlighting	the	therapeutic	potential	of	a	novel	class	of	nucleic	

acids	as	both	WNV-specific	and	pan-flaviviral	anti-virals.	
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3.3	Introduction	

	 West	Nile	virus	(WNV)	is	an	arthropod-borne	(arbo-)	virus	with	a	single-

stranded,	positive-sense	RNA	genome.	A	member	of	the	genus	Flavivirus	

(Flaviviridae)	along	with	dengue	virus	and	Zike	virus,	these	viruses	are	maintained	

in	a	transmission	cycle	between	a	vertebrate	reservoir	host	and	invertebrate	

mosquito	vectors.	Due	to	a	continued	spread	across	the	globe	facilitated	by	a	

warming	climate,	flaviviruses	represent	an	increasingly	serious	global	health	threat	

(Whitehorn	and	Yacoub,	2019).	WNV	poses	a	particular	threat	to	residents	of	our	

institution	and	state,	as	it	has	been	detected	in	Connecticut	every	year	since	it	was	

first	introduced	to	the	United	States	in.	As	no	human	vaccine	or	effective	therapeutic	

exists	against	WNV,	there	is	an	urgent	need	for	research	that	expands	our	

understanding	of	WNV	biology	and	facilitates	the	development	of	both	WNV	and	

pan-flaviviral	anti-virals.		

	 The	WNV	genome	is	11kb,	encodes	10	structural	and	non-structural	proteins	

translated	as	single	poly-protein,	and	is	flanked	by	5’	and	3’	untranslated	regions	

(UTRs).	The	WNV	UTRs	are	highly	structured,	and	these	structures	expand	the	virus’	

functional	repertoire	by	mediating	crucial	steps	in	the	viral	life	cycle.	A	conserved	

structure	in	the	5’UTR,	called	the	Stem	Loop	A	(SLA)	promoter,	plays	an	essential	

role	in	genome	replication	by	recruiting	the	viral	polymerase	(NS5)	(Choi,	2021;	

Dong	et	al.,	2008;	Lee	et	al.,	2021).	Structures	resident	in	the	3’UTR,	one	of	the	best-

studied	regions	of	the	WNV	genome,	facilitate	innate	immune	evasion	and	

pathogenesis	via	liberation	of	a	non-coding	RNA	species,	called	the	sub-genomic	

flaviviral	RNA	(sfRNA),	in	a	process	conserved	across	flaviviruses	(Göertz	et	al.,	
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2016;	MacFadden	et	al.,	2018;	Pijlman	et	al.,	2008).	While	the	structure	of	the	sfRNA	

is	well	understood,	it	is	not	known	how	the	region	that	gives	rise	to	the	sfRNA	folds	

in	the	context	of	the	full-length	genome.	

	 Functional	RNA	structures	in	the	WNV	genome	can	also	be	dynamic.	

Complementary	regions	at	the	5’	and	3’	viral	termini	form	long-range	duplexes,	

allowing	the	genome	to	alternate	between	a	linear	and	cyclized	conformation	(Basu	

and	Brinton,	2011;	Suzuki	et	al.,	2008;	Zhang	et	al.,	2008).	Genome	cyclization	is	

absolutely	required	for	viral	replication,	as	it	allows	NS5	to	pass	from	the	SLA	

promoter	to	the	3’	viral	terminus	to	initiate	negative	strand	synthesis.	Importantly,	

disruption	of	WNV	genome	cyclization	does	not	affect	viral	translation,	suggesting	

that	the	linear	form	is	the	translation-competent	form	(Friebe	et	al.,	2011).	This	

gave	rise	to	a	model	in	which	genome	cyclization	functions	as	a	molecular	switch,	

and	a	subsequent	search	to	identify	factors	that	influence	the	process.	While	several	

groups	have	separately	pointed	to	both	host	binding	proteins	and	intrinsic	sequence	

elements	as	deterministic	factors,	it	has	been	shown	that	a	balance	of	linear	and	

cyclized	genome	conformations	is	essential	for	viral	fitness	(Davis	et	al.,	2013;	

Iglesias	and	Gamarnik,	2011;	Liu	et	al.,	2016;	Villordo	et	al.,	2010).	However,	the	

balance	of	conformational	states	has	never	been	directly	assessed	in	cells	with	a	full-

length	flaviviral	genome.	

	 Though	the	functional	RNA	content	of	the	viral	termini	has	been	well	studied,	

little	else	is	known	about	the	structural	content	of	the	WNV	genome.	Guided	by	in	

silico	studies,	researchers	have	identified	and	validated	two	programmed	ribosomal	

frame-shifting	pseudoknots	in	NS2A	and	NS4B	(Faggioni	et	al.,	2012;	Melian	et	al.,	
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2010).	However,	these	account	for	a	vanishingly	small	fraction	of	WNV	open-

reading	frame	(ORF).	With	the	advent	of	high-throughput	RNA	structure	probing	

methods,	functional	RNA	elements	have	been	identified	throughout	the	ORFs	of	

several	other	single-stranded	RNA	viruses	(Dethoff	et	al.,	2018;	Huston	et	al.,	2021;	

Li	et	al.,	2018;	Siegfried	et	al.,	2014;	Wan	et	al.,	2022).	However,	these	efforts	have	

yet	to	be	extended	to	the	WNV	ORF.		

	 Prior	work	with	both	viral	and	messenger	RNAs	has	highlighted	the	

importance	of	probing	RNAs	in	their	natural	cellular	context	(Li	et	al.,	2018;	Rouskin	

et	al.,	2014;	Simon	et	al.,	2019).	As	WNV	is	maintained	in	an	enzootic	cycle	between	

vertebrate	and	invertebrate	hosts,	a	full	understanding	of	its	genome	structure	

therefore	requires	studying	how	it	folds	in	multiple	cellular	contexts.	Indeed,	

vertebrate	and	invertebrate	model	cell	systems	have	evolutionarily	distant	host	

proteomes,	varying	intracellular	salt	concentrations,	and	require	culturing	

temperatures	that	differ	by	~10˚C,	all	of	which	are	features	individually	known	to	

have	important	effects	on	the	folding	of	functional	RNAs	(Kikovska	et	al.,	2007;	

Kortmann	and	Narberhaus,	2012;	Pyle,	2002).	In	fact,	careful	analysis	of	dengue	and	

WNV	3’UTRs	have	identified	functional	elements	that	are	host-specific	and	

thermally	responsive,	respectively	(de	Borba	et	al.,	2019;	Meyer	et	al.,	2020;	

Villordo	et	al.,	2015).	To	date,	no	genome-wide	study	of	functional	RNA	structure	in	

a	viral	genome	has	been	conducted	in	multiple	hosts.	

	 Here,	we	report	the	complete	secondary	structure	of	the	WNV	genome	in	

arthropod	and	mammalian	cell	lines	using	selective	2’-hydroxyl	acylation	analyzed	

by	primer	extension	and	mutational	profiling	(SHAPE-MaP)	(Siegfried	et	al.,	2014).	
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The	SHAPE-MaP	data	is	of	exceptional	quality,	and	the	resulting	genomic	secondary	

structure	model	perfectly	recapitulates	the	SLA	motif	in	the	5’UTR.	We	closely	

examine	genome	cyclization	in	vivo,	relying	on	a	protein-free	in	vitro	system	in	

parallel	to	elucidate	the	natural	conformational	dynamics	of	the	WNV	genome	in	

infected	cells.	We	additionally	identify	a	novel	tripartite	domain	architecture	at	the	

3’	viral	terminus,	highlighting	the	importance	of	studying	viral	RNA	structures	in	

their	native	genomic	context.	We	describe	a	global	genome	architecture	that,	along	

with	specific	regions	of	well-folded	RNA,	folds	with	minimal	host-dependence.	

Relying	on	patterns	of	RNA	structural	homology	between	hosts,	we	prioritize	

specific	RNA	structures	for	functional	validation.	Using	structure	disrupting,	anti-

sense	locked	nucleic	acids	(LNAs),	we	demonstrate	that	a	subset	of	these	well-folded	

RNA	structures	play	both	conserved	and	host-specific	functional	roles.	Our	work	

deepens	our	understanding	of	WNV	biology,	identifies	conserved	aspects	of	the	viral	

life	cycle	that	are	readily	targetable	by	a	novel	class	of	nucleic	acids,	and	therefore	

represents	an	important	step	forward	in	our	fight	against	an	expanding	global	

health	threat.	

	

3.4	Results	

In	vivo	pipeline	yields	high	quality	SHAPE-MaP	data	from	two	cell	types	

	 Like	most	flaviviruses,	West	Nile	virus	(WNV)	is	naturally	maintained	in	an	

enzootic	cycle	between	mosquitoes	and	birds,	with	humans	serving	as	incidental	

hosts	(Brinton,	2014).	Therefore,	we	reasoned	it	was	important	to	query	the	WNV	

genome	structure	in	multiple	cellular	contexts	under	physiologically	relevant	
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temperatures.	To	that	end,	the	WNV	genomic	RNA	was	in	vitro	transcribed	from	an	

infectious	clone	of	the	NY99	strain	(Shi	et	al.,	2002),	capped	with	a	Type	1	cap,	and	

transfected	into	either	Vero	or	C6/36	cells	.		At	4	dpi,	cells	were	collected	and	

modified	with	NAI,	an	electrophilic	reagent	that	reacts	preferentially	with	2’OH	

moieties	in	flexible	regions	of	the	RNA	backbone,	or	DMSO	as	a	treatment	control	

(Fig	3.1A)	(Merino	et	al.,	2005).		

Following	extraction	and	purification	of	RNA,	sequencing	libraries	were	

generated	using	a	tiled-amplicon	approach.	Specifically,	19	700	nucleotide	(nt)	

amplicons	were	tiled	across	the	WNV	genome	with	100nt	overlap	between	adjacent	

amplicons	(Fig	3.1A).	Reverse	transcription	(RT)	was	performed	with	gene-specific	

RT	primers	and	manganese,	a	non-natural	co-factor	that	allows	for	the	encoding	of	

RNA-adducts	as	cDNA	mutations	(Siegfried	et	al.,	2014).	Subsequent	to	RT,	amplicon	

PCR	with	gene-specific	primers	was	performed,	with	correct	sizing	confirmed	by	gel	

electrophoresis.	Two	independent	biological	replicates	were	prepared	for	each	cell	

type,	and	final	libraries	were	sequenced	using	the	Illumina	NextSeq	500/550	

platform.	Sequencing	data	was	analyzed	using	the	ShapeMapper2	pipeline	(Busan	

and	Weeks,	2018)	.	

Resulting	data	was	subjected	to	stringent	quality	control	metrics	to	ensure	

data	was	of	sufficient	quality	for	de	novo	structure	prediction.	Median	effective	read	

depth	was	>55,000x	in	both	Vero	replicates	and	>35,000x	in	both	C6/36	replicates,	

far	exceeding	the	read	depth	threshold	required	for	high	confidence	reactivity	

calling	(Smola	et	al.,	2015a).	As	a	result,	we	collected	effective	reactivity	data	for	

99.8%	and	99.7%	of	the	WNV	genome	in	infected	Vero	or	C6/36	cells,	respectively.	
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Figure	3.1.	Tiled	amplicon	SHAPE-MaP	workflow	yields	high	quality	in	vivo	
reactivity	data	from	multiple	cell	types,	and	de	novo	structure	prediction	
recapitulates	a	conserved	functional	motif	A)	Workflow	of	in	vivo	SHAPE-MaP	
probing	using	in	vitro	transcribed	WNV	RNA	to	initiate	infection	in	Vero	and	C6/36	
cells.	RNA	is	modified	with	NAI	on	4	days	post-infection	(dpi),	and	a	tiled-amplicon	
approach	is	used	to	afford	full	genome	coverage.	B)	Comparison	of	mutation	rates	of	
NAI-modified	or	unmodified	samples	for	two	independent	biological	replicates	in	
both	Vero	and	C6/36	cells.	Lines	indicates	mean	and	whiskers	indicate	standard	
deviation.	****p	<	0.0001	by	equal	variance	unpaired	Student’s	t	test.	C)	Correlation	
plot	of	normalized	SHAPE	reactivities	from	two	biological	replicates	collected	in	
either	Vero	or	C6/36	cells.	Lines	represent	linear	regressions	fit	to	the	data.	
Pearson’s	correlation	for	each	dataset	is	shown.	D)	Secondary	structure	of	Dengue	
Virus	SLA	promoter,	adapted	from	(Lee	et	al.,	2021).	Bottom	stem	=	blue;	Top	stem	
=	teal;	Side	loop	=	purple.	E)	Secondary	structure	prediction	of	WNV	SLA	extracted	
from	full-length	prediction	in	Vero	(left)	or	C6/36	(right)	cells,	colored	by	SHAPE	
reactivity.	Green	shaded	nucleotides	=	conserved;	Blue-shaded	nucleotides	=	
conserved,	functional.		
	
We	next	compared	the	relative	mutation	rates	of	modified	or	unmodified	RNA	

samples.	This	analysis	reveals	a	significant	elevation	of	mutation	rates	for	modified	

samples	in	all	four	replicates	analyzed	(Fig	3.1B;	p-value	<	0.0001),	thus	confirming	

that	WNV	RNA	was	successfully	modified	with	NAI	in	both	in	vivo	contexts,	and	that	

these	adducts	were	encoded	as	cDNA	mutations.	Finally,	we	computed	genome-wide	
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Pearson’s	correlation	coefficients	to	compare	replicate	normalized	reactivity	values.	

Strong	correlation	was	observed	across	the	entire	WNV	genome	in	both	cell	types	

(Fig	3.1C;	Vero	=	0.79;	C6/36	=	0.84),	confirming	that	these	biophysical	measures	of	

RNA	backbone	flexibility	are	highly	reproducible	and	that	SHAPE-MaP	data	is	of	

sufficient	quality	for	genome-wide	structure	prediction.	

	 We	relied	on	the	SuperFold	pipeline	to	generate	genome-wide	structure	

predictions	using	the	reactivities	generated	in	vivo	as	experimental	constraints	

(Smola	et	al.,	2015a).	To	confirm	that	our	structure	predictions	are	of	suitable	

quality	for	identification	of	novel	riboregulatory	elements,	we	checked	if	the	

consensus	models	generated	accurately	recapitulate	the	structure	of	Stem	Loop	A	

(SLA).		

	 Rendered	in	Fig	3.1D	is	the	secondary	structure	model	of	the	DENV	SLA	

derived	from	its	crystal	structure.	It	includes	three	domains,	a	bottom	stem	(blue),	a	

top	stem	(teal),	and	a	single-stranded	side	loop	(purple),	that	are	not	correctly	

resolved	when	performing	unconstrained	secondary	structure	predictions	(Lee	et	

al.,	2021).	Both	in	vivo	secondary	structure	models	of	the	WNV	SLA,	generated	either	

in	Vero	or	C6/36	cells,	recapitulate	this	overall	architecture	(Fig	3.1E).	Within	SLA,	

the	authors	also	identify	14	double-stranded	nucleotides	with	no	known	direct	

functional	role	that	are	nevertheless	absolutely	conserved	(Fig	3.1D,	shaded	green).	

Our	models	recapitulate	the	relative	position	and	strandedness	of	12	of	these	

nucleotides.	Though	an	absolutely	conserved	“U”	nucleotide	is	rendered	single-

stranded	in	the	side	loop	of	both	structure	predictions,	the	medium	SHAPE	

reactivity	supports	our	models,	suggesting	a	WNV-specific	SLA	fold	(Fig	3.1E).		
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Three	absolutely	conserved	nucleotides	with	known	functional	roles	appear	

as	single-stranded	in	the	DENV	SLA	crystal	structure.	Two	comprise	the	unpaired	

“AG”	motif,	located	within	the	top	stem-loop	that	is	known	to	function	as	the	NS5	

interaction	site	(Fig	3.1D,	shaded	blue)	(Bujalowski	et	al.,	2017).	The	third	

nucleotide	is	a	bulged	U	in	the	bottom	stem	that,	when	mutated	or	deleted,	abolishes	

viral	replication	(Fig	3.1D,	shaded	blue)	(Filomatori	et	al.,	2011).	Both	our	Vero	and	

C6/36	structure	models	perfectly	recapitulate	the	relative	position	and	stranded-

ness	of	these	nucleotides,	with	SHAPE	reactivity	data	in	strong	agreement.	Together,	

these	findings	suggest	our	data	is	of	high	quality	and	can	confidently	be	used	to	

identify	novel	riboregulatory	elements.	

	

SHAPE	data	reveal	linear	genome	conformation	dominates	in	vivo	while	

cyclized	conformation	dominates	in	vitro	

Like	all	flaviviruses,	the	WNV	genome	alternates	between	two	conformations,	

linear	or	cyclized,	in	a	process	called	genome	cyclization	(Brinton,	2014).	This	

process	is	mediated	by	four	pairs	of	complementary	sequence	that	form	non-

contiguous,	long-range	duplexes	between	the	extreme	5’	and	3’	viral	termini	(Fig	

3.2A,	3.2B).	Importantly,	the	linear	and	cyclized	genome	conformations	are	

mutually	exclusive,	and	undergo	several	conformational	changes	as	they	

interconvert.	

Stem	loop	B	(SLB),	which	houses	the	start	codon	and	is	only	folded	in	the	

linear	genome	conformation,	contains	two	complementary	regions	-	the	5’	

upstream-of-AUG-Region	(5’UAR)	and	the	5’downstream-of-AUG-Region	I	(5’DAR-	
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Figure	3.2.	The	WNV	genome	favors	the	linear	genome	conformation	over	the	
cyclized	genome	conformation	in	infected	mammalian	and	arthropod	cell	
lines.	A)	Schematic	of	secondary	structures	at	the	5’	and	3’	viral	terminus	that	
comprise	the	linear	genome	conformation.	Sequences	that	mediate	genome	
cyclization	are	colored	and	labeled.	Stem	Loop	A	(SLA),	Stem	Loop	B	(SLB),	Capsid	
Hairpin	(cHP),	Open	Reading	Frame	(ORF),	Short	Hairpin	(sHP),	3’	Stem	Loop	(3’SL).	
B)	Schematic	of	secondary	structures	and	long-range	duplexes	that	comprise	the	
cyclized	genome	conformation,	labeled	as	in	(A).	C-F)	Normalized	SHAPE	
reactivities	mapped	to	mutually	exclusive	structural	elements	of	the	linear	(left)	or	
cyclized	(right)	genome	conformation,	labeled	as	in	(A)	or	(B),	respectively.	
Cyclization	Defection	(Cyc_Def);	Mutated	nucleotides	are	shaded	red.	
	
1)	(Fig	3.2A;	boxed,	pink	and	green,	respectively).	Immediately	3’	of	SLB	is	the	

capsid	hairpin	(cHP),	a	structure	known	to	direct	correct	start	codon	usage	by	a	

scanning	ribosome	(Clyde	and	Harris,	2006).	The	base	of	cHP,	which	melts	upon	

genome	cyclization,	overlaps	with	the	two	remaining	complementary	regions	-	5’	

downstream-of-AUG-Region-II	(5’DAR-II)	and	the	5’	cyclization	sequence	(5’CYC)	
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(Fig	3.2A;	boxed,	purple	and	blue,	respectively).	Importantly,	the	top	portion	of	cHP	

remains	folded	upon	cyclization	(Fig	3.2B,	boxed).		

The	formation	of	the	CYC	duplex	(Fig	3.2B,	blue)	is	thought	to	be	an	essential	

first	step	for	genome	cyclization,	providing	the	binding	energy	required	for	

unwinding	of	stems	folded	in	the	linear	conformation	(Friebe	et	al.,	2011).	Indeed,	

mutations	introduced	into	the	3’CYC	region	completely	abrogate	viral	growth	(Basu	

and	Brinton,	2011).	Importantly,	the	5’	and	3’	arms	of	the	CYC	duplex	are	primarily	

single-stranded	in	the	linear	genome	conformation	(Fig	3.2A,	blue).	While	the	

secondary	structures	that	comprise	the	linear	conformation	can	be	extracted	from	

structure	predictions	prepared	above,	the	cyclized	genome	conformation	cannot	be	

predicted	due	to	distant	constraints	imposed	during	structure	prediction	(Smola	et	

al.,	2015a).	We	therefore	reasoned	that	evaluating	the	mapping	quality	of	our	in	vivo	

SHAPE	reactivity	to	the	mutually	exclusive	elements	in	the	linear	and	cyclized	

conformations	may	reveal	which	conformation	dominates	in	vivo	(Spasic	et	al.,	

2018).	

The	in	vivo	reactivities	strongly	support	formation	of	the	linear	

conformation.	Indeed,	reactivities	from	both	cell	types,	when	mapped	to	the	

predicted	SLB	structures,	show	that	highly	reactive	nucleotides	are	almost	entirely	

restricted	to	single-stranded	regions,	while	lowly	reactive	nucleotides	are	restricted	

to	double-stranded	regions	(Fig	3.2C,	3.2D,	Linear).	Interestingly,	G99,	found	in	the	

start	codon,	is	highly	reactive	even	though	it	is	predicted	as	double-stranded.	It	is	

possible	this	flexibility	may	afford	access	to	a	scanning	ribosome.	Similarly,	with	the	

exception	of	two	nucleotides	at	the	base	of	cHP,	the	in	vivo	reactivities	from	both	cell	
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types	agree	with	a	folded	cHP	(Fig	3.2C,	3.2D,	Linear).	Importantly,	a	highly	flexible	

G113	does	not	lend	support	to	either	genome	conformation,	as	it	is	double-stranded	

in	both.		

Low	quality	mapping	of	reactivities	to	the	CYC	duplex	reveal	that	the	cyclized	

genome	conformation	is	disfavored	in	vivo.	Specifically,	nucleotides	140	-	144,	

contained	in	the	5’CYC	duplex	arm	and	single-stranded	in	the	linear	conformation,	

are	highly	reactive	in	both	cell	types	(Fig	3.2C,	3.2D,	Cyclized).	Similarly,	

nucleotides	10926	–	10930,	contained	in	the	3’CYC	duplex	arm	and	single-stranded	

in	the	linear	conformation,	are	also	highly	reactive	in	both	cell	types	(Fig	3.2C,	3.2D,	

Cyclized).	Taken	together	these	data	suggest	that	the	CYC	duplex	is	not	formed	in	

vivo.	

Because	multiple	host	proteins	have	been	implicated	in	genome	cyclization,	

we	performed	in	vitro	probing	experiments	on	natively	purified,	full-length	genomic	

RNA	to	better	understand	the	cyclization	dynamics	of	the	genomic	RNA	in	a	protein-

free	system	(Davis	et	al.,	2013;	Dong	et	al.,	2008;	Polacek	et	al.,	2009).	Reactivities	

derived	from	the	wild-type	WNV	construct	show	that	the	cyclized	genome	

conformation	dominates	in	vitro.	This	is	evidenced	by	strong	disagreement	between	

our	in	vitro	reactivity	data	and	a	folded	SLB,	including	highly	reactive	nucleotides	at	

the	base	of	SLB	that	become	single-stranded	upon	genome	cyclization	(Fig	3.2E,	

Linear).	Even	more,	low	reactivity	values	support	the	formation	of	the	long-range	

CYC	duplex,	including	nucleotides	that	were	shown	to	have	high	reactivity	in	vivo	

(Fig	3.2E,	Cyclized).		
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Importantly,	the	use	of	an	in	vitro	system	allows	us	to	probe	a	cyclization	

defective	mutant	(Cyc_Def)	that	cannot	grow,	and	therefore	cannot	be	probed	in	

vivo.	The	Cyc_Def	mutant	is	generated	by	inverting	five	nucleotides	in	the	3’CYC	

duplex,	thus	disrupting	formation	of	the	CYC	duplex	(Fig	3.2F;	mutated	nucleotides	

shaded	red).	This	mutation	renders	the	virus	replication-incompetent	and	unable	to	

revert,	suggesting	a	profound	replication	defect	(Basu	and	Brinton,	2011).	Our	in	

vitro	probing	data	of	the	Cyc_Def	mutant	reveal	striking	observations.	First,	

reactivity	mapping	to	both	the	SLB	and	CYC	duplex	confirm	that	the	mutations	

introduced	have	the	intended	structural	consequence.	Specifically,	reactivity	

mapping	to	SLB	supports	the	presence	of	the	linear	conformation,	while	reactivity	

mapping	to	the	CYC	duplex	shows	highly	reactivity	nucleotides	present	in	both	the	

5’	and	3’CYC	duplex	arms	(Fig	3.2F).	Put	another	way,	this	pattern	of	reactivity	

mapping	represents	the	data	signature	of	the	linear	genome	conformation.	In	this	

context,	this	data	further	bolsters	the	observation	that	the	linear	genome	

conformation	dominates	in	vivo,	as	the	in	vivo	reactivity	mapping	of	the	actively	

replicating,	wild	type	construct	almost	perfectly	recapitulates	that	of	the	Cyc_Def	

construct	in	vitro.		

Taken	together,	these	data	suggest	that,	in	the	absence	of	any	host	factors,	

the	WNV	genome	naturally	favors	the	cyclized	genome	conformation.	In	a	cellular	

context,	host	factors	may	disrupt	this	natural	equilibrium,	causing	the	genome	to	

favor	its	linear	form.		
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Genome-wide	structure	prediction	of	the	WNV	genome	reveals	a	novel	

tripartite	domain	architecture	of	the	3’	viral	terminus	

	 A	large	body	of	work,	spanning	multiple	decades,	has	provided	strong	

support	for	the	existence	of	four	pseudoknots	in	the	3'UTR	of	WNV.	These	

pseudoknots	provide	mechanistic	stability	that	ultimately	results	in	liberation	of	a	

non-coding	RNA,	called	the	subgenomic	flaviviral	RNA	(sfRNA),	that	plays	a	crucial	

role	in	innate	immune	evasion	and	viral	pathogenesis	(de	Borba	et	al.,	2019;	Funk	et	

al.,	2010;	MacFadden	et	al.,	2018;	Pijlman	et	al.,	2008).	Our	in	vivo	data	support	the	

presence	of	all	four	pseudoknots,	as	the	majority	of	all	pseudoknotted	nucleotides	

are	lowly	reactive	in	both	replicate	data	sets	in	both	cell	types	(Fig	A3.1A,	A3.1B).	

For	these	reasons,	these	pseudoknots	were	forced	in	all	genome-wide	structure	

predictions	performed.	The	structure	of	the	3’	viral	terminus,	extracted	from	these	

genome-wide	predictions,	reveals	a	novel,	tripartite	domain	architecture	with	

striking	structural	homology	between	cell	types	(Fig	3.3A,	3.3B).	Each	of	the	three	

structural	domains	is	identified	on	the	basis	of	a	unique	and	reproducible	

combination	of	SHAPE	reactivity,	Shannon	Entropy,	and	stranded-ness.		

	 Domain	I	(Fig	3.3A,	3.3B,	pink)	is	situated	upstream	of	the	stop	codon	in	the	

coding	region	of	NS5.		The	majority	of	the	nucleotides	contained	in	Domain	I	exhibit	

low	reactivity,	low	Shannon	entropy,	and	are	double-stranded;	~60%	of	nucleotides	

have	reactivities	<0.4	(Fig	3.3C;	Vero	=	58.6%,	C6/36	=	63.4%),	~85%	of	

nucleotides	have	Shannon	Entropy	<0.1	(Fig	3.3D;	Vero	=	84.8%,	C6/36	=	83.4%),	

and	~55%	of	nucleotides	are	double-stranded	(Fig	3.3E;	Vero	=	55.9%,	C6/36	=	

58.6%).	In	fact,	a	sub-section	of	this	domain	qualifies	as	well-folded	as	defined	in	the	
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methods	section	(Table	3.1;	Vero	-	Region18,	C6/36	-	Region19).	Most	interestingly,	

the	5’	end	of	Domain	I	is	engaged	in	a	longer	distance	interaction	with	the	5’	end	of	

Domain	III.	This	reveals	that	the	3’UTR	does	not	fold	independently	of	the	viral	ORF,	

confirming	a	similar	observation	made	regarding	the	dengue	virus	3’	viral	terminus	

(Dethoff	et	al.,	2018).	

	 Domain	II	includes	both	coding	and	non-coding	nucleic	acid	sequence,	and	

therefore	contains	the	stop	codon	of	the	viral	ORF.	Further,	it	is	unique	among	the	

three	domains	in	that	it	is	the	most	flexible	and	least	folded	(Fig	3.3A,	3.3B,	green).	

The	majority	of	the	nucleotides	contained	in	Domain	II	exhibit	high	reactivity,	high	

Shannon	entropy,	and	are	single-stranded;	<45%	of	nucleotides	have	reactivities	

<0.4	(Fig	3.3C;	Vero	=	43.4%,	C6/36	=	35.2%),	~45%	of	nucleotides	have	Shannon	

Entropy	<0.1	(Fig	3.3D;	Vero	=	42.6%,	C6/36	=	46.7%),	and	~35%	of	nucleotides	

are	double-stranded	(Fig	3.3E;	Vero	=	36.1%,	C6/36	=	23%).	This	region	was	

previously	reported	to	include	Stem	Loop	I	(SLI),	though	it	is	absent	from	all	

structural	models	generated	(Pijlman	et	al.,	2008).	Instead,	this	region	includes	a	

long,	highly	reactive	single-stranded	region	that	sits	immediately	upstream	of	

Domain	III	(Fig	A3.2A,	A3.2B).	

	 Domain	III	perfectly	corresponds	to	the	sfRNA	and	exhibits	data	signatures	

that	suggest	it	is	the	most	structured	domain	at	the	3’	viral	terminus	(Fig	3.3A,	

3.3B,	purple).	The	majority	of	the	nucleotides	contained	in	Domain	III	exhibit	low	

reactivity,	low	Shannon	entropy,	and	are	double-stranded;	~85%	of	nucleotides	

have	reactivities	<0.4	(Fig	3.3C;	Vero	=	85.5%,	C6/36	=	86.1%),	~80%	of	

nucleotides	have	Shannon	Entropy	<0.1	(Fig	3.3D;	Vero	=	78.9%,	C6/36	=	79%),		
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Figure	3.3.	The	3’	viral	terminus	of	WNV	is	comprised	of	three	distinct	RNA	
structural	domains.	Structure	of	the	3’	viral	terminus	determined	in	infected	(A)	
Vero	or	(B)	C6/36	cells,	color-coded	by	domain.	Stop	codon	=	red;	1st	nucleotide	of	
the	largest	sfRNA	=	black;	Pseudoknotted	bases	indicated	by	pink	lines;	Previously	
identified	structural	motifs	are	labeled.	C)	Nucleotides	in	each	domain	binned	by	
normalized	reactivity,	with	bin	size	expressed	as	a	fraction	of	total	nucleotides	in	
that	domain.	D)	Shannon	entropy	signatures	of	each	domain,	plotted	as	in	(C).	E)	
Stranded-ness	of	each	domain,	plotted	as	in	(C).	
	



	 90	

and	64.2%	of	nucleotides	are	double-stranded	(Fig	3.3E;	Vero	=	64.2%,	C6/36	=	

64.2%).	(Fig	3.3A,	3.3B,	purple).	Strikingly,	the	structure	of	Domain	III	is	identical	

in	both	cell	types	(Table	3.1,	Vero	–	Region	19,	C6/36	–	Region	20;	SENS	=	100%,	

PPV	=	100%).		

	 However,	our	model	deviates	slightly	from	existing	models	of	the	WNV	

sfRNA.	As	mentioned	above,	a	long-range	duplex	forms	between	Domains	I	and	III.	

Formation	of	this	duplex	liberates	nucleotides	that	would	otherwise	form	the	base	

of	the	Stem	Loop	II	(SLII),	allowing	them	to	engage	in	previously	unreported,	longer	

range	interactions	(Fig	3.3A,	3.3B,	shaded	blue).	As	a	direct	consequence,	the	

duplex	reported	to	form	the	base	of	Dumbbell	I	(DBI)	also	does	not	fold,	instead	

base-pairing	with	sequence	~100nt	upstream	(Fig	3.3A,	3.3B,	shaded	grey).	Our	

models	otherwise	recapitulate	all	of	the	structural	elements	previously	reported	for	

the	WNV	3’UTR,	including	RCS3,	SLIII,	SLIV,	CS3,	DBII,	sHP,	and	the	3’SL	(Fig	3.3A,	

3.3B,	labeled).	Overall,	our	model	suggests	Domain	III	is	extensively	base-paired	

and	highly	compact,	and	suggests	a	context-specific	fold	for	both	the	3’UTR	and	

specifically	the	sfRNA.	

	

West	Nile	Virus	genome	folds	into	networks	of	well-folded	regions	with	little	

apparent	host	dependency	

	 The	high	structural	homology	observed	for	functional	elements	in	the	5’	and	

3’UTR	of	WNV	suggested	that,	despite	being	cultured	in	different	cell	types,	

structural	homology	might	extend	into	the	viral	ORF.	To	test	this,	we	first	analyzed	

the	global	correlation	of	Vero	and	C6/36	reactivities.	Remarkably,	we	observed	
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correlations	between	cell	types	that	were	as	strong	as	those	observed	for	

reactivities	collected	in	the	same	cell	type	(Fig	3.4A,	0.76	<	R	<	0.89;	Fig	3.1C,	0.79	<	

R	<	0.84).	This	suggests	that	the	per-nucleotide	backbone	flexibility	across	the	

entire	WNV	genome	is	largely	cell-type	independent.	

	
Figure	3.4.	West	Nile	Virus	genome	folds	into	networks	of	well-folded	regions	
with	little	apparent	host	dependency	A)	Comparison	of	normalized	SHAPE	
reactivities	made	between	biological	replicates	collected	in	either	Vero	or	C6/36	
cells.	Lines	represent	linear	regressions	fit	to	the	data.	Pearson’s	correlation	for	each	
dataset	is	shown.	B)	Base-pairing	content	in	the	UTRs	and	individual	protein	
domains	determined	in	Vero	(red)	or	C6/36	(blue)	cell	types.	C)	Analysis	of	SHAPE	
reactivities	and	Shannon	entropy	in	reveals	the	presence	of	highly	structured,	well-
determined	domains	in	WNV.	Nucleotide	coordinates	are	indicated	on	the	x-axis	–	
only	the	first	half	of	the	WNV	genome	is	shown.	Local	median	SHAPE	reactivity	and	
Shannon	entropy	are	indicated	by	blue	and	orange	lines,	respectively.	Well-folded	
regions	that	appear	in	both	or	only	a	single	cell	type	are	shaded	with	gray	or	red	
boxes,	respectively.	Arc	plots	for	predicted	base-pairing	interactions	in	the	
structural	model	are	shown	below	the	x-axis.	D)	Well-folded	RNA	content	in	the	
UTRs	and	individual	protein	domains	determined	in	Vero	(red)	or	C6/36	(blue)	cell	
types.	E)	The	size	of	well-folded	regions	determined	in	Vero	(red)	or	C6/36	(blue)	
cell	types.	
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	 We	sought	to	understand	whether	this	strong	agreement	in	backbone	

flexibility	is	reflected	in	discrete	secondary	structure	predictions.	At	a	global	level,	

we	did	not	observe	differences	in	the	base-pair	content	of	the	WNV	genome,	with	an	

average	double-stranded	content	of	54.3%	(±7.07%)	or	59.0%	(±5.18%)	across	

protein	domains	in	Vero	and	C6/36	cells,	respectively	(Fig	3.4B).	The	only	domain	

in	which	a	difference	was	observed	was	the	2K	peptide,	a	69nt	region	nested	

between	NS4A	and	NS4B;	23nt	of	this	region	are	double-stranded	in	Vero	cells,	

while	43nt	are	double-stranded	in	C6/36	cells	(Fig	3.4B).	Therefore,	the	apparent	

difference	in	%BPC	likely	reflects	the	small	size	of	this	region.	

	 As	our	goal	is	ultimately	to	identify	novel	riboregulatory	structures,	we	next	

focused	on	identifying	regions	of	the	genome	that	are	highly	structured	and	well	

determined.	These	criteria	have	been	successfully	deployed	to	identify	

riboregulatory	regions	in	other	single-stranded	viruses	(Dethoff	et	al.,	2018;	Huston	

et	al.,	2021;	Siegfried	et	al.,	2014;	Wan	et	al.,	2022).	Briefly,	we	identified	regions	

with	local	SHAPE	reactivity	and	Shannon	Entropy	below	the	global	median	for	

>40nt	that	appear	in	both	replicate	data	sets	from	either	Vero	or	C6/36	cells.	Any	

region	that	meets	these	“lowSS”	criteria	is	hereafter	referred	to	as	“well-folded.”		

	 When	comparing	the	well-folded	RNA	content	between	cell	types,	we	

observe	minimal	host-dependence.	For	example,	10	well-folded	regions	appear	in	

the	first	half	of	the	genome	when	actively	replicating	in	Vero	cells.	When	

considering	this	same	span	in	C6/36	cells,	we	identify	11	well-folded	regions.	Of	

these,	9	well-folded	regions	appear	in	both	cell	types	(Fig	3.4C,	shaded	grey	boxes).	

In	total,	we	identify	19	well-folded	regions	across	the	WNV	genome	in	infected	Vero	
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cells,	and	20	well-folded	regions	in	infected	C6/36	cells.	Eighteen	appear	in	both	cell	

types,	ten	of	which	have	identical	nucleotide	boundaries,	with	the	remaining	8	

overlapping	(Table	3.1,	shaded	dark	or	light	green,	respectively).	Of	all	the	well-

folded	regions	identified,	only	3	three	well-folded	regions	appear	in	a	single	cell	type	

(Fig	3.4C,	shaded	red	boxes).	These	three	regions	are	small	(<55nt)	and	cluster	

exclusively	at	the	5’	end	of	the	genome.	It	follows,	therefore,	that	we	do	not	observe	

large	differences	in	the	percent	of	each	protein	domain	that	are	well-folded	(Fig	

3.4D).	Furthermore,	we	did	not	find	significant	differences	in	the	size	of	well-folded	

domains	identified	in	each	cell-type	(Fig	3.4E).	Taken	together,	these	data	

demonstrate	that	WNV	folds	independent	of	host	context	and	suggest	that,	much	

like	proteins,	nucleic	acid	structure	is	hard-coded	in	primary	sequence.	

Table	3.1.	Database	of	well-folded	regions	identified	in	WNV	

	
*Shaded	dark	green	=	identical	nucleotides	boundaries;	shaded	light	green	=	
overlapping	nucleotide	boundaries;	not	shaded	=	cell-type	specific	
**For	SENS	and	PPV	calculations,	Vero	structure	=	“Predicted”,	C6/36	structure	=	
“Accepted”	
	 	

Structural	homology	of	well-folded	regions	serves	as	sorting	criteria	for	

functional	validation	
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	 In	order	to	provide	evolutionary	support	for	well-folded	RNA	secondary	

structures,	researchers	studying	positive-sense	RNA	viruses	often	analyze	

synonymous	rates	(dS)	(Assis,	2014;	Dethoff	et	al.,	2018;	Huston	et	al.,	2021;	

Simmonds	and	Smith,	1999;	Tuplin	et	al.,	2002).	This	mode	of	analysis	relies	on	the	

assumption	that,	if	a	secondary	structure	is	evolutionarily	conserved,	synonymous	

mutations	should	accumulate	more	quickly	at	single-stranded	regions	relative	to	

double-stranded.	Put	another	way,	higher	relative	dS	at	single-stranded	regions	

would	reflect	an	evolutionary	pressure	to	maintain	double-stranded	base-pairing	

interactions.	We	therefore	constructed	an	alignment	of	47	mosquito-borne	flaviviral	

ORFs	and	computed	relative	dS	for	well-folded	regions	in	the	WNV	genome.	

	 We	observed	significantly	elevated	dS	for	single-stranded	codons	relative	to	

double-stranded	codons	for	a	single	well-folded	region	(Fig	3.5A,	inset).	This	region,	

designated	as	Region	12,	is	the	largest	well-folded	region	identified	in	either	cell	

type.	It	contains	two	small	stem-loop	structures	that	flank	a	large	stem	capped	with	

a	multi-helix	junction,	RNA	motifs	that	have	shown	promise	as	drug	targets	(Warner	

et	al.,	2018).	Importantly,	the	reactivity	data	from	both	cell	types	agrees	strongly	

with	the	predicted	structure	(Fig	3.5A).	As	such,	Region	12	represents	an	ideal	

target	for	functional	validation.		

	 However,	as	dS	analysis	flagged	no	other	well-folded	regions,	we	recognized	

the	need	to	generate	criteria	to	prioritize	other	regions	for	functional	validation.	

Because	we	expect	conserved	riboregulatory	elements	to	fold	in	both	cell	types,	we	

reasoned	the	overall	structural	homology	of	Region	12	might	represent	such	a	

criteria.	First,	both	regions	have	identical	domain	boundaries	(Genome	coords.	=	
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Figure	3.5.	Patterns	of	structural	homology	of	well-folded	regions	between	cell	
types	allows	for	prioritization	of	putative	riboregulatory	elements	A)	RNA	
secondary	structure	of	well-folded	Region	12,	which	has	identical	nucleotide	
boundaries	and	near	identical	connectivity	in	Vero	(left)	and	C6/36	(right)	cells.	
Inset-	dS	separated	by	stranded-ness	in	Region	12	using	the	appropriate	secondary	
structure.	Lines	indicate	median	and	whiskers	indicate	interquartile	range.	*p	<	0.05	
by	equal	variance	unpaired	Student’s	t	test.	B)	RNA	secondary	structure	of	well-
folded	Region	11,	which	has	identical	nucleotide	boundaries	and	non-identical	
connectivity	in	Vero	(left)	and	C6/36	(right)	cells.	C)	RNA	secondary	structure	of	
well-folded	Region	10,	which	has	non-identical	nucleotide	boundaries,	but	identical	
connectivity	in	the	region	shared	in	Vero	(left)	and	C6/36	(right)	cells.	
	
6912	–	7183nt),	reflecting	a	strong	agreement	of	SHAPE	and	Shannon	Entropy	data	

signatures	between	cell	types.	More	importantly,	these	two	regions	are	predicted	to	
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have	near	identical	connectivity.	Indeed,	using	the	Vero	secondary	structure	as	the	

“predicted”	structure	and	the	C6/36	as	the	“accepted”	structure,	we	calculate	SENS	

and	PPV	to	be	98.7%	(76/77)	and	100%	(76/76),	respectively;	they	differ	only	by	a	

single	base-pair	predicted	between	U7092	and	G7102	in	C6/36	cells	(Fig	3.5A).	One	

other	well-folded	region,	Region	8,	has	identical	nucleotide	boundaries	(Genome	

coords.	=	5721	–	5887nt)	and	near	identical	connectivity	(SENS	=	98.11%	(52/53),	

PPV	=	100%	(52/52));	this	region	will	also	be	prioritized	for	functional	validation.	

	 We	relied	on	two	other	patterns	of	structural	homology	to	flag	regions	for	

functional	validation.	The	first	pattern	is	exemplified	by	Region	11	(Fig	3.5B),	which	

has	identical	boundaries	in	both	cell	types	(Genome	coords.	=	6736	–	6848nt),	but	

non-identical	connectivity.	It	features	two	sequential	stem-loop	structures,	with	the	

more	3’	stem	displaying	cell	type	dependent	connectivity	(SENS	=	85.71%	(30/35);	

PPV	=	85.71%	(30/35)).		Importantly,	this	difference	in	base-pairing	arises	from	

true	differences	in	reactivity;	nucleotides	6808	–	6810	are	medium	reactivity	in	

Vero	cells,	but	lowly	reactive	in	C6/36	cells	(Fig	3.5B).	One	other	well-folded	region,	

Region	6,	has	identical	nucleotide	boundaries	(Genome	coords.	=	3530	–	3626)	and	

non-identical	connectivity	(SENS	=	71.79%	(28/39),	PPV	=	71.79%	(28/39).	Both	of	

these	regions	will	be	prioritized	for	functional	validation.	

	 The	final	pattern	of	structural	homology	used	to	identify	priority	targets	is	

exemplified	by	Region	10,	a	region	with	non-identical	boundaries	(Vero,	Genome	

coords.	=	6532	–	6510;	C6/36,	genome	coords.	=	6532	–	6453)	(Fig	3.5C).	In	Vero	

cells,	this	region	consists	of	two	sequential	stems,	with	the	second	stem	absent	from	

the	well-folded	region	identified	in	C6/36	cells.	However	the	region	that	appears	as	
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well-folded	in	both	has	identical	connectivity	(SENS	=	100%	(31/31);	PPV	=	100%	

(31/31),	with	strikingly	similar	patterns	of	SHAPE	reactivities	(Fig	3.5C).		One	other	

well-folded	region,	Region	16,	has	non-identical	nucleotide	boundaries	(Vero,	

Genome	coords.	=	9065	–	9158;	C6/36,	Genome	coords	=	9083	-	9142)	but	near	

identical	connectivity	for	the	region	shared	between	cell	types	(SENS	=	93.3%	

(14/15),	PPV	=	100%	(14/14)).	Both	of	these	regions	will	be	prioritized	for	

functional	validation.	Taken	together,	these	results	show	that	evolutionary	support	

exists	for	one	well-folded	region,	but	also	that	patterns	of	structural	homology	can	

be	used	to	identify	regions	that	merit	subsequent	functional	interrogation.	

	

Functional	validation	of	candidate	structures	by	targeted	LNA	disruption	

	 Targeted	disruption	of	RNA	secondary	structures	using	anti-sense	locked	

nucleic	acids	(LNAs)	has	emerged	as	a	powerful	tool	to	identify	functional	RNA	

structures	in	viral	genomes	(Dethoff	et	al.,	2018;	Huston	et	al.,	2021;	Tuplin	et	al.,	

2015).	This	method	relies	on	the	ability	of	LNAs,	non-natural	RNA	base	analogues	

that	increase	the	Tm	of	a	given	duplex	by	2-8°C,	to	out-compete	naturally	occurring	

RNA-RNA	duplexes	(Lundin	et	al.,	2013).		While	previous	studies	used	reporter	

constructs	to	measure	viral	growth,	we	instead	generated	a	completely	novel	

workflow.	Specifically,	we	rely	on	co-transfection	of	in	vitro	transcribed,	capped	

WNV	genomic	RNA	(WNVic)	and	LNAs,	with	an	established	qRT-PCR	assay	used	to	

afford	direct	and	highly	accurate	quantitation	of	WNV	growth	(Brackney	et	al.,	2009;	

Lanciotti	et	al.,	2000).	
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	 To	establish	the	efficacy	and	dynamic	range	of	our	co-transfection	system,	we	

designed	an	LNA	that	anneals	across	the	3’CYC,	3’DAR-II,	and	3’DAR-I	cyclization	

elements	(Fig	3.2A).	This	LNA	should	result	in	disruption	of	genome	cyclization	and	

produce	a	profound	replication	defect	in	both	Vero	and	C6/36	cells.	Indeed,	we	

observe	a	significant,	>3	log10	fold	reduction	in	viral	growth	in	both	cell	types	when	

3’CYC	LNA	is	co-transfected	with	WNVic	compared	to	a	non-targeting	LNA	(Fig	

3.6A,	3.6B;	3’CYC	v	non-targeting).	Importantly,	there	is	no	significant	difference	in	

viral	growth	observed	in	either	cell	type	when	WNVic	is	transfected	alone	or	with	

the	same	non-targeting	LNA	(Fig	3.6A,	3.6B).	This	confirms	that	targeted	disruption	

of	an	RNA	structure	with	conserved,	pan-host	function	mediates	strong	defects	in	

WNV	growth	using	our	co-transfection	system	in	both	cell	types.	

	 We	next	turned	to	the	six	candidate	ORF	structures	described	above,	

prioritized	for	functional	validation	based	on	patterns	of	structural	homology	in	

different	cellular	contexts.	All	LNAs	targeting	these	regions	were	designed	with	

similar	lengths	(20nt),	%	LNA	content	(52%),	and	predicted	RNA:LNA	Tm	(89°C).	

LNAs	were	designed	for	maximal	structure	disruption,	and	target	both	single-	and	

double-stranded	regions	of	the	well-folded	RNA	structures	(Fig	3.6C	–	3.6H;	colored	

lines).	A	list	of	all	LNAs	used	in	this	study	is	available	in	Table	A3.5.	

	 Of	the	6	LNAs	targeted	to	well-folded	regions	in	the	WNV	ORF,	4	mediate	

significant	defects	in	WNV	growth	in	both	cell	types	tested	(Fig	3.6A,	3.6B).	These	

include	the	LNAs	targeted	against	Region	12	and	Region	8	(Fig	3.6C,	3.6D),	well-

folded	regions	that	share	identical	nucleotide	boundaries	and	near	identical	

connectivity	(>98%	SENS,	100%	PPV).	Significant	defects	were	also	observed	when	
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Figure	3.6.	Targeted	disruption	of	RNA	structures	with	anti-sense	locked	
nucleic	acids	(LNAs)	results	in	potent	viral	growth	defects	A-B)	Virus	growth	as	
measured	by	quantifying	viral	genomes	in	cell	supernatant	with	qRT-PCR	in	(A)	
Vero	cells	at	3dpi	or	(B)	C6/36	cells	at	6dpi.	Data	points	represent	independent	
technical	replicates.	Bar	height	is	the	mean,	and	whiskers	represent	standard	
deviation.	n.s.,	not	significant;	*p	<	0.05,	**p	<	0.01,	***p	<	0.001,	****p	<	0.0001	by	
ordinary	one-way	ANOVA	with	multiple	comparisons.		C-F)	Schematic	showing	
LNAs	(colored	lines)	targeted	to	well-folded	regions	determined	in	Vero	(left)	or	
C6/36	(right)	cells.	Region-specific	LNAs	are	colored	as	in	A/B.	



	 100	

targeting	a	sub-structure	in	Region	10	that	appears	with	identical	connectivity	

(100%	SENS,	100%	PPV)	in	both	cell	types,	though	the	well-folded	region	is	larger	

in	Vero	cells	(Fig	3.6G).	Most	interestingly,	significant	defects	were	observed	when	

targeting	Region	6,	though	the	defect	is	~3	log10-fold	stronger	in	C6/36	cells.	This	

region	contains	a	previously	reported	pseudoknot	in	NS2A	(NS1’	PK),	disrupted	

upon	LNA	annealing,	that	mediates	programmed	ribosomal	frameshifting	(PRF)	and	

generates	a	functional	NS1	variant	(Fig	3.6F;	pink	lines;	Fig	A3.2C,	A3.2D)	(Melian	

et	al.,	2010,	2014;	Winkelmann	et	al.,	2011).		

	 Of	the	6	LNAs	targeted	to	well-folded	regions	in	the	WNV	ORF,	2	mediate	

significant	defects	in	WNV	growth	in	only	a	single	cell	type	tested	(Fig	3.6A,	3.6B).	

The	first	such	LNA	targets	Region	16,	a	region	with	non-identical	boundaries	that	

contains	a	novel	pseudoknot	predicted	in	both	cell	types	using	a	workflow	described	

in	the	methods	(Fig	3.6H,	A3.2C,	A3.2D).	The	LNA	that	targets	region	16,	however,	

results	in	a	significant	growth	defect	only	in	C6/36	cells	(Fig	3.6A,	3.6B).	The	

second	LNA	with	host-specific	effects	targets	Region	11,	a	region	with	identical	

boundaries	but	non-identical	connectivity	(Fig	3.6E).	The	region	11	LNA,	which	

targets	the	stem	with	a	cell-type	specific	fold,	mediates	a	significant,	~4	log10-fold	

reduction	in	WNV	growth	in	Vero	cells,	but	has	no	effect	on	viral	growth	in	C6/36	

cells.	

	 As	all	of	the	RNA	structures	described	above	were	identified	on	the	basis	of	

their	“lowSS”	signature,	we	were	interested	to	target	a	region	that	appears	with	

highSS	signatures	in	both	cell	types.	To	that	end,	we	designed	an	LNA	against	a	

region	with	Shannon	Entropy	and	SHAPE	reactivity	above	the	global	median	in	both	
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cell	types	(Genome	coords.	=	8920	–	8939).	Interestingly,	this	LNA	mediated	no	

effect	in	Vero	cells,	but	mediates	a	significant	~4	log10-fold	defect	in	C6/36	cells	(Fig	

3.6A,	3.6B).	While	prior	work	with	SARS-CoV-2	showed	that	LNAs	targeted	against	

highSS	regions	mediate	no	effect,	these	results	suggests	that	highSS	regions	might	

harbor	regulatory	RNA	sequence,	though	not	necessarily	RNA	structure,	that	can	

play	host-specific	functional	roles	(Huston	et	al.,	2021).	

	 Taken	together,	we	identify	6	novel	RNA	structures	in	the	WNV	ORF	that	play	

functional	roles	in	the	viral	life	cycle.	Four	structures	mediate	conserved	regulatory	

roles,	while	two	function	with	apparent	host	specificity.	Interestingly,	we	also	

identify	a	highSS	region	that	may	harbor	RNA	sequence	with	a	host-specific	

functional	role.	Our	data	confirm	that	the	novel	LNA	workflow	presented	here	is	a	

potent,	highly	sensitive	method	for	validating	viral	riboregulatory	elements.	Most	

importantly,	our	data	validate	a	model	in	which	putative	riboregulatory	elements	

can	be	identified	on	the	basis	of	structural	homology	between	cell	types.	

	

3.5	Discussion	

	 We	demonstrate	that	the	WNV	genome	adopts	a	global	fold	with	little	

apparent	host-dependence,	and	is	replete	with	highly	structured,	stable	RNA	

secondary	structures,	a	subset	of	which	mediate	functional	roles	in	the	viral	life	

cycle.	Though	we	observe	only	subtle	differences	in	the	structures	of	riboregulatory	

regions	between	cell	types,	we	show	that	those	differences	can	have	profound	

impacts	on	function.	This	adds	a	fascinating	new	layer	to	a	growing	body	of	work	

showing	viral	ORFs	contain	conserved	riboregulatory	elements,	and	are	therefore	
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placed	under	remarkable	evolutionary	pressure	(Dethoff	et	al.,	2018;	Huston	et	al.,	

2021;	Wan	et	al.,	2022).	As	WNV,	and	other	flaviviruses,	represent	an	expanding	

threat	to	global	health	due	to	rapidly	warming	climates	(Whitehorn	and	Yacoub,	

2019),	this	work	will	serve	as	a	valuable	resource	to	other	researchers.	

	 While	collecting	in	vivo	reactivities	for	RNAs	often	presents	a	technical	

hurdle,	the	tiled-amplicon	approach	deployed	here	allowed	for	collection	of	

exceptionally	high	quality	SHAPE-MaP	data	in	two	evolutionarily	distant	cell	lines	

(Leamy	et	al.,	2016;	Mitchell	et	al.,	2019).	This	suggests	that	this	method,	readily	

adapted	for	any	virus	of	interest,	is	also	generalizable	to	other	cell	lines.	As	such,	it	

should	serve	as	a	useful	scaffold	for	researchers	aiming	to	study	viruses	without	

restrictions	placed	on	cellular	context.	

	 Both	the	SHAPE-Map	data	and	the	resulting	experimental	secondary	

structures	provide	novel	insights	into	previously	studied	but	poorly	understood	

aspects	of	flaviviral	biology.	Our	work	demonstrates	for	the	first	time	that	the	linear	

conformation	dominates	in	vivo	but	that,	in	a	protein-free	system,	the	cyclized	

genome	dominates	its	conformational	ensemble.	While	several	studies	have	

identified	protein-binding	partners	as	promoters	of	genome	cyclization,	our	data	

suggest	that	host	factors,	such	as	processing	ribosomes,	may	actually	push	the	

genome	away	from	its	preferred	cyclized	conformation	(Blackwell	and	Brinton,	

1997;	Davis	et	al.,	2013).	In	this	context,	sequestration	of	the	genome	away	from	

host	factors	inside	replication	complexes	would	allow	the	genome	to	naturally	

cyclize.	In	this	model,	the	“molecular	switch”	that	mediates	genome	cyclization	is	

formation	of	replication	complexes,	a	process	itself	known	to	be	dependent	on	
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translating	and	accumulating	sufficient	levels	of	WNV	non-structural	proteins	

(Brinton,	2014).	This	accords	with	studies	that	show	altering	the	balance	of	linear	

and	cyclized	genomes	negatively	alters	viral	replication	kinetics,	and	represents	an	

elegant	strategy	for	sequential	timing	of	the	viral	life	cycle	in	any	host	context	(Liu	

et	al.,	2016;	Villordo	et	al.,	2010).	

	 Our	structures	of	the	WNV	3’	viral	terminus	reveal	a	novel	tripartite	domain	

architecture,	with	each	domain	displaying	a	unique	structural	profile.	Overall,	it	

includes	a	flexible,	single-stranded	region	(Domain	II)	sandwiched	between	two	

highly	structured,	well-determined	domains	(Domain	I&III).	As	Domain	III	perfectly	

corresponds	to	the	sfRNA,	it	is	possible	that	its	positioning	immediately	

downstream	of	Domain	II	is	important	for	stalling	of	Xrn1	at	the	appropriate	

position.	Of	additional	note	is	a	long-range	base-pairing	interaction	that	forms	

between	Domain	I	and	the	5’	end	of	Domain	III	and	results	in	the	formation	of	

previously	unreported	long-range	duplexes	within	Domain	III.	While	a	deviation	

from	canonical	depictions	of	sfRNA	structure,	our	structure	may	simply	represent	a	

genome-specific	fold	of	the	3’UTR	(Funk	et	al.,	2010;	MacFadden	et	al.,	2018;	Pijlman	

et	al.,	2008).	Indeed,	our	lab	has	previously	highlighted	the	importance	of	upstream	

sequence	context	in	rendering	accurate	structure	predictions	of	viral	RNAs	(Tavares	

et	al.,	2021).	As	these	long-range	duplexes	have	high	Shannon	entropy,	it	is	likely	

that	liberation	of	the	smaller	sfRNA	species	may	be	owed	to	local	refolding	of	the	

DBI	pseudoknot	that	occurs	after	Xrn1	has	chewed	through	upstream	duplexes.	

	 We	report	a	structure	prediction	for	every	nucleotide	in	the	WNV	genome	in	

two	different,	biologically	relevant	cell	types,	allowing	us	to	interrogate	features	of	
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its	genome	architecture	that	promote	viral	fitness.	Overall,	we	report	a	minimal	

host-dependence	of	the	WNV	genome	structure	despite	vastly	different	cellular	

contexts.	This	is	reflected	in	both	strong	correlations	of	SHAPE-MaP	data	as	well	as	

almost	identical	levels	of	base-pairing	retained	across	the	WNV	genome	between	

cell	types.	Even	more,	there	is	remarkable	agreement	in	the	location,	size,	and	

connectivity	of	well-folded	regions	that	appear	across	the	genome	(Table	3.1).	The	

data	suggest	that,	much	like	proteins,	RNA	structure	is	hard-coded	into	primary	

nucleic	acid	sequence.	It	is	worth	noting	that	this	general	feature	of	RNA	structure	

may	confer	durable	fitness	advantages	to	enzootic	viruses	as	they	alternate	between	

hosts.	

	 Though	methods	used	to	provide	evolutionary	support	for	RNA	secondary	

structure	identified	only	a	single	well-folded	region,	we	do	not	believe	this	points	to	

an	absence	of	conserved	riboregulatory	elements	in	the	WNV	genome.	Rather,	we	

believe	this	may	reflect	the	slow	evolutionary	rate	of	vector	borne	viruses,	thought	

to	arise	due	to	host-specific	evolutionary	pressures	experienced	by	the	virus	as	it	

replicates	within	a	single	host	as	well	as	genetic	bottlenecks	encountered	as	the	

virus	switches	hosts	(Grubaugh	and	Ebel,	2016;	Grubaugh	et	al.,	2015;	Woelk	and	

Holmes,	1998).	These	slow	evolutionary	rates	result	in	highly	homologous	sequence	

alignments,	a	type	of	low-information	alignment	known	to	impede	efforts	to	identify	

evolutionary	patterns	of	RNA	secondary	structure	conservation	(Rivas	et	al.,	2020;	

Tavares	et	al.,	2018).	The	presence	of	functional	secondary	structure	in	the	ORF	of	a	

vector	borne	virus	would	additionally	constrain	its	evolutionary	rate,	further	

hindering	attempts	at	flagging	patterns	of	evolutionary	conservation.	
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	 Instead,	we	relied	on	our	lab’s	“structure	first”	approach,	using	patterns	of	

structural	homology	between	cell	types	to	identify	structures	that	may	mediate	

conserved	functional	roles.	With	this	novel	strategy,	we	delineate	3	unique	patterns	

of	structural	homology	that	allow	us	to	prioritize	6	well-folded	regions	for	

functional	validation.	To	that	end,	we	develop	a	novel	method	that	relies	on	co-

transfection	of	structure-disrupting	anti-sense	LNAs	along	with	in	vitro	transcribed	

WNVic.	Not	only	is	this	method	faster	and	more	scalable	than	traditional	viral	

genetics	systems,	it	allows	for	more	potent	structure	disruption	as	mutational	

strategies	in	viral	ORFs	are	necessarily	limited	to	synonymous	base	changes	to	

avoid	changes	in	coding	potential.	Even	more,	the	use	of	qRT-PCR	to	monitor	viral	

growth	allows	for	sensitive,	highly	quantitative	measurement	of	viral	growth	

defects.	

	 In	total,	we	identify	4	well-folded	RNA	structures	in	the	WNV	ORF	that,	upon	

disruption,	result	in	severe	growth	defects	in	both	cell	types	tested.	Of	these,	3	

exhibit	growth	defects	of	comparable	magnitude	in	both	cell	types;	because	many	of	

the	proteins	shared	in	these	cellular	contexts	are	viral,	it	stands	to	reason	that	the	

RNA	structures	in	Regions	2,	8,	and	10	mediate	their	function	via	recruitment	of	

viral	proteins.	.	As	such,	these	regions	would	be	ideal	targets	for	follow-up	studies	

using	RNA	anti-sense	purification	coupled	with	mass	spectrometry	(RAP-MS)	

methodologies	(McHugh	et	al.,	2015).	Of	special	interest,	however,	is	Region	6	which	

contains	the	NS1’	PK.	Though	careful	molecular	virology	has	confirmed	production	

of	an	extended	NS1	variant,	our	in	vivo	reactivities	provide	direct	confirmation	that	

WNV	NS1’	PK	folds	inside	infected	cells	(Fig	A3.2C,	A3.2D)	(Melian	et	al.,	2010).	As	
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NS1’	PK	disruption	was	shown	to	attenuate	WNV	replication	in	live	mosquitos	and	

birds,	our	data	suggest	that	the	anti-NS1’	PK	LNA	may	have	applications	as	an	anti-

viral	therapeutic	(Melian	et	al.,	2014).	By	the	same	token,	the	LNA	that	blocks	

genome	cyclization	(3’CYC)	and	resulted	in	profound	replication	defects	could	prove	

equally	efficacious	as	a	pan-flaviviral	therapeutic	agent.	

	 We	additionally	identify	2	well-folded	RNA	structures	in	the	WNV	ORF	that,	

upon	disruption,	mediate	cell-type	specific	growth	defects.	To	date,	functional	RNA	

structures	that	mediate	host-specific	effects	in	flaviviruses	have	only	been	identified	

in	UTRs	(de	Borba	et	al.,	2019;	Villordo	and	Gamarnik,	2013).	As	functional	RNA	

often	acts	through	protein	binding,	the	observed	host-specific	function	of	these	two	

regions	may	simply	reflect	the	recruitment	of	host-specific	proteins.	The	data	for	

Region	11,	however,	suggests	a	more	interesting	mechanistic	explanation.	If	the	

profound	(~4	log10-fold)	defect	observed	in	Vero	cells	was	attributable	to	protein	

binding,	one	would	expect	lower	reactivities	in	this	region	in	Vero	cells	because	

protein	binding	is	known	to	occlude	access	of	SHAPE	reagents	(Smola	et	al.,	2015b).	

However,	the	opposite	is	true;	the	region	targeted	by	the	LNA	contains	three	

contiguous	nucleotides	that	are	more	highly	reactive	in	Vero	cells.	As	Vero	cells	are	

cultured	at	a	higher	temperature	than	C6/36	cells	(37°C	v	28°C,	respectively),	one	

possible	explanation	for	the	enhanced	reactivity	of	these	nucleotides	may	be	due	to	

RNA	unfolding.	The	presence	of	a	functionally	important,	thermally	responsive	RNA	

structure	may	suggest	the	WNV	genome	harbors	an	RNA	thermometer,	host-sensing	

elements	first	identified	in	pathogenic	bacteria	(Kortmann	and	Narberhaus,	2012).	

While	prior	work	has	pointed	to	the	base	of	3’SL	in	the	WNV	3’UTR	as	a	thermally-
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responsive	element	that	influences	genome	cyclization,	Region	11	would	represent	

the	first	thermally	responsive	element	discovered	in	a	viral	ORF	(Meyer	et	al.,	2020).	

However,	more	work	is	required	to	establish	a	conclusive	link	between	the	

observed	structural	and	functional	differences	and	culturing	temperature.	

	 The	work	presented	here	deepens	our	understanding	of	the	West	Nile	Virus	

life	cycle,	revealing	a	global	genome	fold	with	minimal	host	dependence	We	identify	

six	riboregulatory	elements	that	fold	with	only	subtle	differences	between	cell	types	

that	function	with	either	conserved	or	host-specific	functional	roles.		Our	study	also	

demonstrates	that	patterns	of	structural	homology	can	serve	as	powerful	indicators	

of	functional	RNA	structure,	a	method	readily	extended	to	other	enzootic	viruses.	

Finally,	the	identification	of	LNAs	that	mediate	potent	defects	in	WNV	growth,	with	

targeting	strategies	generalizable	to	other	flaviviruses,	represents	an	exciting	

development	in	the	field	of	anti-viral	nucleic	acid	therapeutics.	

	

3.6	Methods	

Cell	Culture	

	 Vero	cells	(ATCC,	CCL-81)	were	cultured	in	Dulbecco’s	Modified	Eagle	

Medium	(DMEM)	supplemented	with	10%	heat-inactivated	fetal-bovine	serum	(HI	

FBS)	supplemented	with	NEAA,	L-glutamine,	and	sodium	bicarbonate	and	incubated	

at	37°C/5%	CO2.	C6/36	cells	(ATCC,	CRL-1660)	were	cultured	in	DMEM	

supplemented	with	10%	HI	FBS	DMEM,	NEAA,	L-glutamine,	and	sodium	bicarbonate	

and	incubated	at	28°C/5%	CO2.	Unless	otherwise	stated,	cell	lines	were	cultured	as	
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described	above.	All	experiments	using	live	WNV	were	performed	in	the	BSL3	

facility	at	the	Connecticut	Agriculture	Experimental	Station	(CAES).	

Construct	Design	and	Preparation	

	 Previous	work	has	shown	that	disruption	of	the	CYC	duplex	by	inverting	5	

consecutive	nucleotides	in	the	3’CYC	arm	results	in	a	replication	incompetent	virus	

(Basu	and	Brinton,	2011).	To	generate	this	mutant,	we	introduced	the	mutation	into	

a	plasmid	containing	the	full-length	infectious	cDNA	of	WNV.	Mutations	were	

introduced	using	site-directed	mutagenesis,	with	mutations	encoded	as	partly	

overlapping	handles	in	the	forward	and	reverse	primers	(Table	A3.1).	Successful	

mutagenesis	was	verified	at	the	Yale	Keck	Facility.	

	

In	vivo	SHAPE-MaP,	reverse	transcription,	and	library	preparation	

	 A	plasmid	containing	the	full-length	infectious	cDNA	clone	of	the	WNV	NY99	

(AF404756)	was	used	to	generate	full-length	genomic	RNA.	Briefly,	the	plasmid	was	

linearized	using	Xba1	(NEB,	Cat.	No.	R015S),	followed	by	ethanol	precipitation	and	

resuspension	in	TE	pH	7.5.	The	linearized	plasmid	serves	as	a	template	in	a	run-off,	

in	vitro	transcription	using	a	T7	RNA	polymerase	variant	P266L	(Tang	et	al.,	2014)	

with	reaction	conditions	previously	described	(Adams	et	al.,	2019).	Following	

transcription,	plasmid	template	was	digested	with	RQ1	DNase	(Promega,	Cat.	No.	

M6101)	and	RNA	purified	using	the	RNeasy	kit	(Qiagen,	Cat.	No.	74104)	according	

to	the	manufacturer’s	protocols.	A	type-1	cap,	including	an	inverted	7-

methylguanosine	and	a	2’-OMe	on	the	first	nucleotide,	are	added	to	the	RNA	using	

the	Vaccinia	Capping	Enzyme	(NEB,	Cat.	No.	M2080S)	and	2’-OMe	transferase	(NEB,	
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Cat.	No.	M0366S)	in	a	one-pot	reaction	according	to	manufacturer’s	protocols.	

Capped	RNA	was	purified	using	an	RNeasy	column,	eluted	in	1xME	buffer	(8mM	

MOPS,	0.1mM	EDTA,	pH	6.5),	diluted	to	1µg/µL,	and	frozen	down	at	-80°C	until	

needed.	Final	capped	RNA	products	were	visualized	on	a	denaturing	agarose	gel	to	

ensure	production	of	full-length	products.		

	 Prior	to	transfection,	Vero	or	C6/63	cells	were	seeded	into	eight	10cm	tissue	

culture	treated	plates	and	grown	to	~90%	confluency.	Transfection	of	in	vitro	

transcribed,	capped	viral	RNA	was	performed	using	the	Mirus	TransIT®-mRNA	

Transfection	Kit	(Cat.	No.	MIR2225).	Specifically,	6	µg	of	viral	RNA	was	transfected	

per	10cm	plate	according	to	manufacturer’s	protocol.	Four	hours	post-transfection	

(hpt),	cells	were	gently	washed	once	with	cold	1xPBS	and	complete	media	replaced.	

	 Four	days	post-infection	(dpi),	media	was	aspirated	from	tissue	culture	

plates	and	cells	washed	once	with	cold	1xPBS.	The	contents	of	4	x	10cm	plates	were	

collected	in	2	mL	total	of	1xPBS	with	cell	scrapers,	spun	down	at	1000g	for	5	min	at	

4°C,	resuspended	in	2	mL	1xPBS,	and	transferred	to	15	mL	falcon	tubes.	

Subsequently,	200	µL	of	2M	NAI	or	an	equivalent	volume	of	DMSO	was	added	to	the	

suspension.	Samples	were	pipetted	vigorously	to	ensure	sufficient	mixing	and	

incubated	in	the	dark	for	10	min.		

	 Following	the	10	min.	incubation,	6	mL	of	Trizol	reagent	was	added.	Samples	

were	incubated	for	10	min	to	ensure	complete	viral	inactivation.	RNA	was	extracted	

with	addition	of	1.2	mL	chloroform:isoamyl	alcohol	(24:1),	spun	at	full	speed	for	15	

min,	and	the	aqueous	phase	was	transferred	to	a	fresh	tube.	To	this	tube	was	added	

16	mL	of	100%	EtOH	(70%	final),	and	samples	were	incubated	overnight	at	-20*C.	
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RNA	was	precipitated	by	spinning	tubes	at	20,000g	for	30	min	at	4°C,	washing	once	

with	70%	EtOH,	and	spun	again	at	20,000g	for	15	min	at	4°C.	The	EtOH	was	

aspirated	off,	and	pellets	were	air-dried	for	5	min.	The	pellet	was	resuspended	in	

1xME	buffer,	purified	using	the	Qiagen	RNeasy	kit	according	to	manufacturer’s	

protocol,	and	stored	at	-80°C	until	needed.	

	 To	prepare	sequencing	libraries,	we	relied	on	a	tiled-amplicon	approach.	

Specifically,	we	designed	19	700nt	amplicons	tiled	across	the	WNV	genome	to	

achieve	full	sequencing	coverage.	Adjacent	amplicons	overlapped	by	100nt,	with	

additional	overlap	at	the	5’	and	3’	viral	termini	to	ensure	sufficient	sequencing	

coverage.	A	list	of	all	gene-specific	RT	and	PCR	primers	used	is	available	in	Table	

A3.2.	

	 Reverse	transcription	(RT)	reactions	were	prepared	using	1.5	μg	of	total	

cellular	RNA,	SuperScript	II	(SSII)	(Invitrogen,	Cat.	No.	18064014),	SSII-MaP	

reaction	buffer	(50mM	1M	Tris-HCl	pH	8.0,	75mM	KCl,	10mM	DTT,	6mM	MnCl2,	

0.5mM	dNTP),	and	1μM	gene-specific	RT	primer.	RT	reactions	were	incubated	at	

42°C	for	3	hrs.	Following	RT,	viral	genomic	RNA	was	degraded	enzymatically	at	37°C	

using	an	equal	mix	of	RNaseA	(NEB,	Cat.	No.	T3018L),	RNaseT1	(NEB,	Cat.	No.	

EN0541),	and	RNaseH	(NEB,	Cat.	No.	M0297S).	Single-stranded	cDNA	was	purified	

using	AmpureXP	beads	(Agencourt,	Cat.	No.	A63881)	with	a	bead	to	sample	ration	of	

1.8:1.		

	 Tiled	amplicons	were	generated	using	5	μL	of	cDNA,	gene-specific	forward	

and	reverse	primers,	and	NEBNext	Ultra	II	Q5	Mastermix	(Cat.	No.	M0544L).	

Touchdown	cycling	PCR	conditions	were	used	to	enhance	PCR	specificity	(68-58°C	
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annealing	temperature	gradient)	(Korbie	and	Mattick,	2008).	PCR	reaction	products	

were	purified	with	Monarch	PCR	&	DNA	Clean-up	Kits	(NEB,	Cat.	No.	T1030S)	with	a	

binding	buffer:	sample	ratio	of	2:1.	Even	and	odd	tiled	amplicons	were	subsequently	

pooled	for	downstream	library	preparation.	

	

In	vitro	SHAPE-MaP,	reverse	transcription,	and	library	preparation	

	 In	vitro	transcriptions	of	genomic	WNV	RNA	was	performed	as	described	

above,	though	reaction	volume	was	increased	4x	(1mL	total)	to	ensure	sufficient	

yields	for	downstream	purification	steps.	After	transcription,	plasmid	template	was	

digested	using	RQ1	DNase,	followed	by	addition	of	30mg/mL	Proteinase	K	

(ThermoFisher,	Cat.	No.	17916)	to	inactivate	all	enzymes.	To	this	reaction	was	

added	25mM	final	EDTA	at	pH	8.0	to	chelate	Mg2+.	Samples	were	divided	in	half	and	

applied	to	a	100kDa	Amicon	Ultra	filtration	column	(Amicon,	Cat.	No.	UFC510096)	

and	spun	to	half	volume.	Filtration	buffer	(50mM	K-HEPES	pH	7.5,	150mM	KCl,	

100μM	EDTA	pH	8.0)	was	added	to	the	sample,	and	spun	to	half	volume.	This	step	

was	repeated	a	total	of	8	times	to	ensure	removal	of	unincorporated	nTPs	and	all	

products	of	enzymatic	digestion.		

	 	Subsequently,	RNA	was	subjected	to	size-exclusion	chromatography,	

performed	at	room	temperature,	using	a	self-packed	Sephacryl-1000	column	with	a	

24	mL	bed	volume	pre-equilibrated	with	filtration	buffer.	RNA	from	the	peak	

fraction	was	diluted	to	100ng/µL	and	folded	in	the	presence	of	10mM	Mg2+	at	37°C	

for	30	min.	Following	folding,	RNA	was	modified	with	either	a	final	concentration	of	

10mM	1M7	for	3	min	at	37°C	(synthesized	in-house)	or	100mM	NAI	(EMD	
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Millipore)	for	10	min	at	37°C.	In	both	cases,	probing	reactions	were	quenched	by	

EtOH	precipitation	and	incubated	overnight	at	-20°C.	RNA	was	then	spun	at	20,000g	

for	30	min	at	4°C,	washed	once	with	70%,	spun	again	at	20,000g	for	15	min	at	4°C,	

and	resuspended	in	1x	ME.	

	 Reverse	transcription	(RT)	reactions	were	prepared	using	1	μg	of	in	vitro	

purified	RNA,	SuperScript	II	(SSII),	SSII-MaP	reaction	buffer	(50mM	1M	Tris-HCl	pH	

8.0,	75mM	KCl,	10mM	DTT,	6mM	MnCl2,	0.5mM	dNTP),	and	random	nonamers	

(NEB,	Cat.	No.	S1254S).	RT	reactions	were	incubated	at	42°C	for	3hrs.	Second	strand	

synthesis	was	performed	using	the	NEBNext	Ultra	II	Non-Directional	Second	Strand	

synthesis	module	(NEB)	according	to	manufacturer’s	protocol.	Double-stranded	

cDNA	was	purified	using	Monarch	DNA	cleanup	kits	and	a	5:1	binding	buffer	:	

sample	ratio.		

	

Library	quantification,	sequencing,	and	data	analysis	

	 Following	generation	of	double-stranded	cDNA	in	vitro	libraries	or	dsDNA	in	

vivo	odd	and	even	amplicon	pools,	samples	were	diluted	to	0.2	ng/μL.	Libraries	

were	fragmented	and	tagged	with	Illumina	sequencing	adaptors	using	the	

NexteraXT	DNA	library	preparation	kit	(Illumina,	Cat.	No.	FC-131-1024)	according	

to	manufacturer’s	protocols,	but	at	1/5th	the	recommended	volume.	

	 Libraries	were	quantified	using	a	Qubit	dsDNA	HS	Assay	Kit	(ThermoFisher,	

Cat.	No.	Q32851)	to	determine	library	concentration	and	a	BioAnalyzer	High	

Sensitivity	DNA	Analysis	kit	(Agilent,	Cat.	No.	5067-4636)	to	determine	the	average	

library	member	size.	Library	concentration	and	average	size	were	used	to	dilute	
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libraries	to	4nM	which	are	subsequently	denatured.	Final	library	dilutions	were	

prepared	according	to	manufacturer’s	protocols,	and	libraries	were	sequenced	on	

the	NextSeq	500/550	platform.	

	 All	sequencing	data	were	analyzed	using	ShapeMapper	2	(Busan	and	Weeks,	

2018),	aligning	reads	to	the	WNV	genome	(AF404756).	Default	quality	control	

benchmarks	implemented	in	ShapeMapper2	were	used	to	ensure	data	is	of	high	

quality.	Mutation	rates	of	1M7-	or	NAI-modified	were	compared	to	unmodified	

samples	and	tested	for	significance	using	the	equal	variance	t-test.	

	

Structure	Prediction	

	 ShapeKnots	was	used	to	examine	the	West	Nile	Virus	genome	for	

pseudoknots	(Hajdin	et	al.,	2013).	Specifically,	in	silico	predictions	were	performed	

across	the	entire	genome	in	500nt	windows	separated	by	a	100nt	slide,	with	the	20	

lowest	minimum-free	energy	(MFE)	structures	output	for	each	window.	For	each	

window,	the	coordinates	of	pseudoknots	that	appeared	in	the	five	most	stable	

pseudoknotted	structures	were	extracted.	Pseudoknots	were	considered	plausible	if	

a	given	pseudoknot	appeared	in	the	majority	of	extracted	pseudoknotted	structures	

in	the	all	of	the	windows	that	covered	it.	In	addition	to	identifying	five	novel	

pseudoknots,	these	filtering	criteria	successfully	capture	two	previously	reported	

pseudoknots,	including	a	programmed	ribosomal-frameshifting	pseudoknot	

contained	in	NS4b	(Faggioni	et	al.,	2012)	and	an	exoribonuclease-resistant	

pseudoknot	found	in	the	3’UTR	(Funk	et	al.,	2010;	Pijlman	et	al.,	2008).		
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	 Superfold	(Smola	et	al.,	2015a)	was	used	to	generate	a	unique	consensus	

structure	prediction	for	each	replicate	of	in	vitro	and	in	vivo	SHAPE	data	collected.	

Normalized	reactivities	were	included	as	experimental	constraints	using	default	

slope	and	intercept	values	and	a	maximum	pairing	distance	of	500nt.	Novel	

pseudoknots	flagged	with	ShapeKnots	were	only	included	as	hard	constraints	in	

individual	predictions	if	the	majority	of	pseudoknotted	nucleotides	had	low	

reactivity	(<0.4)	in	the	corresponding	datasets.	Four	additional	pseudoknots	for	

which	an	abundance	of	functional	data	exists	were	included	as	hard	constraints	

after	evaluation	using	the	same	criteria	(Fig	A3.2)	(de	Borba	et	al.,	2019;	Funk	et	al.,	

2010;	MacFadden	et	al.,	2018;	Melian	et	al.,	2014;	Pijlman	et	al.,	2008).	A	list	of	

pseudoknots	included	in	all	SuperFold	predictions	is	detailed	in	Table	A3.3.	

Structures	output	from	the	SuperFold	prediction	pipeline	were	visualized	using	

StructureEditor,	a	tool	in	the	RNAstructure	software	suite	(Reuter	and	Mathews,	

2010).	Full-length	structures	(.ct	file)	and	SHAPE	reactivities	from	in	vitro,	Vero,	and	

C6/36	models	are	available	at	the	PyleLab	GitHub	repository.	

	

Identification	of	Well-Folded	Regions	

	 We	relied	on	two	on	SHAPE	reactivity	and	Shannon	Entropy	data	signatures	

to	identify	regions	that	are	highly	structured	and	stably	folded,	respectively.	SHAPE	

reacitivty	is	calculated	using	the	ShapeMapper	analysis	tool	described	above.	

Shannon	entropy	is	derived	from	base-pairing	probabilities	calculated	using	the	

SuperFold	partition	function	(Smola	et	al.,	2015a).	Each	of	the	replicate	SHAPE	
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datasets	collected	in	a	given	cell	type	were	used	to	generate	separate	SuperFold	

predictions.	

	 For	a	given	cell-type,	local	median	SHAPE	reactivity	and	Shannon	entropy	

were	calculated	in	55nt	sliding	windows.	The	global	median	SHAPE	reactivity	and	

Shannon	entropy	were	subtracted	to	facilitate	subsequent	analysis	steps.		Regions	

were	considered	“well-folded”	if	they	met	two	criteria;	1)	local	SHAPE	and	Shannon	

Entropy	signals	were	below	the	global	median	for	stretches	>40	nucleotides	and	2)	

these	regions	appeared	in	both	replicate	data	sets.	A	region	was	not	disqualified	if	

the	local	SHAPE	reactivity	or	Shannon	Entropy	rose	above	the	global	median	for	<40	

nucleotides.	Replicate	consensus	structure	predictions	are	compared	for	regions	

that	meet	the	above	criteria	to	ensure	agreement	between	structure	models.	Well-

folded	regions	identified	in	each	cell	type	are	reported	in	Table	3.1.	

	

Multiple	Sequence	Alignment	

	 To	analyze	evolutionary	support	for	consensus	structure	predictions	

generated	in	either	Vero	or	C6/36	cell	types,	we	compiled	a	codon-based	multiple	

sequence	alignment	(MSA)	for	genomes	of	mosquito-borne	flaviviruses	(MBFV).	All	

sequences	were	chosen	based	on	a	phylogenetic	study	of	flaviviruses	(Moureau	et	al.,	

2015).	Sequences	included	in	the	MSA	are	detailed	in	Table	A3.4,	and	were	

downloaded	from	NCBI.	

	 The	open-reading	frames	of	each	virus	were	extracted	from	the	full-length	

sequences	based	on	the	GenBank	annotations.	Codon	alignments	were	generated	
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using	MACSE	v2.0.3	(Ranwez	et	al.,	2018)	and	default	parameters	(-prog	

alignSequences).	

	

Synonymous	Mutation	Rate	Analysis	

	 Codon	alignments	generated	with	MACSE	were	visualized	with	Jalview	

v2.11.0	(Waterhouse	et	al.,	2009).	Importantly,	sequences	that	corresponded	to	

gaps	in	the	parental	WNV	NY99	sequence	were	deleted.	Synonymous	mutation	rates	

for	each	codon	in	the	WNV	genome	were	estimated	using	the	phylogenetic-based	

parametric	maximum	likelihood	(FUBAR)	method	(Murrell	et	al.,	2013).	Using	a	

representative	consensus	structure	prediction	derived	from	either	Vero	or	C6/36	

cells,	each	codon	was	categorized	as	single-	or	double-stranded	as	determined	by	

the	stranded-ness	of	the	nucleotide	in	the	third	position.	Statistically	significant	

differences	between	synonymous	mutation	rates	separated	into	single-	and	double-

stranded	bins	were	determined	using	two-tailed,	equal	variance	t-test.	

	

LNA	Design	and	Transfection	

	 Locked	nucleic	acids	were	designed	to	anneal	to	target	sequences	within	the	

WNV	genome.	All	LNAs	were	designed	with	three	consecutive	LNA	bases	at	the	5’	

and	3’	ends,	with	internal	stretches	of	unlocked	bases	limited	to	three	consecutive	

nucleotides.	All	LNAs	were	designed	with	similar	thermodynamic	properties,	such	

as	length,	%GC	content,	%LNA	content,	and	LNA:RNA	duplex	Tm.	A	list	of	LNAs	

deployed	in	this	study	is	included	in	Table	A3.5.	All	LNAs	were	synthesized	in-

house.	
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	 Prior	to	LNA	transfection,	Vero	and	C6/36	cells	were	plated	and	grown	to	

~90%	confluency	in	12-well	tissue	culture	plates.	LNAs	were	co-transfected	in	

quadruplicate	at	a	final	concentration	of	400nM/well	along	with	0.5	ug	of	in	vitro	

transcribed,	Type-1	capped	WNV	genomic	RNA,	prepared	as	described	above,	using	

the	Transit-mRNA	reagent.	Four	hours	post-transfection,	cells	were	washed	with	

cold	1xPBS,	and	complete	media	was	replaced.		

	 Supernatant	samples	were	collected	on	3	dpi	from	Vero	cells,	or	6dpi	from	

C6/36	cell.	Samples	were	spun	down	at	1000g	for	5	min	at	4°C	to	remove	any	

cellular	debris.	To	remove	any	RNAs	not	encapsulated	in	virions,	supernatant	

samples	were	subjected	to	a	30	min	RNase	A	degradation	at	37°C.	RNase	A	was	

deactivated	with	addition	of	20mg/mL	Proteinase	K	and	incubation	at	37°C	for	1	

hour.	Viral	RNA	was	extracted	using	the	Mag-Bind	Viral	DNA/RNA	96	Kit	(Omega	

Bio-Tek,	M6246)	and	a	Kingfisher	Flex	liquid-handling	robot	and	frozen	at	-80°C	

prior	to	use.	

	

Quantification	of	viral	genomes	

	 To	monitor	viral	growth,	we	relied	on	a	quantitative-RT-PCR	assay	adapted	

from	(Lanciotti	et	al.,	2000)	that	allows	for	absolute	quantitation	of	viral	genomes.	

We	first	prepared	a	2.4kb	standard	from	a	portion	of	the	WNV	genome	that	includes	

the	E	gene	(Genome	Coords:	1031-3431).	RNA	standards	were	generated	as	

described	above,	purified	using	an	RNeasy	column	per	the	manufacturer’s	

instructions,	quantified	and	aliquoted	in	serial	10-fold	dilutions.	
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	 Viral	RNA	copy	numbers	in	supernatant	or	total	cellular	RNA	samples	were	

determined	using	a	FAM-labeled	TaqMan	probe	targeted	against	the	E	gene,	primers	

WNV1160F	and	WNV1229R,	and	the	Luna	Universal	Probe	One-Step	RT-qPCR	kit	

(NEB,	Cat.	No.	E3006L).	Using	a	linear	regression	derived	from	the	standard	curve,	

we	calculated	viral	RNA	genome	copy	number	per	microliter	of	supernatant,	and	

statistical	outliers	were	removed	using	the	ROUT	outlier	test	available	in	GraphPad	

Prism.	Primer	and	probe	sequences	used	are	available	in	Table	A3.1.	
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3.7	Appendix	

	

Figure	A3.1.	Analysis	of	SHAPE-MaP	reactivities	of	pseudoknotted	nucleotides	
in	the	WNV	genome	confirms	the	formation	of	these	pseudoknots	in	vivo.	A)	
Nucleotides	of	each	pseudoknot	in	the	WNV	3’UTR,	binned	by	normalized	reactivity	
collected	in	Vero	cells,	with	bin	size	expressed	as	a	fraction	of	total	nucleotides	in	
that	pseudoknot.	B)	Nucleotides	of	each	pseudoknot	in	the	WNV	3’UTR,	binned	by	
normalized	reactivity	collected	in	C6/36	cells,	plotted	as	in	(A).	C)	Nucleotides	of	the	
NS1’	pseudoknot	(left)	or	a	novel	pseudoknot	predicted	to	fold	in	Region	16	(right),	
binned	by	normalized	reactivity	collected	in	Vero	cells,	plotted	as	in	(A).	D)	
Nucleotides	of	the	NS1’	pseudoknot	(left)	or	a	novel	pseudoknot	predicted	to	fold	in	
Region	16	(right),	binned	by	normalized	reactivity	collected	in	C6/36	cells,	plotted	
as	in	(A).	
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Figure	A3.2.	Normalized	SHAPE	reactivity	mapped	to	the	structure	prediction	
of	the	3’	viral	terminus	reveals	domain-specific	patterns	of	RNA	backbone	
flexibility	Structure	of	the	3’	viral	terminus	determined	in	infected	(A)	Vero	cells	or	
(B)	C6/36,	color-coded	by	normalized	SHAPE	reactivity.	
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Table	A3.1.	Mutagenic,	qRT-PCR	primers	
Primer	Name	 Sequence	 Purpose	

Cyc_Def_F	 aaGACACCTGGGATAGACTAGG	 Cyc_Defect_F	

Cyc_Def_R	 ataGCTGTTTTGTTGTGGTGTTTTG	 Cyc_Defect_R	

WNV_1160_F	 TCAGCGATCTCTCCACCAAAG	 for	TaqMan	Assay	

WNV_1229_R	 GGGTCAGCACGTTTGTCATTG	 for	TaqMan	Assay	

WNV_1031_F	 TAATACGACTCACTATAGATTTGGTTCTCGAAGGCGACAG	 Amplify	E	gene	+	T7	promoter	

WNV_3430_R	 GTGGTGGTAAGGTGCAGCTC	 Amplify	E	Gene,	R	

	
	
Table	A3.2.	Gene-specific	primers	for	SHAPE-MaP	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Primer Name Sequence Primer Name Sequence Primer Name Sequence
RT_WNV_Amplicon_1 AGATCCTGTGTTCTCGCAC R_PCR_WNV_Amplicon_1 TCCTGTGTTCTCGCACCAC F_PCR_WNV_Amplicon_1 GAAGTATGTGGATTACATGAGTTCA
RT_WNV_Amplicon_2 AAGATCTCCTAGTCTATCC R_PCR_WNV_Amplicon_2 AGATCTCCTAGTCTATCCCAG F_PCR_WNV_Amplicon_2 AGGAAAACGAGAGGACATC
RT_WNV_Amplicon_3 TAAAACTACACTTTTATGC R_PCR_WNV_Amplicon_3 CTATAAAACTACACTTTTATGCATA F_PCR_WNV_Amplicon_3 CTTCCTCAATGCTATGTCA
RT_WNV_Amplicon_4 TTCATGATCAATTCAGTGA R_PCR_WNV_Amplicon_4 TCATGATCAATTCAGTGAAAT F_PCR_WNV_Amplicon_4 AGAGAGAGAAAAAACCCGG
RT_WNV_Amplicon_5 TGAGTTCTTTCTTCCAAGC R_PCR_WNV_Amplicon_5 GAGTTCTTTCTTCCAAGCCAG F_PCR_WNV_Amplicon_5 TCAGTGAATATGACCAGCC
RT_WNV_Amplicon_6 TACATCTTCCTCGTATTGG R_PCR_WNV_Amplicon_6 ACATCTTCCTCGTATTGGGGT F_PCR_WNV_Amplicon_6 ATAACATGGACACTCATAAAGAACA
RT_WNV_Amplicon_7 TTTCTTTCCAAACCTCTCC R_PCR_WNV_Amplicon_7 TTCTTTCCAAACCTCTCCCAA F_PCR_WNV_Amplicon_7 GGGAGAGTTTCTTTTGGAC
RT_WNV_Amplicon_8 TTTATTGAGGTCAATGAGG R_PCR_WNV_Amplicon_8 TTATTGAGGTCAATGAGGTGT F_PCR_WNV_Amplicon_8 CGAAGCTTGGTGAAAGGAA
RT_WNV_Amplicon_9 TATCTGAGAACGTTTTCCC R_PCR_WNV_Amplicon_9 ATCTGAGAACGTTTTCCCGAG F_PCR_WNV_Amplicon_9 AAGTAGTCCAATTGAACAGAAAGTC
RT_WNV_Amplicon_10 TTTCAGATATGTCTGTTGT R_PCR_WNV_Amplicon_10 TTCAGATATGTCTGTTGTGAT F_PCR_WNV_Amplicon_10 TAGTGCAGGGTGAAAGGAT
RT_WNV_Amplicon_11 TCAGTCTTCTGTTTATGGC R_PCR_WNV_Amplicon_11 CAGTCTTCTGTTTATGGCCTC F_PCR_WNV_Amplicon_11 GGAGCACCTTGGAAGATAT
RT_WNV_Amplicon_12 TTATCCAAAATCCAACTAC R_PCR_WNV_Amplicon_12 TATCCAAAATCCAACTACTGA F_PCR_WNV_Amplicon_12 AATGGCTTATCACGATGCC
RT_WNV_Amplicon_13 TATGGCTCTCAGTATCATC R_PCR_WNV_Amplicon_13 ATGGCTCTCAGTATCATCCAA F_PCR_WNV_Amplicon_13 CTGGGTACAAGACACAAAA
RT_WNV_Amplicon_14 TTATCAACTTTCCGCTCTC R_PCR_WNV_Amplicon_14 TATCAACTTTCCGCTCTCTGT F_PCR_WNV_Amplicon_14 GGAAGCAGTGAAGGACGAG
RT_WNV_Amplicon_15 TTTAGGTGCTGACTTGTAC R_PCR_WNV_Amplicon_15 TTAGGTGCTGACTTGTACATT F_PCR_WNV_Amplicon_15 TTGGTCACTGTCAACCCTT
RT_WNV_Amplicon_16 TTGATCTGTTGTTCTCCTC R_PCR_WNV_Amplicon_16 TGATCTGTTGTTCTCCTCTGC F_PCR_WNV_Amplicon_16 AACTACTCCACACAGGTTG
RT_WNV_Amplicon_17 TATTCTCCAAGCTTTAGTG R_PCR_WNV_Amplicon_17 ATTCTCCAAGCTTTAGTGTGT F_PCR_WNV_Amplicon_17 CACTGACAGTGCAGACACA
RT_WNV_Amplicon_18 TCTGTTTTTACCAAATACC R_PCR_WNV_Amplicon_18 CTGTTTTTACCAAATACCTTG F_PCR_WNV_Amplicon_18 CTCGATGTCTAAGAAACCA
RT_WNV_Amplicon_19 TTGGTGCATCTTCCATACC R_PCR_WNV_Amplicon_19 GTGCATCTTCCATACCTGA F_PCR_WNV_Amplicon_19 AGTAGTTCGCCTGTGTGAGCT
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Table	A3.3.	Pseudoknot	coordinates/constraints	for	structure	prediction	

	

PK_1 Region 16 PK
5' Arm, nt Coord. 3' Arm, nt Coord. 5' Arm, nt Coord. 3' Arm, nt Coord.

753 932 9093 9137
754 931 9094 9136
755 930 9095 9135
756 929 9096 9134
757 928 9097 9133
758 928 9098 9132
759 926 9099 9131
760 925 DBI PK
761 924 5' Arm, nt Coord. 3' Arm, nt Coord.

PK_2 10780 10913
5' Arm, nt Coord. 3' Arm, nt Coord. 10781 10912

2198 2365 10782 10911
2199 2364 10783 10910
2200 2363 10784 10909
2201 2362 10785 10908
2202 2361 10786 10907
2203 2360 NS1' PK
PK_3 5' Arm, nt Coord. 3' Arm, nt Coord.

5' Arm, nt Coord. 3' Arm, nt Coord. 3575 3619
3711 4001 3576 3618
3712 4000 3577 3617
3713 3999 3578 3616
3714 3998 3579 3615
3715 3997 3580 3614
3716 3996 3581 3613
PK_4 SLII PK

5' Arm, nt Coord. 3' Arm, nt Coord. 5' Arm, nt Coord. 3' Arm, nt Coord.
5998 6142 10535 10565
5999 6141 10536 10564
6000 6140 10537 10563
6001 6139 10538 10562
6002 6138 10539 10561
6003 6137 10540 10560
6004 6136 10541 10559

NS4B' SLIV PK
5' Arm, nt Coord. 3' Arm, nt Coord. 5' Arm, nt Coord. 3' Arm, nt Coord.

7336 7364 10694 10719
7337 7363 10695 10718
7338 7362 10696 10717
7339 7361 DBII PK
7340 7360 5' Arm, nt Coord. 3' Arm, nt Coord.
7341 7359 10857 10925

10858 10924
10859 10923
10860 10922
10861 10921
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Table	A3.4.	Viral	genome	sequences	used	for	MSA	construction	
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Table	A3.5.	LNAs	used	in	this	study	(LNA	bases	are	indicated	with	a	“+”)	
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4.	Conclusions	

	

4.1	Summary	of	Findings	

	 The	work	presented	here	adds	to	a	growing	body	of	research	demonstrating	

that	the	genomes	of	single-stranded,	positive-sense	RNA	viruses	do	far	more	than	

simply	code	for	proteins.	Instead,	they	are	replete	with	functional	RNA	secondary	

structures	that	mediate	important	aspects	of	the	viral	life	cycle	(Dethoff	et	al.,	2018;	

Huber	et	al.,	2019;	Li	et	al.,	2018;	Madden	et	al.,	2020;	Pirakitikulr	et	al.,	2016;	

Siegfried	et	al.,	2014;	Wan	et	al.,	2022).	My	dissertation	work	expands	this	

observation	to	two	additional	viruses,	SARS-CoV-2	and	West	Nile	virus,	through	

application	and	modification	of	the	SHAPE-MaP	workflow.		

	 The	experimentally	constrained	secondary	structure	models	of	both	SARS-

CoV-2	and	West	Nile	virus	genomes	capture	conserved	structures	known	to	mediate	

important	roles	in	β-coronaviruses	and	flaviviruses,	respectively.	Searching	through	

these	genomes,	we	showed	that	regions	of	well-folded	RNA	with	functional	potential	

are	scattered	throughout	the	viral	ORFs.	Even	more,	we	demonstrated	that	a	subset	

of	these	structures	mediate	functional	roles	in	the	viral	life	cycle.	Beyond	allowing	

us	to	discover	novel	aspects	of	viral	biology,	these	structural	models	will	serve	as	

invaluable	roadmaps	to	the	virology	community	writ	large.	More	importantly,	the	

work	under-taken	here	resulted	in,	and	often	times	required,	methodological	

innovations	discussed	below	that	will	greatly	facilitate	future	studies	of	viral	RNA	

structure.	
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4.1.1	SHAPE-MaP	data	collection	

	 The	study	of	SARS-CoV-2	genome	structure	necessitated	several	

methodological	innovations,	in	large	part	due	to	the	relatively	large	size	of	its	RNA	

genome.	The	original	protocol	for	in	vivo	SHAPE-MaP	data	collection	called	for	the	

use	of	SuperScript	II	(SSII),	a	reverse	transcriptase	(RT)	enzyme	derived	from	the	

Moloney	murine	leukemia	virus	(MMLV).	However,	SSII	possess	an	intrinsically	low	

processivity,	and	can	only	reverse	transcribe	~700	nucleotides	along	a	modified	

RNA	in	the	standard	SHAPE-MaP	protocol.	The	use	of	SSII	would	therefore	require	

>50	amplicons	to	afford	full	genome	coverage	of	SARS-CoV-2,	and	>100	amplicons	

for	SHAPE-MaP	experiments.	As	each	amplicon	requires	a	unique	RT	and	PCR	

reaction,	SHAPE-MaP	data	collection	would	become	tedious	and	reagent	intensive	to	

the	point	of	intractability.	

	 The	Pyle	lab	has	previously	discovered	MarathonRT,	a	Group	II-encoded	

maturase	with	exceptional	processivity	(Zhao	et	al.,	2018).	Not	only	does	

MarathonRT	out-perform	SSII	on	unmodified	RNAs,	preliminary	work	from	our	lab	

demonstrated	its	applicability	for	SHAPE-MaP	data	collection	with	long	amplicons	

as	well	(Guo	et	al.,	2020).	Using	this	enzyme,	we	were	able	to	quickly	adapt	MaP	RT	

conditions	for	the	use	of	total	cellular	RNA	from	SARS-CoV-2	infected	cells.	As	a	

result	of	MarathonRT’s	processivity,	16	amplicons	were	sufficient	to	afford	full	

genome	coverage.	As	such,	a	single	researcher	can	perform	MaP	RT	and	

subsequently	library	construction	with	fewer	reactions	and	reduced	input	cellular	

RNA.	The	method	deployed	in	pursuit	of	the	SARS-CoV-2	work	therefore	makes	the	
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study	of	extremely	long	viral	RNAs	feasible,	and	our	hope	is	that	will	serve	as	a	

valuable	tool	for	other	researchers.	

	 However,	this	method	has	important	implications	for	structural	studies	of	

long	viral	RNAs	beyond	simple	issues	of	feasibility.	Researchers	have	long	

appreciated	the	functional	importance	of	RNA	elements	with	complex	3D	folds,	such	

as	the	HCV	IRES.	However,	methods	that	allow	for	discovery	of	these	elements,	

especially	in	the	context	of	viral	RNA	genomes,	are	still	being	developed.	One	such	

method,	adapted	from	existing	chemical	probing	protocols,	allows	for	identification	

of	higher-order	structures	in	viral	RNAs.	Briefly,	it	relies	on	identification	of	

nucleotide	pairs	with	correlated	chemical	probing	signals	(Dethoff	et	al.,	2018;	

Homan	et	al.,	2014).	As	this	method	requires	that	chemical	modifications	appear	on	

the	same	molecule,	it	is	impossible	to	detect	long-range	interactions	that	exceed	the	

processivity	of	the	RT	enzyme	used.	As	such,	using	MarathonRT	for	correlated	

chemical	probing	would	allow	for	detection	of	even	longer-distance	through-space	

interactions.	It	is	worth	noting	that	the	read-format	requirements	of	Illumina	

sequencing	platforms	also	restrict	the	upper	limit	of	detection.	To	that	end,	adapting	

sequencing-based	structure	probing	methodologies	for	Nanopore	platforms	would	

similarly	improve	the	study	of	long-distance	through-space	interactions.	

	 	

4.1.2	Prioritizing	well-folded	RNAs	for	functional	validation	

	 While	recent	methodological	advancements	have	facilitated	the	study	of	

entire	viral	RNA	genomes,	the	sheer	volume	of	secondary	structures	contained	in	

genome-wide	structure	predictions	requires	the	use	of	sorting	criteria	to	flag	
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regions	that	merit	follow-up	analysis.	Typically,	researchers	have	relied	on	signals	

of	evolutionary	conservation	to	identify	candidates	with	functional	potential	

(Dethoff	et	al.,	2018;	Kutchko	et	al.,	2018;	Pirakitikulr	et	al.,	2016).	Indeed,	these	

methods	proved	successful	in	flagging	regions	in	the	SARS-CoV-2	genome	with	

functional	potential	(Figure	2.5,	2.6).	However,	it	is	well	understood	that	the	use	of	

low	information	alignments	can	hamstring	these	analysis	pipelines	(Rivas	et	al.,	

2020;	Tavares	et	al.,	2019).	Assessing	conservation	of	RNA	structures	in	viral	coding	

regions	is	made	harder	because	the	evolutionary	pressures	placed	on	sequence	with	

coding	potential	further	constrains	the	mutation	rate	of	these	sequences.	

	 It	was	no	surprise,	then,	to	see	these	methods	prove	underpowered	when	

applied	to	well-folded	regions	identified	in	the	West	Nile	virus	genome;	analysis	of	

synonymous	mutation	rates	flagged	only	a	single	region.	However,	comparison	of	

well-folded	regions	identified	in	both	mammalian	and	arthropod	cell	lines	suggested	

a	path	forward.	Specifically,	we	reasoned	that	patterns	of	structural	homology	might	

be	useful	indicators	of	functional	potential.	Remarkably,	all	six	regions	identified	on	

the	basis	of	structural	homology	were	shown	to	play	a	functional	role	in	at	least	one	

cell	type	tested	as	WNV	growth	was	reduced	upon	structure	disruption	(Figure	

3.6).	These	results	therefore	highlight	that,	at	least	for	enzootic	viruses,	patterns	of	

structural	homology	can	be	used	as	a	powerful	sorting	criteria,	especially	in	

instances	where	evolutionary	data	is	weak	or	non-existent.		

	 Though	the	application	of	this	strategy	to	other	viruses	that	alternate	

between	hosts	makes	intuitive	biological	sense,	it	is	possible	that	it	may	be	

applicable	to	viruses	that	infect	a	single	host.	For	example,	in	the	case	of	SARS-CoV-
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2,	it	would	be	interesting	to	probe	and	predict	the	entire	genome	in	multiple	cells	

types	it	can	infect	(Ravindra	et	al.,	2021).	A	comparison	of	the	structures	adopted	in	

each	cell	type	would	allow	for	identification	of	ones	that	appear	in	all	cellular	

contexts,	suggesting	functionally	important	folds.	A	comparison	of	validated	

structures	identified	either	by	evolutionary	conservation	of	structural	homology	

might	yield	an	understanding	of	which	signal	is	better	correlated	with	RNA	function.	

	

4.1.3	Functional	validation	of	viral	RNA	secondary	structures	

	 The	study	of	SARS-CoV-2	and	West	Nile	virus	represent	two	excellent	

working	examples	highlighting	the	shortcomings	of	classical	viral	genetics	strategies	

for	validating	candidate	RNAs.	In	the	case	of	SARS-CoV-2,	the	lack	of	an	infectious	

clone	early	in	the	pandemic	meant	that,	despite	having	candidate	structures	to	

validate,	it	was	impossible	to	perform	viral	mutagenesis.	Though	an	infectious	clone	

of	West	Nile	virus	has	existed	since	2002,	Flaviviruses	are	incredibly	difficult	to	

work	with.	Indeed,	these	plasmids	are	toxic	to	bacteria	and	prone	to	recombination,	

necessitating	the	use	of	very	low	copy	plasmids	and	specialized	bacterial	strains.	In	

my	own	experience,	it	took	over	4	months	of	cloning	optimization	to	successfully	

introduce	a	single,	contiguous	5-nucleotide	substitution	in	the	WNV	genome.	

	 It	was	this	difficulty	with	WNV	cloning	that	inspired	me	to	explore	alternate	

strategies	for	validating	candidate	structures	early	on	in	my	dissertation.	

Thankfully,	I	stumbled	upon	two	examples	of	anti-sense,	locked	nucleic	acids	(LNAs)	

being	deployed	to	study	functional	RNA	secondary	structure	(Dethoff	et	al.,	2018;	

Tuplin	et	al.,	2015).	With	these	studies	serving	as	a	roadmap,	we	were	able	to	
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successfully	adapt	the	structure-disrupting	LNA	strategy	to	both	viruses.	In	the	

context	of	both	SARS-CoV-2	and	WNV,	we	demonstrated	that	LNAs	targeted	against	

highly	conserved	functional	elements	mediated	potent	defects	in	viral	growth	in	

vivo.	Along	with	the	use	of	careful	controls,	were	able	to	extend	this	strategy	to	our	

candidate	RNA	structures	to	identify	novel	functional	elements	in	both	viral	ORFs.	

As	this	strategy	is	faster	and	more	scalable	than	classic	mutagenic	strategies,	our	

hope	is	that	the	method	is	widely	adopted	for	structural	inquiries	of	other	RNA	

viruses.		

	 More	exciting,	however,	is	the	possible	application	of	structure-disrupting	

LNAs	as	anti-viral	therapeutics.	Indeed,	the	field	of	nucleic	acid	therapeutics	has	

exploded	in	the	past	several	years,	with	the	most	notable	example	being	the	SARS-

CoV-2	mRNA	vaccine	(Corbett	et	al.,	2020).	The	Pyle	lab	has	also	contributed	to	this	

field,	identifying	a	small	synthetic	RNA	that	has	shown	promise	as	an	anti-tumor	

drug	(Jiang	et	al.,	2019).	It	is	not	hard	to	imagine,	then,	that	LNAs	that	mediate	

profound	replication	defects	in	viral	growth	could	be	adapted	to	clinical	settings.	

Even	more,	as	functional	RNA	structures	are	often	conserved	across	entire	viral	

families,	individual	strategies	of	LNA	targeting	could	prove	efficacious	against	a	

wide	variety	of	human	pathogens.	For	example,	LNAs	that	disrupt	genome	

cyclization	could	be	deployed	against	any	flavivirus,	albeit	with	virus-specific	

sequence.	Either	way,	LNAs	represent	an	exciting	class	of	nucleic	acids	therapeutics.	

	

4.2	Future	Directions	&	Perspectives	
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	 The	experimentally	constrained,	genome-wide	secondary	structure	models	

of	both	SARS-CoV-2	and	West	Nile	virus	represent	a	wealth	of	data	from	which	

focused	studies	of	viral	biology	can	be	launched.	As	an	example,	RNA	elements	in	the	

WNV	genome	that	mediate	pan-host	functions	could	be	further	studied	using	RNA	

antisense	purification	coupled	with	mass	spectrometry	(RAP-MS)	to	assess	if	they	

mediate	their	function	via	recruitment	of	viral	proteins.	However,	it	has	become	

evident	in	the	process	of	conducting	this	work	that	several	methods	used	for	

structure	discovery	in	long	viral	RNAs	require	further	improvement.	

	 	

4.2.1	Pseudoknot	prediction	

	 Pseudoknots	are	a	class	of	RNA	tertiary	structure	and	play	a	diverse	set	of	

conserved	roles	in	the	life	cycles	of	RNA	viruses.	The	genomes	of	both	SARS-CoV-2	

and	West	Nile	virus	contain	well-studied	examples	of	programmed	ribosomal	

frameshifting	pseudoknots,	RNA	structures	that	cause	ribosomes	to	slip	into	

different	reading	frames	(Faggioni	et	al.,	2012;	Kelly	et	al.,	2020;	Melian	et	al.,	2014).	

The	WNV	3’UTR,	like	all	flaviviruses,	contains	a	unique	class	of	pseudoknots	that	rely	

on	their	mechanstic	stability	stall	an	exoribonuclease	(Göertz	et	al.,	2016;	

MacFadden	et	al.,	2018;	Pijlman	et	al.,	2008).		

	 Owing	to	assumptions	hard-coded	into	RNA	structure	prediction	algorithms	

that	rely	on	dynamic	programming,	however,	pseudoknots	require	prediction	

pipelines	distinct	from	the	ones	implemented	in	SuperFold	(Mathews,	2006;	Smola	

et	al.,	2015).	While	pseudoknot	prediction	algorithms	that	accept	SHAPE-constraints	

have	been	developed,	there	is	no	accepted	field	standard	for	evaluating	pseudoknot	
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predictions,	if	they’re	even	performed	(Hajdin	et	al.,	2013).	Studies	that	do	predict	

pseudoknots	rely	on	a	similar	strategy.	Generally,	pseudoknot	predictions	are	made	

in	overlapping	windows	tiled	across	a	given	viral	genome.	By	evaluating	how	many	

times	a	given	pseudoknot	appears	in	all	of	the	prediction	windows	that	cover	it,	

plausible	pseudoknots	are	identified.	However,	criteria	with	widely	variable	

stringencies	have	been	implemented	in	this	sorting	step,	and	the	sorting	has	to	be	

performed	manually	(Dethoff	et	al.,	2018;	Siegfried	et	al.,	2014;	Wan	et	al.,	2022).	

Not	only	does	this	prevent	comparison	of	pseudoknots	predicted	in	different	

viruses,	it	also	prevents	comparison	of	pseudoknots	predicted	in	different	viruses.	

As	a	result,	it	makes	assessing	the	validity	of	any	one	set	of	sorting	criteria	very	

difficult.		

	 As	such,	the	field	of	viral	RNA	structure	prediction	is	in	dire	need	of	an	

automated,	standardized	pipeline	to	predict	and	evaluate	pseudoknot	predictions.	

The	ideal	framework	would	rely	on	sorting	criteria	calibrated	on	a	diverse	set	of	

pseudoknots	with	known	function.	Whether	it	is	developed	as	a	standalone	pipeline	

or	implemented	directly	in	the	SuperFold	framework,	a	standardized	pseudoknot	

prediction	pipeline	would	be	of	great	utility.	It	would	therefore	be	well-worth	the	

requisite	time	and	effort	required	to	build.	

	

4.2.2	Long-range	structure	probing	and	prediction	

	 Long-range	interactions	are	known	to	be	functionally	important	in	viral	RNA	

genomes.	Flavivirus	genome	cyclization,	discussed	at	length	in	Chapter	2,	is	a	well-

studied	example.	However,	owing	to	a	combination	of	windowed	structure	
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prediction	and	constraints	imposed	on	max-pairing	distance,	long-range	base-

pairing	interactions	are	hard	to	model.	Because	structure	predictions	of	both	SARS-

CoV-2	and	West	Nile	virus	are	prepared	using	this	pipeline,	we	report	no	base-

pairing	interactions	in	either	genome	that	exceeds	500	nucleotides.		

	 Several	methods	have	been	developed	that	allow	for	identification	of	long-

range	RNA-RNA	interactions	in	viral	genomes.	As	mentioned	above,	correlated	

chemical	probing	was	used	to	identify	functional	long-range	interactions	in	the	

Dengue	virus	genome	(Dethoff	et	al.,	2018).	Though	this	method	requires	slightly	

modified	sequencing	library	construction,	it	otherwise	requires	no	changes	to	

existing	SHAPE-	and	DMS-MaP	workflows.	Several	other	methods	have	been	

developed	that	directly	detect	long-range	RNA-RNA	interactions.	Generally,	these	

methods	rely	on	probes	that,	upon	UV	activation,	cross-link	RNA	duplexes.	Cross-

linked	duplexes	are	then	fragmented,	purified,	and	sequenced	to	identify	both	

duplex	arms.		(Lu	et	al.,	2018;	Ziv	et	al.,	2018).	More	recently,	a	bi-functional	probe	

was	developed	that,	much	like	SHAPE	probes,	reacts	selectively	with	flexible	2’-OH	

moieties.	Owing	to	the	presence	of	two	electrophilic	groups,	this	reagent	is	able	to	

cross-link	RNA	duplexes	that,	like	other	strategies,	are	identified	by	generating	and	

aligning	chimeric	reads	in	HTS	datasets	(Christy	et	al.,	2021).		

	 Datasets	generated	with	these	long-range	probing	methods	have	

demonstrated	utility	in	constraining	molecular	dynamics	simulations	of	RNAs.	

Unfortunately,	these	simulations	are	not	suitable	for	structure	discovery	in	long	

viral	genomes.	In	the	context	of	secondary	structure	prediction,	these	datasets	are	

also	of	limited	utility;	no	prediction	pipeline	currently	exists	that	accept	this	data	as	
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constraints	during	prediction	steps.	Instead,	long-range	probing	data	is	primarily	

used	to	validate	secondary	structure	models.	A	recent	study	found	that	SHAPE-

constrained	structure	predictions	that	did	not	conflict	with	long-range	probing	data	

were	more	accurate	(Huber	et	al.,	2019).	As	this	sorting	was	done	manually,	

however,	extending	this	analysis	to	long	viral	genomes	would	be	tedious	to	the	

point	of	intractability.	As	such,	there	is	an	unmet	need	for	secondary	structure	

prediction	pipelines	that	accept	long-range	probing	data	as	constraints.	Generation	

of	these	pipelines	would	not	only	yield	more	accurate	structure	predictions,	but	also	

reveal	fascinating	new	insights	into	higher-order	genome	organization	in	viruses.	

	

4.2.3	Expanding	the	search	for	functional	RNA	structures		

	 Currently,	discovery	of	candidate	RNA	structures	in	whole	viral	genome	

structure	predictions	relies	heavily	on	identifying	regions	with	low	SHAPE/Shannon	

Entropy	(lowSS).	This	is	in	part	owed	to	the	assumption	that	functional	RNAs	should	

be	both	highly	structured	with	well-determined	predictions.	However,	an	LNA	

targeted	against	a	highSS	region	resulted	in	a	profound	WNV	growth	defect	in	C6/36	

cells,	suggesting	that	functional	RNA	sequence	and	structure	exists	outside	the	

bounds	of	lowSS	regions	(Fig	36).	As	the	work	presented	in	this	dissertation	is	

focused	entirely	on	regions	with	lowSS	signatures,	there	remain	large	portions	of	

both	the	SARS-CoV-2	and	WNV	genomes	that	need	to	be	searched	for	functional	

RNA	structures.	

	 At	a	more	basic	reason,	however,	that	we	focus	our	search	for	functional	RNA	

structures	on	lowSS	regions.	Specifically,	lowSS	regions	are	the	only	regions	for	
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which	discrete	secondary	structure	predictions	are	appropriate.	Put	another	way,	

static	secondary	structure	predictions	do	not	serve	as	accurate	models	of	regions	

with	high	Shannon	Entropy.	Indeed,	because	a	high	Shannon	Entropy	indicates	that	

multiple	structures	co-exist	for	the	same	sequence,	these	regions	would	be	better	

modeled	by	conformational	ensembles.	As	SuperFold	only	explicitly	considers	

conformational	ensembles	during	the	partition	function	step,	separate	prediction	

pipelines	are	required	to	depict	RNA	conformational	ensembles.		

	 Luckily,	secondary	structure	prediction	algorithms	have	been	made	that	use	

SHAPE	reactivity	information	to	model	RNA	folding	ensembles	(Spasic	et	al.,	2018).	

Though	these	are	not	suitable	for	entire	viral	RNA	genomes,	they	represent	an	

attractive	strategy	for	targeted	inquiries	of	smaller	regions.	In	this	way,	defining	

well-folded	regions	may	have	served	the	unintentional	purpose	of	delineating	

natural	bounds	for	structural	studies	of	the	intervening	sequence.	Conformational	

ensembles	generated	for	these	regions	will	provide	a	more	robust	depiction	of	their	

structural	content,	and	could	open	up	new	avenues	of	inquiry.	For	example,	it	is	

possible	that	the	highSS	LNA	described	above	targets	a	structure	that	dominates	the	

region’s	conformational	ensemble	in	C6/36	cells,	but	that	is	weakly	populated	in	

Vero	cells.	Not	only	would	this	provide	an	explanation	for	the	cell	type-specific	effect	

observed,	it	would	serve	as	yet	another	example	of	how	evolutionary	pressures	

have	carefully	tuned	the	conformational	dynamics	of	viral	RNA	genomes.	To	that	

end,	more	detailed	structural	modeling	of	viral	RNA	genomes	represents	an	exciting	

path	forward	for	the	discovery	and	study	of	viral	RNA	structure.	
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