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The eukaryotic transcriptome is under constant flux between transcription, process-

ing, and decay. As most biological processes occur under non-steady state conditions

(e.g. during development or in reaction to an external stimulus), multiple snapshots

of the transcriptome would be required to identify RNAs under complex kinetics.

We and others have developed novel nucleotide chemistry capable of capturing tran-

scriptional dynamics in addition to relative RNA abundance in an RNA-sequencing

(RNA-seq) experiment. Recoding the hydrogen bonding pattern of the metabolic

label 4-thiouridine (s4U), a method termed TimeLapse-seq, enables us to distinguish

sequencing reads of new RNA from reads of pre-existing RNA through the presence of

T-to-C mutations. At its initial development, TimeLapse-seq provided genome-wide

information assuming steady state kinetics and limited information about transcrip-

tional induction. Additionally, at the time I started my thesis research the most

commonly used metabolic labels to capture RNA dynamics through enrichment and

the only label used in nucleotide recoding were analogues of uridine. The aim of my

thesis, therefore, was to push the development of TimeLapse-seq to assess complex

and non-steady state RNA dynamics through the introduction of a second convertible

nucleoside, 6-thioguanosine (s6G).

I extended the applications of TimeLapse-seq through multiple avenues. First, I

developed the metabolic label s6G as a convertible nucleoside capable of providing

temporal information on the transcriptome genome-wide, as TimeLapse-seq with s6G.

This is, to the best of my knowledge, the first report of using a guanosine analogue

to detect RNA dynamics through mutational analysis. The conversion of s6G to an



analogue of adenosine is achieved under identical chemical conditions used to recode

s4U, therefore opening up the opportunity of using both labels within the context of

a single experiment. Secondly, I improved existing protocols to extend our ability

to capture nascent transcription in the context of both tissue culture and primary

cells. Lastly, I engaged in developing statistical models to gain estimates of kinetic

parameters and the change thereof in the context of collaboration projects. Overall, I

contributed to, improved and established technologies to capture the dynamic processes

underlying and regulating the cellular transcriptome.
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Chapter 1

Introduction

1.1 Cellular RNA Dynamics

Living cells are governed by the dynamic processes that regulate gene expression.

RNA, in its duality between holding information content and exhibiting direct func-

tional roles, similarly exists in a state of constant flux. RNA is continuously being

synthesized, processed, and degraded with a wide range of synthesis rates [1]. While

RNA transcription and processing, namely the co-transcriptional assembly of the

spliceosome leading to removal of intronic sequences [2] as well as post-transcriptional

modifications [3], happen on the order of minutes, RNA stability spans a much wider

range from a few minutes for, for instance, antisense to many hours for housekeeping

messenger RNAs [4]. The balance between RNA transcription and decay leads to a

fine-tuned regulation of gene expression. Any disruption in the rates of transcription

or decay therefore lead to imbalances of RNA levels, which can contribute to disease

phenotypes. For instance, a recent study found that RNA destabilization rather than

changes in RNA synthesis lead to lower RNA levels available for translation into

ribosomal and mitochondrial proteins, a hallmark of amyotrophic lateral sclerosis

(ALS) and other neurodegenerative diseases [5]. Conversely, mutations driving changes
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in RNA synthesis, for instance through overactivation, lead to high levels of mRNA

available for translation into growth-driving transcription factors, which often drive

cancer progression [6]. These examples illustrate that the transcriptome is not a static

entity [7] and that loss of regulation of the dynamic processes involved in maintaining

RNA levels can lead to global changes in cellular function.

Under steady state conditions, the relative abundance of a given RNA is dependent

on its synthesis and degradation rates.

DNA
ks−→ RNA

kd−→ degradation product

The change of the steady state RNA concentration over time can therefore be described

as the rate of synthesis minus the degradation rate [8].

d[RNA]

dt
= ks − kd[RNA]

By definition, under steady state conditions, the RNA concentration is not changing

(d[RNA]
dt

= 0), leading to a direct relationship between steady state levels of RNA and

the ratio of its synthesis rate to decay rate constant.

[RNA]ss =
ks
kd

While the result of the dynamic processes of transcription and decay, namely relative

RNA abundance, can be easily captured using RNA-seq, the parameters of these

processes are more elusive. In order to estimate decay rates, newly-made RNA needs

to be distinguishable from pre-existing RNA. This becomes apparent when examining

the relationship of the degradation rate constant with the fraction of new RNA (θ),

and the time frame of interest, t, assuming simple exponential decay.
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kd = − ln(1−θ)
t

As newly-made and pre-existing RNA are inherently chemically indistinguishable,

telling the two subgroups apart presents a challenge. The lack of temporal information

in regular RNA-seq experiments becomes especially obvious when considering the

underlying processes driving a change in RNA-seq signal. A graphic representation

of the difficulty of discerning which kinetic parameter is driving the observed change

in RNA-seq signal is illustrated in Figure 1A. Shown is a simple representation of

how both an increase in the synthesis rate or a decrease in the degradation rate could

equally result in an increase in RNA-seq signal. If, however, we were able to distinguish

the newly synthesized RNA from the old RNA by, for instance coloring all newly-made

RNA in red, contribution of either rate would more easily become apparent (Figure

1B). More importantly, from a quantitative perspective, the fraction of new RNA

(θ) determined from this approach provides information necessary to determine the

transcript-specific degradation rate constant (assuming steady state) as outlined in

the equation above, as well as RNA half-lives (hl = ln(2)
kd

). As outlined in this section,

determining kinetic parameters is important for identifying the molecular mechanism

underlying a change in RNA abundance and to determine these parameters one needs

to be able to distinguish newly-made from pre-existing RNA. In the next section I

will outline various strategies that have been developed and employed over the past

decades in order to address this need.
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Figure 1: The complexity of determining the source of an increase in RNA-seq signal

A schematic outlining the difficulty of observing the changes in the underlying

dynamic processes driving a change in RNA-seq signal. (A) An increase in RNA-seq

signal (wavy lines) can either be driven by an increase in the synthesis rate (top,

blob represents RNA polymerase II) or a decrease in the degradation rate (bottom,

trash bin signifies RNA degradation). A change in either process could result in

the same overall increase in RNA-seq signal making it difficult to identify the rate
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driving the change. (B) Same as in A, with the addition of indicating newly made

RNA (red wavy lines). An increase in the synthesis rate (top) leads to a higher

proportion of new (red) RNA in the total pool, while a decrease in the degradation

rate (bottom) leads to an accumulation of old (grey) RNA making the two processes

distinguishable. This concept is the basis for identifying RNA population dynamics

by using biochemical enrichment and nucleotide recoding techniques to distinguish

newly-made from pre-existing RNA.

1.2 Biochemical Enrichment to Study RNA Dy-

namics

The same steady state levels of RNA can be achieved through multiple pathways of

regulation. While RNA-seq is a powerful tool to determine relative levels of RNA, it

is not well suited to identify which changes in dynamic processes led to the observed

transcriptional signature. As outlined in the previous section, information on RNA

transcription and decay rates could be gained if one could distinguish newly-made

from pre-existing transcripts.

While this section will focus on studying RNA dynamics through biochemical

enrichment of newly-made RNA, similar approaches to estimate RNA dynamics,

without metabolic labeling, have been developed based on the abundance of precursor-

mRNA (pre-mRNA) to mRNA. These approaches use a combination of mathematical

modeling and measured profiles of pre-mRNA to mRNA abundance from RNA-seq [1, 9]

to obtain transcript-specific estimates of RNA production, processing and degradation.

These computational approaches highlight that intronic reads in RNA-seq can be used

as a measure to detect changes in transcriptional activity [10] and have even been

employed to capture transcriptional dynamics in single cells (RNA velocity [11]). The

limitation of these techniques lies in the presence of introns in the sequencing data sets,
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which is governed by the overall abundance of the transcript, the sequencing depth of

the experiment and the timescale of splicing; the exact rates of splicing of individual

introns in vivo still remain controversial [12]. So while these computational tools are

instrumental to determine RNA dynamics from classic RNA-seq experiments, the

relatively low proportion of pre-mRNA to RNA may prove limiting for fast-splicing or

low abundance RNAs.

Instead of relying on pre-mRNA, metabolic labeling strategies can extend over

larger timescales and can be applied to a wider range of RNA species. The field

initially studied population dynamics through incorporation of radio-labeled nucleo-

sides [13, 14, 15]; however, it wasn’t until the use of non-canonical nucleosides that

biochemical separation of new from old RNA became possible (reviewed in [16]). The

most commonly used RNA metabolic labels are analogues of uridine, specifically

5-bromouridine (BrU) [17, 18], 5-ethynyluridine (EU) [19, 20] and 4-thiouridine (s4U)

[4, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Each of the non-canonical nucleosides

are readily taken up by cells from the media, phosphorylated and incorporated into

RNA molecules that are actively being transcribed, without significant perturbation

in most cell systems.

It has been reported that s4U has the capacity to influence RNA tertiary interactions

due to the changed preference of s4U to base pair with G over A [33]. While this effect

on RNA tertiary structure has been shown to cause negligible impacts on reactivity in

the context of one functional RNA [33], it is important to assess the impact of s4U on

the biological system of interest. For instance, it has been reported that s4U causes

nucleolar stress in some cell lines [34] and previous work by former graduate student

Jeremy Schofield indicates that s4U impacts HeLa cell survival. On the other hand,

the most commonly used human tissue culture cell lines, e.g. 293T or K562, show

small if any impact on the total transcriptome even after hours of s4U labeling as read

out by viability and comparative RNA-seq studies [31, 35, 36, 37, 38]. It is noteworthy
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that labeling mammalian cells with s4U leads to low levels of substitution of s4U

for canonical uridine (4-5%) thereby minimizing the risk for causing RNA structural

changes which may lead to impaired function. As longer labeling times increase the

potential for cellular toxicity it is advisable to keep the final s4U concentration low

(tens of µM). In conclusion, it is important to maintain cautious when using s4U

labeling in a new cell-line or organism (refer to this published summary of previously

used cell lines, s4U labeling times and concentrations [39]), and it is advisable to

compare total RNA-seq signal between treated and control samples to rule out any

s4U-induced changes.

The aforementioned non-canonical nucleosides each provide a biochemical “handle”

allowing for the enrichment of newly-made RNA away from the pool of pre-existing

RNA. While BrU-containing RNA is enriched through immunoprecipitation, EU and

s4U provide orthogonal chemical groups capable of forming a covalent bond to the

enrichment molecule or resin. The ethynyl group of EU can be linked to biotin-azide

through “click” chemistry in an essentially irreversible reaction, allowing for RNA

enrichment through streptavidin [19]. The sulfur at position four of s4U can be

covalently linked to an activated disulfide compound (e.g. HPDP-biotin [22], MTS-

biotin [31]) through the reversible formation of a disulfide bond. The reversible nature

of this enrichment strategy allowed for further technological advancements in studying

RNA dynamics covered in detail in Chapter 4. Using these non-canonical nucleosides

newly-made RNA, namely RNA transcribed during the course of metabolic labeling,

can then be biochemically enriched from total RNA post cell lysis. In the case of s4U,

tens of experiments have been performed over the years with labeling times ranging

from minutes to several hours in a variety of cell systems. Through RT-qPCR and

later also through next generation sequencing, RNA half-lives were determined for

short and long-lived RNAs genome-wide (reviewed in [16, 39]).

As with all biochemical enrichment protocols, background contamination and
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cross-experimental normalization can pose significant problems. Even though non-

canonical nucleosides like EU and s4U enable covalent linkage for enrichment, which

allows for stringent wash conditions, nonspecific RNA background is still observed

(up to 30% [40]). Background contamination from pre-existing RNA can lead to

significant overestimation of, for instance, splicing rates of highly abundant transcripts

(overestimation of spliced to unspliced RNA). Different research groups have employed

several strategies to minimize background contamination including various biochemical

steps [41, 25, 42] as well as pre-shearing the RNA [43]. However, background contam-

ination remains a factor when enriching for newly-made RNA and therefore limits

the accuracy of the determined kinetic parameters. Similarly, biochemical enrichment

experiments require additional reference points to be able to compare across replicates

and different experiments. While RNA-seq experiments can be normalized to each

other based on read coverage and sequencing depth [44, 45], biochemically enriched

samples often use the addition of exogenous or synthetic spike-in RNA. However, these

approaches have been shown to lead to variable results and have recently been shown

to be outperformed by normalization to endogenous intron counts [46]. In summary,

the need to normalize across enrichment samples together with RNA background

contamination create a source of extra uncertainty in the estimated kinetic parameters.

1.3 Enrichment-Free Methods to Study RNA Dy-

namics

These obstacles sparked the development of enrichment-free RNA-seq experiments

based on the principle of nucleotide recoding to separate new from old RNA. In

late 2017, we and others reported a novel approach to capture global transcriptional

dynamics by differentiating newly-made from pre-existing RNA without the need for

biochemical enrichment (TimeLapse-seq [36], SLAM-seq [37]). The premise of these
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techniques is the orthogonal reactivity of s4U compared to canonical nucleotides. While

both technologies use the metabolic label s4U, different chemical reactions are employed

to detect s4U through a mutation. The work flow of both technologies, the resulting

data and analysis is similar yielding comparable information about RNA population

dynamics. The development and considerations of TimeLapse-seq will be discussed

in more detail in the next section. Briefly, nucleotides are “read” by the cellular

machinery through their unique hydrogen bonding patterns. As an analogue of uridine,

s4U shares the same Watson-Crick face hydrogen bonding pattern, which allows it to

be invisible to the cell in most systems and therefore be substituted in for uridine

during RNA synthesis. In order to detect locations of s4U incorporation into RNA

through next generation sequencing, two different approaches can be employed. The

hydrogen bonding pattern of s4U can be disrupted trough alkylation (SLAM-seq [37])

leading to a mutation in the reverse transcription step. Our research group developed

an alternative approach, namely chemical conditions that lead to the recoding of the

s4U hydrogen bonding pattern to resemble that of cytidine (Figure 2). During reverse

transcription and subsequent PCR as part of the library preparation, this U-to-C

transition is carried through and ultimately leads to a T-to-C mutation at the location

of the s4U in the sequencing read. As a qualitative assessment, the sequencing reads

can then be crudely divided into T-to-C containing and non-T-to-C containing reads

to differentiate reads stemming from newly-made and pre-existing RNA, respectively.

More sophisticated analyses developed by our lab will be discussed in Chapter 5 and a

schematic of the s4U TimeLapse-seq workflow can be found in Figure 3. This approach

not only circumvents the issue of background contamination, it also provides internal

normalization since the standard RNA-seq analyses and normalization strategies can

be applied to these experiments. Overall, nucleotide recoding of s4U allows one to

determine kinetic parameters, such as synthesis and degradation rates, from a classic

RNA-seq experiment without the need for biochemical enrichment of RNA.
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Figure 2: TimeLapse-seq recoding of the hydrogen bonding pattern of s4U

Depicted are the chemical structures of uridine and cytidine with their correspond-

ing donor (D) and acceptor (A) hydrogen bonding patterns (top). The reaction scheme

of TimeLapse-seq recoding of the hydrogen bonding pattern of s4U to an analogue of

cytidine with the predicted intermediate state and reaction conditions (bottom). The

reaction is performed for 1h at 45◦C and does not compromise the integrity of the

RNA.
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Figure 3: Workflow of a s4U TimeLapse-seq experiment

Cells are treated with s4U for a given amount of time, after which total RNA

is extracted and subjected to TimeLapse chemistry which leads to the recoding of

the hydrogen bonding pattern of uridine into that of cytidine. Subsequent reverse

transcription and next generation sequencing preserves the U-to-C recoding and is

identified as a T-to-C mutation in the sequencing reads compared to the reference

genome. Sequencing reads with increasing number of T-to-C mutations are shown in

increasingly darker shades of red. This figure was adapted from [36].
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1.3.1 TimeLapse-seq Development and Considerations

As outlined in the preceding paragraph, the underlying principle of TimeLapse-seq,

namely the recoding of s4U, was motivated by the challenges of RNA enrichment

experiments. In an effort to move away from biochemical enrichment, Jeremy Schofield

consulted the nucleotide chemistry literature. He discovered that chemical conditions

to react s4U into an analogue of cytidine had previously been identified [47]. However,

the reactions were not performed under conditions that would ensure RNA integrity.

He therefore proposed RNA-friendly reagents to recode the hydrogen bonding pattern

of s4U into the pattern of cytidine (see Figure 2) and started to screen for optimal

conversion conditions using a variety of chemical and biochemical assays. A list of

requirements were put together to ensure the applicability of s4U recoding to accurately

infer the fraction of newly-made RNA through sequencing: The conversion of s4U had

to be orthogonal, meaning that s4U would be recoded while all canonical nucleotides

stay unreacted. The conversion reaction had to be efficient, reacting the majority of

s4U to a cytidine analogue in order to achieve sufficient signal. And finally, the reaction

had to be clean, leading to the cytidine analogue as the sole product without formation

of any byproducts. Through simulations of sequencing data, a chemical conversion

efficiency of 50% or greater was determined to be sufficient to confidently identify

changes in new RNA by TimeLapse-seq [36]. To address all of these requirements,

Jeremy and I employed several chemical and biochemical assays to characterize the

efficiency and product specificity of the reaction, the results of which I will detail

in Chapter 2. Optimal reaction conditions to transform s4U were identified: s4U is

reacted to trifluoroethyl-substituted cytidine (from here out referred to as C*) by

oxidative-nucleophilic-aromatic substitution [36].

The output of TimeLapse-seq data conveys both qualitative and quantitative

information about RNA dynamics. Even when just considering the raw sequencing

data, RNA dynamics become easily apparent: By coloring sequencing reads containing
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increasing numbers of T-to-C mutations in increasingly darker shades of red, the

proportion of reads stemming from new and pre-existing RNAs are easily distinguish-

able (red new, grey old). This approach readily shows whether a particular RNA is

short-lived with a high turnover rate, meaning the majority of RNA present in the

cell at the time of cell harvest was transcribed during the course of the experiment,

(Figure 4, top FOSL1 ) or stable for a longer period of time (Figure 4, bottom XIST ).

Importantly, we can go beyond the raw data of the sequencing reads and use statistical

modeling to quantify the fraction of reads stemming from newly-made RNA (from

here on referred to as the fraction new), from which we can get statistically robust

estimates of transcript-specific synthesis and degradation rates with their correspond-

ing uncertainty. The statistical modeling of TimeLapse-seq data will be covered in

greater depth in Chapter 5. To conclude, TimeLapse-seq captures RNA dynamics of

short to long-lived mRNAs genome-wide.
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Figure 4: s4U TimeLapse-seq captures RNA dynamics

Genome browser tracks of a TimeLapse-seq experiment performed in 293T cells (4h

100 µM s4U , RNase-free water for control). Shown are both the output of TimeLapse-

seq and the control RNA-seq experiment. TimeLapse-seq reads (red) are overlaid on

top of total RNA-seq reads (grey) with reads containing increasing numbers of T-to-C

mutations in increasingly darker shades of red. Shown are reads aligning to the fast

turnover transcript FOSL1 (top tracks) and the long-lived transcript XIST (bottom

tracks). The T-to-C mutations detected in the control RNA-seq experiment are likely

due to PCR and sequencing errors and are independent of TimeLapse treatment. I

performed the experiments presented here.
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1.3.2 Controls and Data Analysis

In this subsection I will cover the control experiments and decisions made previously in

the lab when establishing s4U TimeLapse-seq [36] as these considerations equally apply

to my development of s6G TimeLapse-seq covered in Chapters 2 and 3. After we had

established that s4U can act as a recodable nucleoside (more details provided in Chapter

2), Jeremy performed genome-wide TimeLapse-seq experiments of s4U-treated cells. He

showed that while s4U alone leads to low levels of T-to-C mutations in the sequencing

reads, with TimeLapse chemistry, a mutation rate of around 4-5% per uridine in

mammalian systems can be achieved. The amine 2,2,2-trifluoroethylamine (TFEA)

and the oxidant, NaIO4, (TimeLapse chemistry) alone did not induce significant

mutations over background for any nucleotide [36]. The oxidant NaIO4 was chosen

due to its common use in RNA biology, e.g. for 3’end labeling through oxidizing

the 3’-end vicinal diols with minimal effects on other functional groups of the RNA

[48]. Total transcript count between RNA-seq and TimeLapse-seq were found to be

highly correlated indicating that neither the treatment with s4U nor the subjection of

extracted RNA to TimeLapse chemistry compromised the information gained from

traditional RNA-seq experiments. The low level of T-to-C mutations detected in

control experiments is independent of TimeLapse chemistry treatment and likely due

to PCR and sequencing errors. Background mutations comprising of single nucleotide

polymorphisms (SNPs) or over-represented nucleotides were determined from control

RNA-seq experiments, and the flagged nucleotide positions were filtered from the

TimeLapse-seq data. Data obtained from s4U TimeLapse-seq reveals transcriptional

dynamics genome-wide and captures RNA half-lives consistent with literature [4]. The

development of this new technology aimed to study transcriptional dynamics without

the need for biochemical enrichment of newly-synthesized RNA. TimeLapse-seq allows

us to determine kinetic parameters from an internally normalized RNA-seq experiment,

without having to adjust for background contamination and with the advantage that,
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compared to enrichment approaches, very little total RNA input amount is required

(tens of µg, ng, respectively).

1.3.3 Capturing the Transient Transcriptome by Combining

Biochemical Enrichment and Nucleotide Recoding

While mRNA half-lives span from on the order of tens of minutes to hours, intronic, anti-

sense and enhancer RNAs are turned over within minutes. To capture these transient

transcripts a s4U-pulse-based enrichment approach termed transient transcriptome

sequencing (TT-seq) can be applied [30]. Cells are subjected to five minutes of s4U

and labeled RNA is extracted and enriched as described earlier. Unlike earlier versions

of short s4U treatments, TT-seq also includes a fragmentation step to enrich only

fragments of RNA that are labeled. Former graduate student Erin Duffy applied the

TT-seq approach with improved capturing chemistry (MTS-biotin [31]) to increase

the specificity of the enrichment; however, the improved capture of s4U-labeled RNA

was associated with about 15-20% of background [36], similar to the original TT-seq

protocol, motivating the addition of TimeLapse nucleotide conversion to identify bona

fide new reads.

Due to the reversibility of the s4U-based enrichment reaction (through reduction

of the disulfide bond), the Simon lab saw the possibility of integrating the enrichment

approach with TimeLapse-seq. This approach, termed TT-TimeLapse-seq, not only

captures the transient transcriptome, but also enables estimation of background

contamination in the enrichment. The presence of T-to-C mutations in the sequencing

reads allows us to distinguish signal from noise leading to more accurate estimates of

transient RNA dynamics. Since the initial proof of principle experiment performed

by two former graduate students, Jeremy Schofield and Erin Duffy [36], other Simon

lab members and I have optimized and streamlined the approach to allow for broader

applications including primary cell samples of limited quantity. Collaboration projects
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on capturing the dynamics of transient RNA species using TT-TimeLapse-seq that

I was involved in, as well as ongoing work joined with other Simon lab members is

covered in Chapter 4. To conclude, very short-lived transcriptional events can be

accurately captured with a combination of reversible s4U disulfide chemistry and

nucleotide recoding.

1.4 Determining RNA Dynamics under Non-Steady

State Conditions

The technologies outlined so far have been instrumental in studying RNA population

dynamics at steady state. However, most important biological processes happen under

non-steady state conditions, for instance during development or in reaction to an

external stimulus. This section will outline published and ongoing work aimed at

capturing RNA dynamics under complex kinetics.

Under non-steady state conditions the assumptions made to estimate kinetic

parameters, such as the degradation rate constant, do not hold. Additionally, while

some experimental setups are clearly governed by non-steady state conditions (e.g.

transcriptional response to viral infection covered in Chapter 5) other situations are

more nuanced. For instance, even under presumed steady state conditions, a particular

RNA might exist in several subgroups within the cell. This could, on the one hand,

be achieved by partitioning into membrane-bound or membrane-less organelles. Each

of the partitions could have a different half-life, possibly resulting from the protective

environment of the organelle. On the other hand, this particular RNA isoform might

be under regulatory control by several different degradation pathways, such as miRNA

or nonsense mediated decay degradation. However, when estimating half-lives from a

TimeLapse-seq experiment, one is left with an averaged value for the specific RNA

isoform which may not accurately reflect the complex kinetics. With the current
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technologies, these complex regulatory mechanisms governing RNA abundance may

easily be missed.

Furthermore, when estimating kinetic parameters it is assumed that these parame-

ters are static, meaning that a given RNA has a fixed degradation rate regardless of its

age. By modeling simple exponential decay and comparing the results to the observed

RNA abundance, Deneke et al. were able to identify several RNAs in yeast that

exhibit degradation rates which change with the age of the RNA [49]. This observation

highlights the fact that the simple assumption of constant kinetic parameters even

under cellular homeostasis can lead to false conclusions about RNA availability for

protein synthesis. As described in their manuscript, Deneke et al. argue that param-

eters estimated from a single time point cannot accurately capture these complex

kinetics. Instead, obtaining a snapshot of the transcriptome at several time points

becomes necessary to gain accurate estimates.

The field has employed several approaches to address this need, one of which is using

several RNA-seq experiments with staggered labeling times [40]. While this approach

has been successfully used to, for instance, calculate elongation rates [32], this poses a

new hurdle we initially eliminated with TimeLapse-seq: the issue of normalization

between experiments when performing biochemical enrichment. It is evident that in

order to assess complex non-steady state RNA dynamics, TimeLapse-seq and related

approaches require the use of multiple experiments capturing different time points.

These approaches would be simplified by the development of a second RNA metabolic

label, which could be employed in a pulse-chase setup to capture multiple time points

within one experiment. Challenges with establishing another RNA metabolic label

include the need of a non-canonical nucleoside other than a uridine analogue that

can not only be incorporated into cellular RNA, but also be recoded using existing

nucleotide conversion technologies. In the following I will outline my aims to establish

the metabolic label s6G as a recodable nucleoside, and I will demonstrate that s6G
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TimeLapse-seq captured RNA dynamics genome-wide.

1.4.1 Technological Advancement - s6G as a Recodable Nu-

cleoside?

In order to capture multiple time points in the life of the cellular transcriptome in

a single RNA-seq experiment, a second recodable nucleotide is needed. During the

development of TimeLapse-seq, I explored the possibility of extending the recoding of

s4U to another RNA metabolic label.

While the most commonly used non-canonical nucleosides used to study RNA are

derivatives of uridine, nucleotide conversion could hypothetically be extended to purines

as well. Having access to a non-canonical nucleoside other than a uridine analogue

may be beneficial and more appropriate in some experimental contexts, e.g. when

studying the role of pseudouridines [50], U-tailing [51] or when determining half-lives

of uridine-poor RNAs. Based on similar chemical properties, I investigated whether

the hydrogen bonding pattern of s6G can be recoded under TimeLapse conditions and

whether recoding of s6G can be used to capture RNA dynamics. I will describe the

characterization of s6G as a recodable nucleoside in Chapter 2 and my development of

TimeLapse-seq with s6G in Chapter 3. The ability to label cells with s4U and s6G and

recode both non-canonical nucleosides under the same chemical conditions provides

the opportunity to capture multiple time points within one TimeLapse-seq experiment.

I will cover my ongoing work on “dual-color” TimeLapse-seq in Chapter 6.

1.4.2 Background on s6G in Technologies and the Cellular

Context

While the most widely used metabolic labels to study RNA population dynamics

today are uridine analogues, early studies of artificial nucleosides suggested both s4U
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and s6G can be incorporated into the RNA in vivo [21, 52]. Additionally, s6G has

also occasionally been employed in photocrosslinking experiments (PAR-CLIP [53])

and RNA structural studies [54]. More recent work suggests that while incorporation

of s6G into RNA in vivo results in changes in the thermodynamics, the presence

of s6G only results in minimal effects on RNA structure [55]. I therefore reasoned

that RNA-friendly oxidative-nucleophilic-aromatic substitution, that we previously

developed for s4U, could be extended to recode s6G to 2-aminoadenosine analogues. I

hypothesized that the TimeLapse reaction conditions (NaIO4 and TFEA) could also

convert s6G into an N6-substituted analogue of adenosine (explored in Chapter 2).

Unlike s4U, whose natural counterpart uridine is phosphorylated to enter the

nucleotide-triphosphate pool, guanosine as a purine is not thought to exist as an

enzymatic substrate for phosphorylation [56]. In contrast, the purine de novo biosyn-

thesis pathway involves the construction of the nuclear base guanine on the scaffold of

5-phosphoribose. Only upon completion of guanosine-monophosphate are additional

phosphate groups added to result in GTP. The second major pathway of providing

purine triposphates is through the purine biosynthesis salvage pathway. This pathway

is thought to primarily use the nuclear base guanine as a substrate to react with phos-

phoribosyl disphosphate (PRPP) to yield GMP. This posed the question of whether

treating cells with s6G would result in similar incorporation levels as s4U or whether

we would have to take the salvage pathway route with the nuclear base analogue

6-thioguanine (6-TG). The next chapter describes the characterization of nucleotide

recoding, with both my contribution to the establishment of s4U recoding and my

development of the metabolic label s6G as a recodable nucleoside.
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Chapter 2

Development of Recodable

Nucleosides for TimeLapse-seq

This chapter contains excerpts from:

Schofield, J.A., Duffy, E.E., Kiefer, L., Sullivan, M.C., Simon, M.D. (2018)

TimeLapse-seq: Adding a Temporal Dimension to RNA Sequencing Through Nucleo-

side Recoding. Nat. Methods, 15, 221-225. doi: 10.1038/NMETH.4582

and

Kiefer, L., Schofield, J.A., Simon, M.D. (2018) Expanding the Nucleoside Re-

coding Toolkit: Revealing RNA Population Dynamics with 6-Thioguanosine. J. Am.

Chem. Soc., 140, 14567-14570. doi: 10.1021/jacs.8b08554

2.1 Author contributions

Jeremy Schofield and Matthew Simon designed the experiments for the development

and application of s4U TimeLapse-seq. Jeremy Schofield conducted the majority of

the experiments. I performed characterization experiments (NMR) on the nucleoside

recoding TimeLapse reaction of 4-thiouracil and I was working closely with Jeremy

Schofield on the chemical and biochemical characterization assays. I conducted and
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analyzed all experiments involving s6G and 6-TG.

2.2 Summary

RNA-seq is a powerful tool to study the relative abundance of RNA in a biological

sample genome-wide. However, as an endpoint assay, most temporal aspects of the

transcriptome are lost. As outlined in Chapter 1, synthesis and decay rates under

steady state conditions can be determined if newly-made RNA is distinguishable

from pre-existing RNA. Under non-steady state conditions, multiple snapshots of the

transcriptome need to be captured requiring the development of a second recodable

nucleoside compatible with TimeLapse chemistry. This chapter outlines the develop-

ment and considerations of recodable nucleosides for enrichment-free separation of

new from old RNA (TimeLapse-seq). In order to identify reads from metabolically

labeled RNA through nucleoside recoding, the chemical reaction must be orthogonal,

efficient, and clean. This chapter contains my contributions to the development of

s4U TimeLapse-seq through the characterization of chemistry of s4U recoding and my

development of s6G as a recodable nucleoside.

2.3 Characterization of the s4U Recoding Reac-

tion

As introduced in Chapter 1, a s4U to C* reaction efficiency of around 50% is sufficient

to ensure confident identification of changes in new RNA. This requires that the

reaction from s4U to C* must be efficient and clean, meaning that a large fraction

of s4U is reacted to C* and that the reaction mainly yields C* without byproducts

that could lead to non-specific or undetectable mutations. To address the latter,

I employed 1H-NMR, which detects the local magnetic field of protons providing
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structural information for all molecular species present in the NMR tube. This

approach, therefore, not only allows us to investigate whether the expected product

is formed, but also provides information about purity and any additional products

formed by the reaction. I decided to analyse the conversion reaction on the nuclear

base of s4U, 4-thiouracil (4-TU), due to fewer protons and therefore a simpler spectrum.

I compared the NMR spectra for 4-TU alone to 4-TU subjected to TimeLapse reagents

TFEA and NaIO4 (for details on the method refer to Chapter 7). Surprisingly, I found

a clean and complete conversion from starting material, 4-TU, to the expected product,

2,2,2-triluoroethyl-substituted cytosine within the course of 4h. Aside from leftover

amine, no additional peaks were observed, suggesting a clean reaction without the

formation of side products (Figure 5). The findings also suggest that the reaction of

4-TU to a substituted cytosine proceeds efficiently over the course of 4h and under the

given reaction conditions (in DMSO). Since the chemical reactivity of 4-TU could differ

from that of s4U and since the reaction was not done under standard RNA handling

conditions (aqueous), Jeremy went on to identify products of the reaction of s4U under

TimeLapse chemistry conditions by liquid chromotography mass spectrometry (LC-

MS) and developed a biochemical assay to monitor the reaction in in vitro transcribed

RNA [36] (assays described in more detail in the following sections). To conclude,

through careful chemical and biochemical characterization, Jeremy and I showed that

under TimeLapse reaction conditions s4U is converted to C* in an efficient and clean

reaction.
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Figure 5: TimeLapse chemistry causes clean conversion of 4-thiouracil

1H-NMR spectra of 4-thiouracil with (top) and without (bottom) 4h of Time-

Lapse chemistry (2,2,2-trifluoroethylamine, sodium periodate, 45◦C) with integrations

displayed below peaks. Peaks are assigned to the structures displayed (left). Peaks

corresponding to amide protons are shifted downfield and are not shown in the above

view. The solvent peak is indicated by DMSO-d6 and the water peak by HDO. *Mul-

tiplet assigned to excess amine (2,2,2-trifluoroethylamine). I performed and analyzed

the experiments presented here.
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2.4 Assessing s4U and s6G Incorporation into RNA

in Cells

Before testing whether s6G can be efficiently and cleanly recoded to an analogue of

adenosine, I established the extent of s6G incorporation into cellular RNA. As s4U has

been used for decades to label cellular RNA in various cell systems (reviewed in [39]), I

decided to use the metabolic label as a positive control of sufficient RNA incorporation.

As described in Chapter 1, there is precedent for using s6G to metabolically label RNA

in vivo [21, 53]; however, the molecular mechanisms and therefore optimal form of

label (nuclear base or nucleoside) remained to be determined. To address the question

of incorporation efficiency and ideal delivery form, I developed an activated disulfide

fluorescence labeling assay (adapted from MTS-biotin enrichment chemistry [31]).

Briefly, cells are subjected to the metabolic label by addition to the cell media for a

given amount of time (2h in this case), and 5 µg of extracted cellular RNA is reacted

with activated disulfide conjugated to a fluorophore (MTS-TAMRA). Fluorescence is

then measured and compared to that of control unlabeled RNA (Figure 6A). I found

that under the same treatment conditions (concentration and time), s6G and 6-TG

are incorporated into cellular RNA to similar levels (fluorescence over background),

albeit lower than s4U (Figure 6B). Quantifying the signal over background resulted in

a approximately 2.5-fold lower incorporation of either s6G and 6-TG compared to s4U

(Figure 6C). I speculate that as guanosine is the largest of the four nuclear bases, the

substitution of the oxygen at position 6 with the larger sulfur atom could lead to steric

hindrance in the active site of polymerase II, which would result in lower incorporation

levels of s6G. Alternatively, s6G may be less bioavailable, less efficiently incorporated

into the pool of nucleotide triphosphates or the electronics of s6G might negatively

influence its incorporation rate. Similarly, it is unclear why incorporation levels of

s6G and 6-TG are similar. This observation suggests that s6G could be an acceptable
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substrate for phosphorylation to s6GTP through the purine salvage pathway.

To assess the kinetics of label availability for incorporation into RNA, I repeated

the assay as a time series and analyzed incorporation by relative fluorescence. I found

that s4U can be detected in RNA within ten minutes of labeling, with the signal

increasing with labeling time (Figure 7A). I found similar kinetics of incorporation

for both s6G and 6-TG, albeit overall lower than s4U, with nevertheless detectable

incorporation after ten minutes and increasing incorporation over time (Figure 7B). I

screened a range of s6G and 6-TG concentrations and found no significant difference

between 10 µM - 1 mM (data not shown). Additionally, I screened for cell viability

of 6-TG under these concentrations and found no significant effect during the time

frame of experimental treatment (Figure 8 top). To conclude, s6G is incorporated

into RNA in cells and there is no obvious advantage to using its nuclear base 6-TG.

I determined that using 100 µM 6-TG or s6G seems ideal for RNA labeling in the

tissue culture cell lines used for all the following experiments and that the metabolic

labeling does not affect cell survival.
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Figure 6: Measuring s6G and 6-TG incorporation into cellular RNA by dot blot

(A) 293T cells were treated with 200 µM of s4U, s6G, 6-TG or water for 2 h.

RNA was extracted as described above. RNA (5 µg) was reacted with MTS-TAMRA.

Fluorescence intensities were determined using a GE Healthcare Typhoon FLA 9500.

Depicted are dilution series of s4U (1:4) and no treatment control (1:4), including

undiluted RNA from 6-TG and s6G treated cells (B) including quantification of the

fluorescent signal (C) indicating a 2.5- fold lower incorporation of both 6-TG and s6G

compared to s4U under the same concentration and time. This observation agrees with

sequencing results presented later on indicating an average mutation rate of 4% per U

in s4U TimeLapse-seq and 1.5% per G in s6G TimeLapse-seq (2.7 fold difference). I

performed the experiments presented here.
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Figure 7: Incorporation kinetics of s4U, s6G and 6-TG by dot blot

Cells were treated with either s4U, s6G or 6-TG for the indicated time period.

Extracted RNA was reacted with MTS-TAMRA and fluorescent signal was quantified

(assay procedure see Figure 6). I performed the experiments presented here.
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Figure 8: 6-TG does not affect cell viability over the course of a TimeLapse-seq
experiment

K562 cells were treated with increasing amounts of 6-TG, water and 1% Triton

X, as a negative control. Additionally, the cells were treated with UVA radiation

as 6-TG is thought to be photoreactive under these conditions. Cell viability was

assessed using the ATCC MTT Cell Proliferation Assay kit following manufacturer’s

instructions. I performed the experiments presented here.
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2.5 Characterization of s6G as a Recodable Nuc-

leoside

In order to address whether s6G can be recoded into an analogue of adenosine and

whether I can get the reaction to proceed efficiently and cleanly, I first used 1H-NMR

analysis. To identify the product of s6G subjected to TimeLapse chemistry (TFEA,

NaIO4), I again resorted to the nuclear base to limit the number of protons. Excitingly,

the reagents led to a clean conversion of 6-TG to N 6-trifluoroethyl substituted 2,6-

diaminopurine, the predicted product (Figure 9). The data provided evidence that

TimeLapse chemistry not only recodes 6-TG, but also gives an efficient and clean

conversion within one hour under the given reaction conditions.

To assess whether recoding is possible under standard RNA handling conditions, I

first examined the chemistry using just the nucleoside and conducted a time course

experiment surveying reactants and products by LC-MS. In LC-MS, molecules are

separated on a solid phase column based on their hydrophobicity and subsequently

analyzed by mass spectrometry. Figure 10 shows the extracted ion chromatograms

using the exact mass of the starting material and the predicted product. Since NaIO4

treatment leads to the oxidation of 3’-end vicinal diols, I decided to use the deoxy-

nucleoside of s6G instead. I found that 6-thio-2’-deoxyguanosine (s6dG) nucleoside was

consumed within 5 min and the corresponding 2-aminoadenosine analogue (hereafter

referred to as dA*) was produced within 1h (Figure 10). Furthermore, to address

whether recoding proceeds with s6G in the context of a biomolecule I modified a

previously established restriction digest assay using a double stranded DNA substrate

containing s6dG to screen for conditions able to convert s6dG to dA*. Due to docu-

mented challenges incorporating s6G into RNA using prokaryotic RNA polymerases for

in vitro transcription [57] I adapted the assay for double stranded DNA. A single s6dG

is incorporated into one strand of a double stranded DNA oligonucleotide. The s6dG
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is positioned at a site that creates an endonuclease restriction site upon successful

recoding to dA* and PCR amplification. The resulting conversion is read out by the

extent of restriction digestion of the oligonucleotide, with successful cutting as a proxy

for successful conversion of s6dG to dA*. The majority (∼ 59%) of the nucleotide s6dG

was recoded to dA* in the context of a DNA duplex using ammonia in TimeLapse

chemistry (Figure 11). Similar results were obtained using different amines, including

TFEA (Figure 12). In summary, I was able to show that s6G is reacted to A* using

TFEA and NaIO4 in an efficient and clean reaction without byproducts and in the

context of a nucleic acid polymer. Additionally, the conversion efficiency of 59% in

the context of DNA (Figure 11) suggests high enough efficiency to detect changes in

the new RNA population as determined through simulation previously [36].
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Figure 9: 6-thioguanine is recoded to a 2-amino-adenine analogue under TimeLapse
conditions

6-TG was dissolved in deuterated DMSO and analyzed by 1H-NMR with (top) and

without (bottom) TimeLapse chemistry. I performed and analyzed the experiments

presented here.
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Figure 10: s6G is efficiently recoded to A* under TimeLapse conditions

Extracted ion chromatograms corresponding to the masses of 6-thio-2’-deoxyguanosine

and 2-amino-6-(2,2,2-trifluoroethyl)-amino-2’-deoxyadenosine. I performed the experi-

ments presented here.
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Figure 11: s6dG is recoded to dA* under TimeLapse conditions in the context of
dsDNA

Restriction digest assay of a DNA duplex containing a single 6-thio-2’-deoxyguanosine,

treated with 600 mM NH3 and 10 mM NaIO4 for 1 h at 45 ◦C and subsequent digestion

by SspI restriction enzyme (AATATT) and analysis by Native-PAGE. I performed

the experiments presented here.
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Figure 12: Screen for optimal s6G recoding conditions by restriction digest assay

(A) Scheme of the assay in which a single s6dG is incorporated into double

stranded DNA by substituting s6dGTP for dGTP. The DNA duplexes are subjected

to TimeLapse chemistry (amine, oxidant) under the specified time and temperature

conditions. Using an adapter-specific fluorescent oligo, the conversion of s6dG is read

out by incorporation of a T (successful conversion) or a C (unsuccessful conversion)

during the following PCR step, creating a restriction site for SspI restriction enzyme,

or not, respectively. (B) Conditions screen for TimeLapse chemistry to convert s6dG

to dA* in the context of a DNA duplex. All TimeLapse reactions were run at 45◦C
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(unless indicated differently) for 1 h. Subsequent restriction digest reactions were

run at 37◦C for 1 h. Percent cut determined by ImageJ is reported below the gel. A

positive control DNA duplex containing dA is used to indicate the position of the

restriction digested products. I performed the experiments presented here.
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2.6 Conclusion

In order to determine RNA half-lives in an RNA-seq experiment using nucleotide

recoding, the conversion reaction needs to be efficient and clean. In this chapter I

highlighted my contribution to characterizing the reaction of s4U to trifluoroethyl-

substituted cytidine and the reaction of s6G to trifluoroethyl-substituted-2-amino-

adenosine using a variety of chemical and biochemical assays. Both reactions are

efficient and do not produce any byproducts and are therefore suitable for the use of

detecting RNA dynamics through sequencing. The next chapter will go into detail on

how RNA dynamics are inferred using the newly developed recodable nucleoside s6G.
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Chapter 3

Revealing RNA Population

Dynamics with 6-Thioguanosine

This chapter contains excerpts from:

Kiefer, L., Schofield, J.A., Simon, M.D. (2018) Expanding the Nucleoside Re-

coding Toolkit: Revealing RNA Population Dynamics with 6-Thioguanosine. J. Am.

Chem. Soc., 140, 14567-14570. doi: 10.1021/jacs.8b08554

3.1 Author contributions

I performed all the experiments presented in this chapter with assistance on some of

the characterization experiments from Jeremy Schofield. I performed the bioinformatic

analyses with assistance from the lab.

3.2 Summary

As outlined in Chapter 1, the synthesis, processing and decay of RNA form various

points of regulation that ensure controlled gene expression. In order to understand the

underlying molecular mechanisms at play when observing a change in RNA abundance,
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we need to be able to determine which kinetic parameter or parameters caused the

change. In the previous two chapters I outlined different strategies that have been

employed to capture RNA dynamics, including biochemical enrichment of newly-made

RNA and, more recently, nucleotide recoding of s4U. As discussed in Chapter 1,

the most commonly used RNA metabolic labels are analogues of uridine and so far,

all nucleotide conversion sequencing techniques have been limited to pyrimidines

(T-to-C, SLAM-seq [37], TimeLapse-seq [36]; C-to-T bisulfite-seq [58]). Additionally

many important biological processes occur under non-steady state conditions, which

necessitates capturing multiple snap shots of the transcriptome in order to determine

accurate estimates of RNA half-lives. Given all of these considerations, I sought

out to extend nucleotide recoding with TimeLapse-seq to the guanosine analogue,

6-thioguanosine (s6G). In the previous chapter I described the development and

characterization of s6G as a recodable nucleoside. Throughout this chapter, I will offer

a thorough analysis of s6G recoding as read out by sequencing of cellular RNA and

the estimation of RNA half-lives using s6G TimeLapse-seq.

3.3 Assessing s6G Recoding Efficiency and Ortho-

gonality in Cellular RNA

In the previous chapter, I was able to show that s6G is incorporated into RNA in cells

and that TimeLapse chemistry leads to the reaction of s6G to A* on the nucleoside

level. The important next question was whether this reaction would indeed lead to

a recoding of the hydrogen bonding pattern detectable by sequencing. In order to

address this question I took a targeted sequencing approach by PCR amplifying the

transcript ACTB following TimeLapse chemistry. The cells were grown for 1 h to allow

time for incorporation of s6G into newly synthesized RNA. I did not observe significant

toxicity even after a 2 h treatment, consistent with previous reports for s6G [53] (Figure
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8). Total RNA was then isolated and subjected to TimeLapse chemistry, followed

by targeted reverse transcription (ACTB mRNA) and next generation sequencing.

Sequencing reads were mapped to the target transcript, and the mutations of each

nucleotide to adenosine were counted. I found that s6G is incorporated into newly

transcribed RNA and converted into A* as inferred from the increase in G-to-A

mutations at all G nucleotides that were analyzed (Figure 13B). This conversion is

6-TG treatment and TimeLapse chemistry-dependent (Figure 14), and orthogonal

with only low levels of additional G-to-T mutations detected (Figure 13A), which

are most likely induced through G oxidation to 8-oxo-G as observed previously [59].

Preliminary data collected by the lab indicates that, while other approaches can be

used to detect s4U directly through sequencing using an alkylation reaction (SLAM-seq

[37]), using this approach for s6G yields insufficient G-to-A mutations to infer RNA

population dynamics. This is, to the best of my knowledge, the first evidence that

s6G recoding can be detected by sequencing in the context of cellular RNA.
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Figure 13: s6G and TimeLapse chemistry-dependent increase in G-to-A mutations
shows orthogonality of the reaction

K562 cells were treated with 500 µM 6-TG and total RNA was extracted and

subjected to TimeLapse chemistry. (A) Plotted are the background subtracted

mutation rates of C, G and T to each of the four nucleotides (PtoA, PtoC, PtoG,

PtoT) and to any of the four nucleotides (PtoN). (B) Bar plot of a region of ACTB

mRNA indicating the mutation rate to A for each nucleotide (not shown are positions

of A). The light gray bar represents a site of a likely SNP that was identified due

to its high G-to-A mutation rate in control samples. I performed the experiments

presented here and conducted the data analysis with assistance from the lab.
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Figure 14: s6G and TimeLapse chemistry-dependent increase in G-to-A mutations in
sequencing reads of ACTB

K562 cells were treated with 500 µM 6-TG and total RNA was extracted and

subjected to TimeLapse chemistry (600 mM TFEA, 10 mM NaIO4 1h at 45◦C).

Plotted is the quantification of N to A transitions in ACTB mRNA PCR amplicons.

I performed the experiments presented here and conducted the data analysis with

assistance from the lab.
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3.4 Capturing RNA Dynamics Genome-wide with

s6G Recoding

Finally, to address whether s6G can capture transcriptional dynamics genome-wide, I

performed TimeLapse-seq on s6G metabolically labeled cellular RNA. The experimental

approach is outlined in the schematic in Figure 15. I labeled K562 cells for 4 h, a

labeling time optimized for studying the half-lives of mRNAs [38]. Next, I extracted

total RNA, treated the RNA with TimeLapse chemistry and subjected it to sequencing.

Once the reads were mapped to the transcriptome, I tested whether the 6-TG treatment

substantially impacted RNA levels. Expression analysis revealed that the RNA levels

from 6-TG-treated cells were highly correlated with the levels from untreated cells,

indicating that the process of metabolic labeling with 6-TG does not substantially

impact the transcriptome in the time frame of the experiment (Figure 16, s6G vs.

untreated Pearson’s r ≥ 0.97; TimeLapse-treated vs. untreated RNA Pearson’s r ≥

0.98). Qualitative analysis of the sequencing reads revealed a notable increase in G-to-A

mutations compared to control and also revealed the single molecule nature of this data

(Figure 17, zoom in on the location of G-to-A mutations in single sequencing reads).

Just from the raw sequencing reads, it was apparent that transcriptional dynamics were

captured genome-wide, for instance when examining individual transcripts (Figure 18);

transcripts with short half-lives such as JUN had higher numbers of reads with G-to-A

mutations (higher number of blue to grey reads) than did stable transcripts such as

GAPDH. As with targeted sequencing, this increase in the G-to-A mutation rate was

only found in RNA from cells that had been treated with 6-TG and not in control

experiments (Figure 17, bottom track). The increase in G-to-A mutations also tracked

with transcript half-lives (as determined using s4U TimeLapse-seq). Transcripts that

have the shortest half-lives demonstrate the greatest increase in G-to-A mutations

(Wilcox test, p < 10-15) and even transcripts with long half-lives had a significant
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increase in G-to-A mutations upon 6-TG treatment (Wilcox test, p < 10-15) (Figure

20A). The comparison to half-lives estimated by s4U TimeLapse-seq validates that

the information gained from G-to-A mutations is consistent with existing half-life

estimates. s6G TimeLapse-seq therefore provides qualitative information of RNA

turnover genome-wide.

Next I harnessed the single molecule nature of TimeLapse-seq to ask quantitative

questions about RNA half-lives. Each read from a TimeLapse-seq experiment reports

on the mutational content of a single molecule of RNA that is either new (labeled) or

pre-existing (unlabeled). We previously developed a statistical analysis of nucleotide

recoding data using a binomial distribution to model the read distribution [36]. A

more detailed description of the statistical modeling as well as updated analysis are

discussed in Chapter 5. Based on the number of G-to-A mutations in each read

and accounting for new reads lost during handling, I calculated the fractions of new

RNA that were produced during the treatment for over 4000 transcripts. These

fractions of new reads were reproducible across replicates (Figure 19, Pearson’s r =

0.92). Assuming simple exponential kinetics, I estimated RNA half-lives using these

fractions and these correlated well with results using s4U TimeLapse (Figure 20B). I

found that known fast turnover transcripts such as transcription factors (e.g. JUN )

have significantly shorter half-lives than SMG5 or slow turnover transcripts such as

GAPDH (Figure 18, t1/2 estimates above tracks), consistent with previous reports

[36]. Notably, using TimeLapse-seq with 6-TG allowed me to estimate the half-lives

of uridine-poor transcripts such as CBX4, whose reads have on average 10 uridine

nucleotides, but 60 guanosine nucleotides (Figure 21). While low uridine content will

impact the certainty in the estimates of kinetic parameters, it is unlikely to have a

significant impact on the median value of the estimate. In the case of CBX4 and

other regions of the genome with low U contents, such as many intronic regions, s6G

can be employed to increase our confidence in the kinetic parameters determined. In
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summary, s6G recoding captures transcriptional dynamics genome-wide in both a

qualitative and quantitative manner.
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Figure 15: s6G TimeLapse-seq approach

Cells are metabolically labeled with s6G or 6-TG, total RNA is isolated and

subjected to TimeLapse chemistry to induce nucleotide conversion. Total RNA is

subsequently reverse transcribed and sequenced. Sequencing reads with increasing

numbers of G-to-A mutations are shaded in increasingly darker shades of blue, while

total RNA-seq reads are shown in grey.
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Figure 16: 6-TG treatment and TimeLapse chemistry do not affect RNA-seq output

Correlation plots of RNA-seq profile comparing 6-TG versus untreated cells (top)

and TimeLapse chemistry treated and untreated RNA (bottom) with Pearson’s

correlation coefficient reported on each plot. I performed the experiments presented

here and conducted the data analysis with assistance from the lab.
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Figure 17: TimeLapse-seq with s6G leads to increases in G-to-A mutations

Metabolic labeling of cellular RNAs leads to G-to-A mutations at sites of s6G in

sequencing reads shown for a region of the EGR1 transcript.
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Figure 18: s6G captures transcriptional dynamics genome-wide qualitatively and
quantitatively

Genome browser tracks for representative fast (JUN ), intermediate (SMG5 and

EIF2S1 ), and slow (GAPDH ) turnover transcripts colored by the cumulative number

of G-to-A mutations. Gray tracks represent all RNA-seq reads, with blue tracks

representing the profile when only reads with the indicated number of G-to-A mutations

are considered. Estimated half-lives determined through statistical modeling of the

mutational data using a mixed Binomial model are indicated above each track. I

performed the experiments presented here and conducted the data analysis with

assistance from the lab.
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Figure 19: Reproducible estimates of fraction of new reads determined by statistical
modeling of TimeLapse-seq data

The correlation between the statistically modeled fraction of new transcripts in

each of the two biologically independent replicates of s6G TimeLapse-seq. Indicated

are the number of transcripts considered and the Pearson’s r-value of the correlation.
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Figure 20: RNA half-lives determined by s6G TimeLapse-seq track with s4U-based
estimates

(A) The distribution of average G-to-A mutation rate for each transcript separated

by half-life quantile (calculated from validated s4U TimeLapse-seq, 1 = high turnover,

10 = low turnover with half-lives indicated in grey, compared between transcripts from

cells treated with 6-TG with identically treated RNA from untreated cells). **** p <

0.0001 based on a two sided Wilcox rank sum test. (B) Correlation plot comparing

transcript half-lives (log10 transformed) calculated using s6G TimeLapse-seq and s4U
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TimeLapse-seq. Histograms summarize the distribution of half-lives with the example

transcripts indicated. The density of points is indicated by color (yellow, low; blue,

high). I performed the experiments presented here and conducted the data analysis

with assistance from the lab.
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Figure 21: s6G TimeLapse-seq captures transcriptional dynamics for the uridine-poor
transcript CBX4

Genome browser tracks displaying the coverage of the CBX4 transcript. Shown

are RNA-seq tracks of s6G treated sample (top) and untreated control RNA (bottom)

subjected to TimeLapse chemistry (bottom). Reads with increasing number of G-to-A

mutations are shown in increasingly darker shades of blue. Both tracks are shown on

the same scale. I performed the experiments presented here and conducted the data

analysis with assistance from the lab.
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3.5 Discussion

These results demonstrate that s6G can be used to monitor transcriptome-wide RNA

population dynamics. Specifically, TimeLapse chemistry can be extended beyond s4U

and can be applied to recode s6G to cause specific G-to-A mutations in sequencing

experiments. While the lower incorporation rates of s6G [60] lead to lower mutation

rates induced by s6G compared with those induced by s4U (s6G 1.5%, s4U 4.5%),

this rate is well above background (0.15% G-to-A mutations in TimeLapse-treated or

untreated samples without s6G ) and allows analysis of the fraction of each transcript

that is new. The slight increase in G-to-T mutations observed in Figure 13A, which

could stem from low levels of G oxidation to 8-oxo-G [59], does not inhibit our ability

to capture RNA population dynamics as the levels are low and do not inhibit detection

of G-to-A mutations. Half-lives calculated from s6G TimeLapse-seq correlate well with

those determined using s4U TimeLapse-seq (r = 0.84, Figure 20B). Similar to s4U

TimeLapse-seq, the chemical treatment and metabolic labeling with 6-TG preserve

the information of traditional RNA-seq (Figure 16) while providing insight into RNA

population dynamics.

The nucleotide recoding chemistry of s6G adds a new technique to the larger set of

techniques that use mutations to study nucleic acids, including the analysis of epigenetic

modifications through bisulfite sequencing [58], RNA structure [61, 62, 63], RNA-

protein interactions [53, 64] and posttranscriptional modifications [65]. The impact

of chemical approaches to reveal nucleic acids biology through mutational analysis

continues to increase as sequencing technologies continue to evolve. TimeLapse-seq

with s6G expands the power of nucleotide recoding by providing the first determination

of RNA half lives using an analogue of guanosine and introduces the potential to

analyze multiple time points using different metabolic labels in a single RNA-seq

experiment.
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Chapter 4

Capturing the Transient

Transcriptome with

TT-TimeLapse-seq

This chapter contains excerpts from:

Machyna, M., Kiefer, L., Simon, M.D. (2020) Enhanced Nucleotide Chemistry

and Toehold Nanotechnology Reveals lncRNA Spreading on Chromatin. Nat. Struct.

Mol. Biol. 27, 297-304. doi: 10.1038/s41594-020-0390-z

and

Schofield, J.A., Duffy, E.E., Kiefer, L., Sullivan, M.C., Simon, M.D. (2018)

TimeLapse-seq: Adding a Temporal Dimension to RNA Sequencing Through Nucleo-

side Recoding. Nat. Methods, 15, 221-225. doi: 10.1038/NMETH.4582

4.1 Summary

While the half-lives of mRNAs range from tens of minutes to several hours, many

important regulatory RNA species like anti-sense RNA, enhancer RNA and intronic

sequences are degraded within minutes. Similarly, when trying to get a short snapshot
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of active transcription, capturing RNA made over the time span of tens of minutes

to hours does not provide the necessary resolution. In such cases, methods like

TT-seq (discussed in Chapter 1) which utilizes five minute pulses of s4U become

extremely powerful. As outlined in Chapter 1, while TT-seq allows us to capture the

transient transcriptome, determining accurate estimates for transcriptional or splicing

rates are limited by signal-to-noise. Technological development in our lab driven by

former graduate students Jeremy Schofield and Erin Duffy combined our existing s4U

enrichment approach [31] with nucleotide conversion TimeLapse-seq [36] to identify

sequencing reads from bona fide nascent RNA (TT-TimeLapse-seq). In this chapter, I

will highlight three of my collaborations detecting active transcription in tissue culture,

capturing cell-type specific transcription in different mouse tissues and visualising the

nascent transcriptome in mouse olfactory neurons.

4.2 Investigating Active Transcription After Heat

Shock in Drosophila S2 Cells

Martin Machyna, a current postdoctoral fellow in the Simon lab, devised a novel

strategy to capture RNA on chromatin using enhanced nucleotide chemistry and

dual toehold technology. He discovered that heat shock leads to changes in roX2

lncRNA spreading on chromatin in Drosophila S2 cells [66]. To investigate whether

transcription is influencing the changes in roX2 spreading upon heat shock, I captured

the nascent transcriptome by performing TT-TimeLapse-seq on heat shocked and

control cells. Briefly, Martin subjected S2 cells to heat shock (37◦C for 1h, control cells

were or kept at 27◦C). In the last 8 minutes of the heat shock or control treatment, he

subjected the cells to 1 mM s4U , followed by cell harvest and RNA extraction. Using

35 µg of total RNA input, I used MTS-biotin to biotinylate the s4U-labeled RNA,

followed by streptavidin enrichment. I then eluted the enriched RNA by reducing
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the disulfide bond, rendering the s4U available for subsequent conversion to C* by

TimeLapse chemistry. The data show wide-spread dramatic transcriptional shut down

upon heat shock with robust activation of known heat shock responsive genes [66]

(Figure 22, heat shock genes highlighted in yellow). We reproducibly observe the

majority of the reads to originate from bona fide new RNA, with some high copy

number transcripts displaying pre-existing RNA background contamination based on

the absence of T-to-C mutations (Figure 22 grey reads). Even though transcriptional

shut down due to heat shock in Drosophila cells has been reported previously [67], it

was nevertheless striking to see the complete absence of actively transcribing RNA

genome-wide, with the exception of heat shock responsive genes (Figure 22 top). In

summary, while Martin found that transcriptional changes do not influence roX2

spreading on chromatin, this project highlights the power of TT-TimeLapse-seq to

capture an almost instantaneous snap shot of transcription.
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Figure 22: Heat shock causes drastic transcriptional shutdown of all except for heat
shock response genes in Drosophila S2 cells by TT-TimeLapse-seq

Zoomed out view of a 200 kb region on Drosophila S2 chromosome 3L highlighting

the complete shutdown of regular transcription (bottom) upon 1h of heat shock

(top). Highlighted in yellow are heat shock genes (f.r.t.l.) Hsp22, Hsp26, Hsp23 and

Hsp27. Sequencing reads with increasing numbers of T-to-C mutations are shown in

increasingly darker shades of red. Cell treatment and RNA extraction was performed

by Martin Machyna. Nascent RNA enrichment and TimeLapse-seq was performed by

me.
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4.3 Capturing Cell-Type Specific Transcriptional

Signatures Using UPRT/TT-TimeLapse-seq in

Mouse Tissues

In this project done in collaboration with Fengyun Sun in Oliver Rando’s lab at

the University of Massachussetts Medical School, we aimed to capture mouse tissue

specific transcription using TU-tagging. This technology developed in 2009 uses

cell type-specific expression of the Toxoplasma gondii salvage pathway enzyme uracil

phosphoribosyltransferase (UPRT) causing local s4U labeling of RNA upon 4-thiouracil

injection. Only in cells expressing cre-inducible UPRT can 4-thiouracil be reacted with

PRPP to yield 4-thio-UMP. This is a powerful technique to get tissue specific expression

profiles in whole organisms. The Rando lab has engineered several mouse lines with

UPRT under the control of a liver or sertoli cell-specific promoter, respectively. We

decided to perform TT-TimeLapse-seq on extracted liver and testes, to enrich for

s4U-labeled RNA and assess the level of background noise with the addition of s4U

recoding. Excitingly, the data showed enrichment of cell type-specific transcripts

(Figure 23, liver-specific Amdhd1, sertoli-specific Sox9 ) and only background noise

for solvent injected control tissues (data not shown). It is interesting to note that in

contrast to capturing transient transcription (e.g. 8 min s4U pulse as in section 4.2)

the captured RNA in this case represents primarily mature RNA as s4U labeling is

done over several hours post 4-thiouracil injection. The signal is therefore dominated

by mature spliced RNA, which is highlighted in the sequencing tracks, which show high

read accumulation over annotated exons. It is exciting that TU-tagging is compatible

with TT-TimeLapse-seq as this opens up the opportunity to, for instance, track RNA

transfer from one UPRT expressing tissue into another tissue without s4U labeling

capability. To sum up, TU-tagging with s4U -enrichment allowed us to capture the

tissue-specific transcriptome with nucleotide recoding forming an important addition
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to differentiate real signal from background noise.
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Figure 23: Capturing cell type-specific transcripts by TU-tagging TT-TimeLapse-seq

Mouse tissue from mice expressing UPRT under the control of tissue-specific

promoters, injected with either 4-thiouracil or solvent control, was treated to extract

total RNA. MTS-biotin enrichment was performed on total extracted RNA with

subsequent nucleotide conversion by TimeLapse-seq. Displayed are sequencing tracks

for three transcripts with different expression profiles for both liver and sertoli cells.

The mouse work, injection and tissue extraction was performed by Fengyun. I extracted

RNA, performed TT-TimeLapse-seq and conducted the data analysis.
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4.4 Detecting Transient Transcripts in the Mouse

Olfactory Epithelium

This project aimed at capturing the nascent transcriptome as well as the transient RNA

species transcribed from the protocadherin (Pcdh) cluster in mouse olfactory sensory

neurons. The experiments were performed in collaboration with Sandy Rajkumar in

Daniele Canzio’s lab at UCSF. The Pcdh cluster is a region on mouse chromosome 18

that produces unique cell-specific cell surface proteins through stochastic promoter

activation of variable exons. The result is a cell-specific mRNA containing the

stochastically chosen variable exon spliced to a set of constant exons. The translation

product of this mRNA is a cell surface protein with a common intracellular domain and

a cell-specific extracellular domain, which is considered to constitute a unique cellular

barcode. The regulation of the variable exon choice, particularly in the Pcdhα cluster,

is still not clearly understood. Recently, antisense transcription from the variable

exons has been linked to the regulation of long range chromatin contacts which are

involved in variable exon choice [68]. The current model suggests that a combination

of stochastic variable exon promoter choice as well as alternative splicing lead to RNA

isoforms unique to each individual cell. The Pcdhα RNA isoforms, which are limited

to neuronal cells, are only transcribed to low levels and the variable exon antisense

RNA is extremely short lived, making the cluster especially difficult to study. While

the chromatin architecture during Pcdhα promoter choice has been studied using

the differentiating mouse olfactory epithelium (OE) as an in vivo model of promoter

choice, the only high resolution data of the antisense RNA had been collected from

human SK-N-SH tissue culture cells. To test whether we could detect transient RNA

species such as antisense, intronic and enhancer RNA in primary mouse OE and

specifically whether we could identify the lowly abundant Pcdhα sense and antisense

RNA, we employed TT-TimeLapse-seq. Sandy and I treated extracted mouse OE
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with s4U for 20 minutes and we subsequently enriched for s4U-labeled RNA followed

by TimeLapse to capture the newly-made transcriptome. TimeLapse-seq captures

the primarily mature transcriptome, with majority of the signal over the exons, while

TT-TimeLapse leads to increased coverage of the intronic sequences (Figure 24A).

Excitingly, we also detected antisense RNA for several of the variable exons (Pcdhα2,

Pcdhα5, Figure 24B). Indicating that the regulatory mechanism involving antisense

RNA detected in human SK-N-SH tissue culture cells could also regulate variable

promoter choice in the Pcdhα in the mouse OE. Finally, we were able to detect the

presence of a variety of transient RNA species, such as wide-spread intronic sequences

and antisense RNA genome-wide (Figure 24C).

In conclusion, Sandy and I were able to visualize the nascent transcriptome in

primary mouse olfactory epithilium and provide insights into the extent of intronic

and antisense transcription in the Pcdhα cluster. As a future outlook, the Canzio lab

aims to couple TT-TimeLapse-seq experiments of the mouse OE harboring various

genetic modifications to understand the regulatory role of antisense transcription and

splicing in this region.
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Figure 24: Transient intronic and antisense RNA in mouse olfactory epithilium by
TT-TimeLapse

(A) Zoom in on the three constant exons of Pcdhα with tracks for enriched and

nucleotide recoded samples on top and TimeLapse-treated total RNA-seq tracks on the

bottom. Highlighted in yellow are the reads mapping to the intronic regions captured

in the top s4U-enriched and TimeLapse-treated samples.

(B) Genome browser tracks of reads aligning to two of the twelve variable exons of

the murine Pcdhα cluster including reads mapping to the intronic regions flanking

both exons, Pcdhα2 and Pcdhα5. Highlighted in yellow are the reads mapping to the
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antisense RNAs originating from the indicated variable exon promoters.

(C) Reads mapping to Ctcf with antisense RNA transcription highlighted in

yellow and extensive intronic read coverage. Reads with increasing numbers of T-

to-C mutations are shown in increasingly darker shades of red. The experiment was

performed by Sandy and me.
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4.5 Conclusion and Ongoing Efforts

In this chapter, I highlighted several collaborations in which I employed TT-TimeLapse-

seq to provide insights into cell type-specific or transient RNA-species. I optimized

the original protocol devised by Jeremy Schofield and Erin Duffy [36] (an updated

protocol can be found in Chapter 7). I piloted ongoing improvement efforts based

on shortcomings and hurdles identified during the above mentioned collaborations.

These efforts include work done to improve signal to noise of the enrichment, as well

as efforts to decrease the input RNA requirement to allow for processing of precious

samples such as primary tissues which yield relatively little RNA. These efforts are

ongoing and are conducted with current graduate students Leah Connor and Josh

Zimmer.
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Chapter 5

Bayesian Modeling of

TimeLapse-seq Data

5.1 Summary

In a perfect world, we would be able to distinguish TimeLapse sequencing reads from

metabolically labeled and unlabeled RNA by the presence and absence of T-to-C

for s4U or G-to-A mutations for s6G. However, due to sequencing errors and similar

artifacts, there are background mutations that occur in the absence of metabolic labels

or TimeLapse chemistry treatment. Also, it is often the case that an RNA that was

made in the presence of the metabolic label may not display any mutations by chance,

especially if the read length is too short or the incorporation rate is low. For these

reasons, we need to apply statistical modeling to infer the fraction of sequencing reads

that represent new RNAs. In this chapter I will detail the statistical model used to

determine RNA half-lives from s4U and s6G TimeLapse-seq data and introduce an

updated unpublished model. I will highlight what can be learned from this approach

by using a s4U TimeLapse-seq time course data set collected in collaboration between

Alice Lu (Iwasaki lab) and Jeremy Schofield. All the analyses presented in this chapter
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are my own. The model was written by current graduate student Josh Zimmer, with

minor modifications by myself. The collaboration is ongoing and unpublished.

5.2 TimeLapse-seq Data Processing and Modeling

Similarly to biochemical enrichment experiments outlined in Chapter 1, the ultimate

objective of statistically modeling TimeLapse-seq data is to infer the fraction of new

RNA. From this fraction new, we can determine the transcript-specific first-order

degradation rate constant, the synthesis rate and RNA half-life assuming steady state

kinetics. To determine fraction new, we take advantage of the single molecule nature

of TimeLapse-seq by classifying each sequencing read by the number of passing T-to-C

mutations found in the read. To get there, sequencing data from a TimeLapse-seq

experiment are filtered and aligned as normally done, with some modifications to

ensure detection of recoding mutations and filtering of background noise as described

previously [36, 69]. Briefly, sequencing data is aligned to the reference genome and

reads containing T-to-C mutations that pass background mutation and quality control

filtering are called and counted for each transcript. In principle, all reads containing T-

to-C mutations should have come from newly-made RNA, meaning RNA transcribed

during the course of the experiment, with all unmutated reads originating from

preexisting RNA. However, given the length of sequencing reads (e.g. for paired-end

75, about 150 nucleotides), assuming equal distribution of all four bases, and given

a T-to-C mutation rate of 4% one would expect on average about 1.5 mutations in

every read. In reality, a distribution of reads containing 0 all the way to more than

5 mutations per read is observed. Since reads stemming from new RNA with no

mutations are indistinguishable from reads stemming from preexisting RNA, more

sophisticated analyses are needed to estimate the fraction new.
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Figure 25: Mixed Poisson model of TimeLapse-seq reads to determine the fraction of
newly-made RNA

Modeling the distribution of observed reads grouped by the number of T-to-C

mutations as originating from a mixture of two Poisson distributions. The objective

is to determine the transcript specific value θ, the fraction of sequencing reads from

RNA transcribed during the course of the s4U labeling. The scheme was adapted from

[39]
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There are two distributions that we use to model our reads: a binomial model

and a Poisson model, the latter of which is shown in Figure 25. In either case

fraction new (θ) is determined by a mixture modeling approach using a hierarchical

model to pool information about mutation rates across transcripts and account for

overdispersion of the data. While the binomial model (not shown) more accurately

models the distribution of T-to-C mutations in the reads, the Poisson model is a

reasonable approximation that is more computationally efficient and therefore will

be the focus of my discussion here. The distribution of mutations in each read can

be modeled as a mixture of two Poisson distributions. For a given sequencing read

the two Poisson distributions describe the probabilities of observing the number of

T-to-C mutations seen in the read, assuming that the read originates from either the

old or the new population of RNA. The Poisson distribution of reads from pre-existing

RNA (Figure 25, grey), which should not contain s4U induced T-to-C mutations

is defined by the background mutations rate (λold, estimated < 0.1 %). The reads

stemming from s4U-labeled newly-made RNA (Figure 25, red) are Poisson distributed

with the experimental T-to-C mutations rate (λnew, ∼ 4.5 %). What we observe

is a mixture of the two processes (Figure 25 top) and the point of the statistical

model is to determine the contribution of each process to the observed data, with

the contribution being θ, the fraction new (Figure 25 bottom left). From the input

data which is a matrix of transcript-specific observations of sequencing reads with

increasing numbers of T-to-C mutations, the model then estimates the mutation rate

(λnew), the background mutations rate (λold) and the fraction of reads made during the

course of the experiment (θ). The background mutation rate can be determined from

a no labeling control experiment (Figure 25 bottom right). To retrieve the parameters,

we use Stan modeling language, which uses Bayesian statistical inference with MCMC

sampling [70]. This approach provides posterior distributions of each parameter, from

which the median value is determined together with its corresponding uncertainty (e.g.
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80% credible interval) given the data. Using the fraction new value, transcript-specific

parameters like RNA half-lives, can be determined as generated quantities during the

modeling, which allows for propagation of the associated uncertainties. To sum up,

statistical modeling of TimeLapse data allows us to get transcript-specific estimates

of kinetic parameters, including our certainty in them.

5.3 Modeling the Transcriptional Response to VSV

Infection

VSV is a negative-sense RNA virus, which when introduced to mouse embryonic

fibroblasts (MEFs) activates the innate immune response [71]. The innate immune

response is the immediate, non-specific response to a pathogen involving white blood

cells and epithelial cells. In contrast, the adaptive immunity takes a week or more

to be established; however, it yields high specificity and forms a long term memory.

Alice Lu from Akiko Iwasaki’s lab and Jeremy Schofield collected a time course data

set to study the transcriptional response to VSV infection in MEFs. The experimental

set up is outlined in Figure 26, with 1h s4U RNA labeling pre, 2.5h post and 6h post

viral infection. In this section I will outline the work I have done to obtain estimates

of kinetic parameters using TimeLapse-seq data.

The sequencing data was processed as outlined above and the following model was

set up to estimate the T-to-C mutation and background rate as well as fraction new

from which estimates of the apparent degradation rate, synthesis rate, RNA half-life

and contribution of kdeg (a measure of whether a change in kdeg or k syn is driving the

change in RNA abundance) were generated. The rates of synthesis and degradation are

apparent rates and only estimated, since the data was collected under non-steady state

conditions, but parameters were estimated using the equations outlined in Chapter 1

assuming steady state. The formalized model is outlined below.
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TCi ∼


θ[j,l] Poisson(λn[j,l]) + (1− θ[j,l]) Poisson(λo[j]) if read is experimental

Poisson(λo[j]) if unfed control

logit(θ[j,l]) ∼ Normal(0, 1.5) (prior for θ)

log(λn[j]) = µlog λn + zn[j]σn

log(λo[j]) = µlog λo + zo[j]σo

µlog λn ∼ Normal(−1, 1)

µlog λo ∼ Normal(−3, 1)

zn[j] ∼ Normal(0, 1)

zo[j] ∼ Normal(0, 1)

σn ∼ Cauchy(0, 3)

σo ∼ Cauchy(0, 1)

for i = 1. . . n entries for j = 1. . . n transcripts for l = 1. . . n treatments

The data, sequencing reads with a given number of T-to-C mutations for each

entry i, are distributed as a mixture of Poisson distributions with contribution of each

distribution given by the fraction new, θ. The fraction new is determined for each

transcript j and each sample condition l. The two Poisson distributions are described

by the mutations rate (λn) and the background rate (λo), with λn being determined

per transcript j and each sample condition l and the background rate per transcript

j. The mutation and background rate is modeled hierarchically, with the mean log

mutation (µlog λn) and log mean background rate (µlog λo) being normally distributed

with the indicated priors, allowing the transcript specific mutation rate to vary but be

informed by the mean rates. This allows for pooling information across transcripts

and thereby better model fit to the data.
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Figure 26: Experimental design of a TimeLapse-seq time course pre- and post-VSV
infection

Schematic outlining the experimental designed aimed at capturing the transcrip-

tional response in primary mouse embryonic fibroblasts to Vesicular Stromatitis Virus

infection. Biological replicates of 1h s4U-labeled (red bar) cells at three time points

pre- and post-infection were collected as depicted: a zero hour control set without

viral infection, a set of 2.5h post-infection and a set of 6h post-infection samples.
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The degradation rate constant kdeg was determined from the fraction new (θ) as

outlined in the introduction Chapter 1. The k syn was calculated from the observed

sequencing reads per transcript times the transcript’s kdeg. And finally, the contribution

of kdeg parameter was estimated by subtracting the absolute fold change k syn between

two conditions from the absolute fold change in kdeg.

contribkdeg = |log2FC(kdeg)| − |log2FC(ksyn)|

The model was run on all transcripts with a read cut off of 150 reads per transcript

and quality control checks were performed as suggested [70]. The background and

experimental T-to-C mutation rate estimates were in the range of estimates from

previous experiments [36] and were high confidence estimates, as illustrated by the

tight credible interval (80% credible interval, red bar hidden behind median value,

black cross, see Figure 27A). By analyzing the contribution of kdeg, I found that the

majority of changes post viral infection are driven by changes in the synthesis rate

(Figure 27B). This means that the presence of the virus causes both transcriptional

upregulation of innate immunity associated genes and transcriptional shut down,

rather than increased RNA degradation or stabilization. I therefore ranked transcripts

by their log2 fold change in k syn between the 2.5h time point post viral infection

compared to the 0h control. Figure 28 shows a ranked list of transcripts with top

to bottom decreasing fold changes in synthesis rate upon viral infection. Excitingly,

many of the upregulated transcripts are known or associated with viral infection and

the innate immune response (Figure 28, red dots). Importantly, while I am presenting

the median estimate value, the 80% credible intervals ((Figure 28, grey bars) give

an indication of how confident one can be in the estimates. While no significant

changes were observed for the degradation rates between the 2.5h and 6h time point,

the synthesis rate of some transcript showed significant changes (data not shown). I

speculate that the system has not reached steady state by 2.5h and therefore do not
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expect the synthesis rate to stay constant between the two time points. To conclude,

I was able to show that the cellular response to VSV infection is primarily driven

by changes to the apparent synthesis rate, specifically for innate immune related

transcripts, while post-transcriptional stabilization or destabilization is less observed.
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Figure 27: Model estimates of the T-to-C mutation rates and kinetic RNA parameters

(A) Plotted are the posterior distributions of mutation rate estimates with the

median (black cross) and the 80% credible interval (red bar). As the mutation rates are

estimated per read, an approximated rate per U was calculated assuming paired-end

150 reads, with on average 37.5 Us. This results to a background mutation rate of

0.05 and an experimental rate of 1.5 mutations per read. (B) The contribution of

changes in kdeg and k syn 2.5h post infection versus control on the observed changes in

total RNA calculated as described above, with their median estimates (black dots)

and corresponding uncertainties (80% credible interval red bar). Transcripts with
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a median value between 0.5 and -0.5 were filtered, as well as transcripts with high

uncertainty.
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Figure 28: Ranked changes in k syn between viral infection and control shows many
known innate immunity transcripts

Plotted are the posterior distributions of the log2(k syn 2.5h / k syn 0h) estimates

with the median (black dot) and the 80% credible interval (grey bar). The top 13

transcripts are not expressed at the 0h time point leading to a log2FC of infinity.

Known innate immunity associated transcripts are colored in red.
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5.4 Conclusion

In this section I outlined the power of combining TimeLapse-seq with statistical

modeling of the experimental parameters to estimate kinetic parameters. As outlined

in Chapter 1, a change in RNA-seq signal can be driven by either a change in synthesis

or degradation rate. Here, I presented a striking example of wide-scale changes in

synthesis rate leading to an increase in RNA-seq signal determined by modeling

of TimeLapse-seq data. Another example highlighting an increase in RNA-seq due

to post-transcriptional stabilization has recently been published as a collaboration

between Jeremy Schofield and Vicky Luo in the Slavoff lab [72].

With increasing length of sequencing reads as sequencing technologies advance,

separating out the populations of reads stemming from newly-made and pre-existing

RNA will become simpler as the distributions of reads will move further apart. However,

in the meantime and also moving forward this kind of analysis will enable us to gain

quantitative estimates of parameters describing RNA dynamics and their changes

genome-wide.
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Chapter 6

Conclusions and Ongoing Work

6.1 Summary

The ability to detect reads stemming from newly made RNA by the presence of T-to-C

or G-to-A mutations in TimeLapse-seq with s4U and s6G, respectively, enables us to

estimate synthesis and decay rates genome wide assuming simple exponential decay

and steady state conditions. To detect RNA species underlying more complex kinetics,

for instance RNA whose degradation cannot be described using simple exponential

kinetics, or to model kinetic parameters under non-steady state conditions, multiple

time points would need to be collected [49]. While there are ways to capture the

transcriptome, for instance by collecting several independent experiments with different

time points, the ability to recode s4U and s6G under identical chemical conditions

opens the opportunity to collect multiple time points within one internally normalized

RNA-seq experiment. Here I outline my ongoing work together with current graduate

student Isaac Vock to explore complex synthesis and decay kinetics by integrating

single and dual-color TimeLapse-seq.
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6.2 Integrating s4U and s6G

An important aspect of combining s4U and s6G into the same experiment is compat-

ibility of the metabolic labels. While exploring different conditions to improve s6G

incorporation into cellular RNA, I made an interesting observation. I was wondering

whether an imbalance in purine nucleosides or nucleotides could influence labeling

efficiency and therefore treated 293T cells with 6-TG (for which I observed comparable

incorporation levels as s6G [69]) or a combination of 6-TG and adenine. I employed a

dot blot assay to monitor incorporation levels of metabolic labels into cellular RNA as

described in Chapter 2. Briefly, human 293T cells were subjected to metabolic labels

or combinations thereof for the indicated number of hours. Total RNA was extracted,

DNase treated and reacted with activated disulfide conjugated to a fluorophore. After

removal of unreacted fluorophore, incorporation levels of s4U and s6G (or 6-TG) were

determined by relative fluorescence levels over control RNA (detailed protocol in

Methods Chapter 7). I found that while incorporation levels of 6-TG increased over

time (see Figure 7), the presence of adenine partially inhibited 6-TG labeling of RNA

(Figure 29A). Interestingly, treating cells with a combination of 6-TG and uridine only

had a minor effect on RNA labeling.

Based on these findings I set out to investigate whether s4U and 6-TG inhibit

each other’s capacity of RNA labeling. Comparing each trial to a separately treated

mixture of labeled RNA as a positive control (Figure 29B, last sample), I checked

different labeling schemes. Firstly, I found that a 4h pre-treatment of 6-TG leads to

lower incorporation of s4U. To get a better estimate of the fluorescence stemming from

s4U incorporation and to see if this interaction also exists with canonical nuclear bases,

I repeated the experiment with guanine and observed the same trend. Surprisingly,

pre-treatment with 6-TG followed by treatment with s4U and the other two nuclear

bases (cytosine and adenine) led to even lower levels of RNA labeling. Importantly,

none of the conditions achieved the same extend of labeling as the positive control.
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Figure 29: Metabolic labels interact with each other and canonical nuclear bases
causing lower RNA incorporation

Cells were labeled with 100 µM of each canonical and non-canonical nuclear base

or nucleoside for the indicated number of hours. 5 µg of extracted RNA was labeled

with 500 ng of MTS-TAMRA. Fluorescence was determined relative to unlabeled

control RNA.
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6.3 Discussion

Given the partial inhibition of s4U by either 6-TG and guanine pre-treatment and the

minor effect of uridine on 6-TG labeling, I propose an experimental setup of s4U pre-

treatment followed by a shorter pulse of 6-TG (or s6G). I have some preliminary data

showing that incorporation of both metabolic labels is achieved with this approach.

Ultimately, a sequencing experiment has to be performed to assess whether information

on RNA dynamics can be gained with the extent of labeling. Interestingly, the Rieder

lab employed their version of nucleoside recoding (TUC-seq [73]) to a dual labeling

approach using s6G followed by a washout and subsequent s4U labeling and detected

both G-to-A and T-to-C mutations [74]. As the paper only contains qualitative

measures of RNA dynamics, it remains to be seen whether this labeling approach or a

long s4U treatment followed by a short s6G pulse achieves high enough incorporation

to allow for robust statistical modeling to estimate kinetic parameters.

6.4 Ongoing and Future Directions

Together with fellow Simon lab graduate student Isaac Vock, I set up a variety of

metabolic labeling experiments to assess the quality of dually-labeled TimeLapse-seq

data. Isaac meanwhile developed a statistical model in order to estimate degradation

rates from dual-color data. Additionally, he came up with a strategy to detect RNA

undergoing complex, non-single-exponential decay, for instance due to transcript

subpopulations with different degradation rate constants. His thesis project will

focus on identifying complex transcriptional kinetics using both single and dual-color

TimeLapse-seq. Finally, the ultimate application of dual-color TimeLapse-seq would

be in a single-cell RNA-seq experiment. While other nucleotide recoding technologies

have been applied to single cell [75], recoding with two labels has not been done yet.

Through unpublished work presented at a conference Jeremy Schofield attended, we
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know that single cell TimeLapse-seq with s4U is possible, indicating that a dual-color

TimeLapse-seq approach is at least theoretically attainable.

Overall, nucleotide recoding is a powerful method for identifying changes in the

transcriptome, enabling mechanistic studies. While other metabolic labels exist to

capture the newly-made transcriptome, I have, to the best of my knowledge, developed

the first purine recodable RNA metabolic label. As coding regions have an, on average,

higher GC content compared to intronic regions, any biases a uridine analogue could

induce when studying intronic sequences or the dynamics of splicing could be identified

and overcome by employing s6G recoding. Finally, the compatibility of the recoding

conditions of s4U and s6G allows for the use of both RNA metabolic labels within the

same experiment. Being able to detect multiple time points within one experiment

opens the opportunity to increase the temporal resolution when studying a wide range

of RNA half lives, to identify RNAs underlying complex kinetics, and to study RNA

population dynamics under non-steady state conditions. .
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Chapter 7

Methods and Data Analysis

This chapter contains excerpts from:

Kiefer, L., Schofield, J.A., Simon, M.D. (2018) expanding the Nucleoside Recoding

Toolkit: Revealing RNA Population Dynamics with 6-Thioguanosine. J. Am. Chem.

Soc., 140, 14567-14570. doi: 10.1021/jacs.8b08554

Schofield, J.A., Duffy, E.E., Kiefer, L., Sullivan, M.C., Simon, M.D. (2018)

TimeLapse-seq: Adding a Temporal Dimension to RNA Sequencing Through Nucleo-

side Recoding. Nat. Methods, 15, 221-225. doi: 10.1038/NMETH.4582

Duffy, E.E., Rutenberg-Schoenberg, M., Stark, C. D. and Kitchen, R. R., Ger-

stein, M. B. and Simon, M. D. (2015) Tracking Distinct RNA Populations Us-

ing Efficient and Reversible Covalent Chemistry. Molecular Cell, 59(5), 858–866.

doi.org/10.1016/j.molcel.2015.07.023

7.1 RNA Dot Blot - Assessing s4U/s6G Incorpora-

tion

Labeling and RNA extraction
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1. Follow the most current TimeLapse-seq protocol for metabolic labeling and cell

harvesting

2. Extract RNA and deplete genomic DNA accordingly

MTS-TAMRA reaction

1. Use 10% MTS-TAMRA to RNA by weight

2. Set up reaction by bringing RNA to final volume of 38 µl using DEPC-treated

water (dot blots using 5 µg of RNA are recommended, down to 3.5 µg has been

successful)

3. Add 1 µl each of 1M HEPES pH 7.4 (final concentration 20 mM) and 0.05M

EDTA (final concentration 1 mM)

4. Add appropriate amount of MTS-TAMRA from 2.5 mg/ml (dry DMF) stock

brought up to 10 µl final volume with DMF to reaction (50 µl final reaction

volume)

5. React for 1h at RT with motion (in dark)

Reaction cleanup

1. In a well-ventilated are add 50 µl of DEPC-treated water and add 100 µl 24:1

chloroform:isoamyl alcohol

2. Transfer to a heavy phase lock tube (prep by spinning for 1 min at 12,000 × g)

and shake for 15 sec, let sit for 2 min in dark

3. Spin at 12,000 × g for 5 min - transfer aqueous phase into a new 1.7 ml tube

and add 350 µl of RLT (from RNeasy Mini Kit), mix well by pipetting up and

down 10 times

4. Add 250 µl of 100% ethanol and mix well by pipetting up and down 10 times
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5. Transfer solution into an RNeasy column and spin at 12,000 × g for 15 sec and

discard flowthrough

6. Add 500 µl of RPE (from RNeasy Mini Kit) to the column, spin for 15 sec as

before and discard flowthrough

7. Add 500 µl of freshly made 80% ethanol, spin for 2 min at 12,000 × g and

discard flowthrough

8. Switch column into new collection tube and spin at max for 1 min to dry column

9. Add 50 µl of DEPC-treated water and elute by spinning for 1 min at 13,000 × g

10. Image by pipetting 5 µl onto the glass of the Typhoon and using settings for

TAMRA

7.2 DNA Dot Blot - Assessing s6G Incorporation

Labeling and DNA extraction

1. Treat cells for anywhere between 10 min to several hours with metabolic label

of choice (added volume 10 µl)

2. At end of labeling period rinse cells with ice-cold PBS

3. Scrape cells in 500 µl PBS using a cell scraper and collect into DNA LoBind

tubes

4. Pellet (300 × g, 3 min), LoBind tubes can be inserted into 15 ml falcon tubes

w/out caps

5. Remove PBS, lyse cells with 300 µl gDNA lysis buffer (100 mM Tris pH 8, 50

mM EDTA, 1% SDS, 1:40 Proteinase K (20 mg/ml stock, add fresh)
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6. Incubate at 37◦C for 1h with gentle shaking (dark)

7. Add equal volume Phenol:Chloroform:Isoamyl Alcohol (25:24:1 v/v) and shake -

spin at maximum speed for 5 min, transfer aqueous layer into new LoBind tube

(DNA will appear stringy when removing aqueous layer, try to avoid carrying

over phenol)

8. Add 1:10 vol 3M NaOAc, 2.5 vol Ethanol, shake and incubate in -80◦C for 10

min - spin at max for 5 min, decant and wash with 70% Ethanol

9. Decant and dry for 10 min at RT

10. Resuspend DNA in 80 µl DEPC-treated water at RT overnight

Digestion and RNA removal

1. Add 10 µl Cutsmart, 9 µl HindIII HF, 1 µl RNase A (1mg/ml) and incubate at

37◦C for 1h

2. Add 1:10 vol 3M NaOAc and 2.5 vol Ethanol (follow ethanol precip instructions

above)

3. Redissolve in 50 µl DEPC-treated water (30 min RT w/shaking)

4. Measure conc by nanodrop

MTS-TAMRA reaction and cleanup

1. Set up MTS-reaction (1h, RT on wheel) (use 10% MTS-TAMRA to DNA by

weight)

2. Add 50 µl DEPC, 100 µl Phenol:Chloroform:Isoamyl Alcohol (25:24:1 v/v)

followed by ethanol precipitation

3. Redissolve in 50 µl DEPC-treated water (30 min RT w/ shaking)
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4. Image on the Typhoon (5 µl on the glass) using TAMRA setting

5. Check concentration by nanodrop and 260/280 (∼ 1.8 DNA, 2.0 RNA)

7.3 s6G DNA Restriction Digest Assay

A DNA duplex containing a single s6dG was enzymatically synthesized from a tem-

plate DNA strand using Taq polymerase and 6-thio-2’-deoxyguanosine-5’-triphosphate

instead of dGTP. The resulting product was purified by ethanol precipitation. The

s6dG-containing DNA was used to screen for optimal TimeLapse chemistry conditions

by adding the amine solution to the duplex, followed by the oxidant and subsequent

incubation at a set temperature value for a set duration of time. The products were

isolated from the reaction mixture using AMPure XP beads following manufacturer’s

instructions. An adapter was added through a single PCR step followed by ampli-

fication with a Cy5-labeled primer. Only the PCR products templated from the

s6dG-containing strand were amplified and fluorescently labeled. The amplified PCR

product was then incubated with SspI HF restriction enzyme following manufacturer’s

instructions (1h, 37◦C). The fluorescent products of the restriction digest were visual-

ized by Native PAGE and scanned on a GE Healthcare Typhoon FLA 9500 (Chemical

Biology Institute, Yale). The extent of cutting (as a proxy for the extent of nucleotide

conversion) was determined using ImageJ.

7.4 s6G TimeLapse LC-MS Assay

TFEA (600 mM) was added to a solution of 6-thio-2’-deoxyguanosine (350 µM).

NaIO4 (10 mM) was dissolved in DEPC-treated water and added to the reaction

mixture. After each time point (5 min, 20 min, 40 min, 60 min) at 50◦C in the dark,

the reaction was analyzed by reverse-phase LC-MS with a Hypersil Gold column
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(Thermo, 3 µm, 160 × 2.1 mm) using chromatography conditions described previously

[36]. Masses were collected using positive ion mode, extracted ions were identified

using Agilent MassHunter software.

7.5 NMR

All NMR analysis was performed on an Agilent DD2 400 MHz spectrometer (Yale

West Campus Analytical Core) with an Agilent OneNMR probe. 1H-NMR spectra

were processed using the MestReNova software.

7.5.1 Reaction of 4-Thiouracil with TimeLapse Chemistry

4-thiouracil (4.3 mg, 1 equiv) was dissolved in DMSO-d6, and TFEA (3.4 µl 12 M, 1.3

equiv) was added to the solution. After mixing, a solution of NaIO4 in DMSO-d6 (12.3

mg, 0.2 M, 1.7 equiv) was added to the nucleobase and amine solution and incubated

at 45◦C for 4h.

7.5.2 Reaction of 6-Thioguanine with TimeLapse Chemistry

6-thioguanine (10.7 mg, 1 equiv.) was dissolved in DMSO-d6 and TFEA (6.38 µl

12 M, 1.2 equiv.) was added to the solution. After mixing, a solution of NaIO4 in

DMSO-d6 (12.3 mg, 0.2 M, 1.5 equiv) was added and the reaction was allowed to

proceed at 45◦C for 1h.

7.6 TimeLapse-seq with s6G

This protocol was adapted from Jeremy Schofield’s work on TimeLapse-seq [36]. The

experimental procedure is identical, with the only change being that the s6G stock

has to be dissolved in DMSO instead of DEPC-treated water.
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7.7 TT-TimeLapse-seq

This protocol was adapted from Erin Duffy’s original MTS-biotin protocol [Duffy2015TracDuffyHttp://dx],

Jeremy Schofield and Erin Duffy’s initial TT-TimeLapse-seq experiments [36].

s4U treatment and cell harvesting

1. Plate and grow cells to ∼60-70% confluence.

2. Supplement media with s4U and incubate cells for a time determined based on

desired application (5 min, 1 mM final concentration).

Note: s4U is photosensitive, keep solutions wrapped in foil and minimize exposure

of samples to light.

3. After incubation period, place cell culture plates on ice. Aspirate media from

plate, gently rinse plate once with ice-cold PBS and aspirate again.

4. Add 500 µl ice-cold PBS to cells. Gently scrape cells from plate using a cell

scraper, and transfer cell suspension to a 1.5 ml LoBind epi tube.

5. Pellet cells in a pre-chilled (4◦C) centrifuge at 300 × g for 3 min. Carefully

aspirate PBS from cell pellet.

6. Resuspend pellet in 1 mL Trizol by gently pipetting up and down ∼10 times.

7. Trizol samples can be stored overnight at -80◦C, or kept on ice for RNA isolation.

s4U RNA isolation

1. Add 200 µl chloroform to the 1 ml Trizol samples. Shake the tubes vigorously

for 15 sec and let sit for 2 min in the dark.

2. Centrifuge the tubes for 5 min at 12,000 ×g, 4◦C. Transfer aqueous phase (∼

500 µl) to new DNA LoBind tubes with 1 µl RNase-free glycogen (20 µg).
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3. To each aqueous phase from step 2, add 500 µl of 100% isopropanol with 1

mM DTT final concentration (*make 10 ml isopropanol + 10 µl of 1 M DTT

master mix using freshly dissolved DTT). Mix by pipetting up and down 10

times. Incubate samples at room temperature for 10 min.

s4U RNA is light sensitive and prone to oxidation. While these steps can be

performed under standard laboratory lighting, try to minimize the time of light

exposure. The DTT is included to help minimize oxidation of the s4U .

4. Centrifuge samples 20 min at 20,000 ×g, 4◦C. Carefully remove the isopropanol

from the RNA/glycogen pellet.

5. Add 1 ml of room temperature 75% ethanol to the pellet, vortex quickly and

centrifuge 3 min at 12,000 ×g, 4◦C.

6. Remove the ethanol completely from the RNA/glycogen pellet. To do so, first

remove the majority of the ethanol with a P1000 pipet tip, then spin the tubes

again on a countertop microcentrifuge. Use a gel-loading/10 µl tip to remove

the remaining ethanol. Let the pellet air-dry for 2 min by leaving the tube open

under a Kimwipe cover in the dark. Be careful not to overdry, which will result

in loss of RNA.

7. Resuspend each pellet in 40 µl of RNase-free (i.e., DEPC-treated water ).

Measure the RNA concentrations using a Nanodrop spectrophotometer.

Generally we retrieve >50 µg of RNA after this step, from a 80-9010 cm plate of

adhesive cells (this includes RNA as well as any contamination from DNA and free

nucleotides that were carried through the Trizol extraction and precipitation).

8. Treat isolated RNA at 200 ng/µl with 1 µl Turbo DNAse per 10 µg of RNA and

Turbo DNAse buffer in a PCR tube (e.g. 20 µg of RNA, 2 µl of DNAse, 10 µl

10× Turbo DNAse buffer and nuclease free water to a total volume of 100 µl).
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9. Incubate at 37◦C for 30 min.

10. Add 1× RNAClean beads (e.g. for a 100 µl reaction add 100 µl beads) to each

sample.

Note: Prior to use, vortex RNAClean beads and allow to come to room temper-

ature for 30 minutes.

11. Flick and invert or lightly vortex samples to mix. Incubate samples for 8 minutes.

12. Place samples on magnetic rack and allow beads to collect until solution is clear

(∼5 min)

13. Remove supernatant and wash 2× 200 µl freshly prepared 80% ethanol

14. Remove ethanol and briefly spin PCR tubes to collect residual ethanol. Remove

residual with 10 µl pipet tip.

15. Leave PCR tubes open on magnetic rack and allow to dry (∼5 min).

Note: When beads are dry, you may see a slight crack in the pellet and the

beads will appear lighter in color. Larger bead volumes (e.g. 100 µl) require

longer to dry. Be careful not to overdry the beads.

16. Add 80 µl nuclease-free water to dried beads and flick tubes until completely

resuspended. Incubate in dark for 5 min at RT.

Note: 50 µl elution also works; adjust the 2× RNA shearing buffer.

17. Briefly spin tubes to collect sample at bottom and place on magnetic rack until

solution is clear (∼1-2 min).

18. Transfer eluted RNA in water to clean PCR strip.

19. Assess RNA concentration by nanodrop.
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RNA shearing (optional) While this protocol successfully enriches s4U -RNA with

unsheared RNA samples, we have found that RNA shearing can increase yields and

decrease background. As most short-read RNA-seq protocols require shearing of the

RNA samples as part of a library preparation, it is convenient to perform the shearing

prior to enrichment if it does not conflict with experimental design.

1. Take 75 µg (limit of RNeasy Mini Kit column) or 80 µl of RNA samples into

shearing (adjust volume to 80 µl with DEPC-treated water if necessary). Add

80 µl 2× RNA fragmentation buffer and place sample at 94◦C for exactly 3 min

30 s.

2. Quickly spin the RNA sample on a countertop microcentrifuge to bring the

solution to the bottom of the tube, and immediately place on ice.

3. Add 40 µl of 250 mM EDTA (final concentration: 50 mM EDTA) to each sample,

mix by vortexing, and incubate on ice for 2 min.

Modified RNeasy MinElute cleanup

1. Add 700 µl buffer RLT (from RNeasy Mini Kit) and mix well by pipetting up

and down 10 times. Then add 500 µl 100% ethanol to each RNA sample, and

mix well by pipetting up and down 10 times. Apply these samples to RNeasy

columns in two steps of about 700 µl each.

2. Microcentrifuge columns 15 sec at 12,000 ×g, 4◦C. Discard the flowthrough.

3. To each column add 800 µl RPE buffer (from RNeasy Mini Kit) supple-

mented with 35 µl of 1% 2-mercaptoethanol (final concentration: 10 mM 2-

mercaptoethanol) (*make a master mix of 5 ml RPE + 3.5 µl 2-mercaptoethanol).

Note that the addition of a reducing agent in this step is important to reduce

any disulfides that have formed with the s4U .
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4. Centrifuge the samples 15 sec at 12,000 ×g, 4◦C. Discard the flowthrough.

5. Add 800 µl freshly prepared 80% ethanol and centrifuge the samples for 2 min

at 12,000 ×g, 4◦C. Discard the flowthrough.

6. Switch the columns to new 2-ml collection tubes (from the kit). Microcentrifuge

the samples 5 min at maximum speed, 4◦C.

7. Transfer column to a 1.7-ml microcentrifuge tube, and add 38 µl RNase-free

(DEPC-treated) water. Incubate the column with DEPC-treated water at 65◦C

for 5 min before the centrifuging the samples 1 min at ≥12,000 ×g, 4◦C. Apply

an additional 39 µl of DEPC-treated water to the columns, incubate for 1 min

at 65◦C then centrifuge as before. Use 1 µl of the combined elution to assess

concentration by nanodrop.

Block streptavidin beads - Part I

1. Aliquot 10 µl Dynabeads MyOne Streptavidin C1 beads per sample plus 10%

(e.g. for six samples, aliquot 66 µl beads) into one 1.7-ml microcentrifuge tube.

Place the tube in a magnetic rack for 2 min and remove supernatant with a

pipet.

2. Wash the beads twice by resuspending them in 500 µl nuclease-free water and

mixing by pipetting up and down five times. Place the tubes in a magnetic rack

for 2 min and remove supernatant with a pipet after each rinse.

3. Wash beads twice with 1 ml of high-salt wash buffer (recipe under Reagents and

Solutions), mixing and capturing the beads as described before.

4. Add 600 µl of high-salt buffer with 1.2 µl of glycogen stock (recipe under

Reagents and Solutions) to the beads, resuspend the bead mixture completely

by pipet, and incubate for 1 hr at room temperature with slight agitation (e.g.

on a rotation device).
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Biotinylation of s4U-RNA with the activated disulfide methane thiosul-

fonate (MTS) biotin

1. To biotinylate the RNA, mix the following reagents in a 1.7-ml microcentrifuge

tube: 50 µg of RNA 2 µl 1 M HEPES, pH 7.4 (final concentration, 20 mM

HEPES, pH 7.4) 2 µl 0.05 M disodium EDTA (final concentration, 1 mM EDTA)

Nuclease-free water to 80 µl total volume.

2. Based on the input of RNA, use 10% by weight of MTSEA-biotin-XX and add

DMF (20% DMF in final reaction) to 20 µl per sample (e.g. input of 50 µg

of RNA requires 5 µg of MTSEA-biotin-XX, meaning 2.5 µl of the 2 mg/ml

MTSEA-biotin-XX in DMF stock solution and add 17.5 µl DMF). Make a

master mix of required MTSEA-biotin-XX from the 2 mg/ml stock solution (see

recipe in Reagents and Solutions) plus DMF to 20 µl per sample + 10% (e.g. 6

samples, make MM for 6.6).

3. Add 20 µl of the MTSEA-biotin-XX in DMF master mix to each sample and

mix well by pipetting up and down 10 times.

4. Cover the reactions with foil and incubate these reactions at room temperature

in the dark for 30 min with rotation.

Remove unreacted MTS-biotin from RNA samples

1. Add the reactions to pre-spun phase-lock tubes (spin tubes at 12,000 × g for 1

min prior to usage) and add 100 µl 24:1 chloroform:isoamyl alcohol to each tube.

2. Shake the samples vigorously for 15 sec (careful, phase lock tubes can open) and

let sit 2 min.

3. Centrifuge the samples for 5 min at 12,000 ×g, 4◦C. For each sample, transfer

the aqueous phase (100 µl) to a new labeled 1.7-ml microcentrifuge tube.
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4. To each aqueous phase add 350 µl buffer RLT (from RNeasy Mini Kit) and mix

by pipetting up and down 10 times. Then add 250 µl 100% ethanol, mix well by

pipetting up and down 10 times and apply to an RNeasy column from the kit.

5. Centrifuge the columns for 15 sec at 12,000 ×g, 4◦C. Discard the flowthrough.

6. Add 500 µl buffer RPE (from RNeasy Mini Kit, no 2-mercaptoethanol here!) to

each column and centrifuge the columns for 15 sec at 12,000 ×g, 4◦C. Discard

the flowthrough.

7. Add 500 µl freshly prepared 80% ethanol to each column and centrifuge the

columns for 2 min at 12,000 ×g, 4◦C. Discard the flowthrough.

8. Switch the columns to new 2-ml collection tubes (from RNeasy Mini Kit).

Centrifuge samples 1 min at maximum speed, 4◦C.

9. Transfer the columns to new microcentrifuge tubes. Add 50 µl RNase-free water

to the center of each column. Elute the RNA by centrifuging these samples for

1 min at ≥12,000 ×g, 4◦C. Proceed immediately to isolation of the biotinylated

s4U-RNA.

Isolate s4U -containing transcripts with streptavidin beads

1. In order to compare enrichment to input material, remove part of the reaction

now and store on ice for later use (e.g. for 1% input remove 0.5 µl of the 50 µl

reaction).

2. Add 5 µl of high-salt wash buffer to the 50 µl RNA MTSEA-biotin-XX reactions

and mix well (add 5 µl of high-salt regardless of whether input was removed).

Add each sample to the beads from Block streptavidin beads. Cover with foil

and incubate the samples at room temperature for 15 min on a rotator at 30

rpm (or similar) to ensure the beads are mixing during the incubation.
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3. Place the tubes in a 96-well magnetic rack for 2 min and remove supernatant

with a pipet. Save the supernatant on ice as “flowthrough”.

4. Wash the beads three times by resuspending them in 100 µl of high-salt wash

buffer, and mix by inverting the tubes five times rapidly. Quickly microcentrifuge

the tubes. Place the tubes in a magnetic rack for 2 min and remove the

supernatant with a pipet after each rinse.

5. Add 100 µl of TE buffer (see recipe in Reagents and Solutions) and incubate at

55◦C for 15 min in a thermal cycler. During the incubation preheat 200 µl TE

buffer per sample to 55◦C.

6. After 15 min capture the beads on the magnetic rack as before and remove the

buffer. Wash beads twice with 100 µl of pre-warmed 55◦C TE buffer as in step

4.

Option A: Elution for screening and qPCR

1. Elute in 7 µl of elution buffer (see recipe in Reagents and Solutions), mix

the beads by inversion, wrap the tubes in foil, and incubate them at room

temperature in the dark for 15 min with rotation. Capture the beads on the

magnetic device as before and capture the elution into a new PCR tube.

This elution buffer will reduce the disulfide bond that formed between biotin

and 4-thiouridine, thereby eluting the s4U-RNA and leaving biotin bound to the

streptavidin beads.

2. To the elution (∼7 µl) add 2 µl of Invitrogen Vilo Mastermix and 1 µl of

superscript III (Thermo Fisher), mix well and incubate for

10 min at 25◦C

60 min at 42◦C

5 min at 85◦C
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to reverse transcribe the eluted RNA. To compare to input, add elution buffer

to the saved input material up to 7 µl (eg. 5 µl input + 2 µl elution buffer) and

add RT mix as with the elution above.

3. Take the reverse transcription (RT) reaction (input and elution separately) and

dilute it with DEPC-treated water according to the number of primers to be

tested (# of primers × 5 µl RT × 2 for duplicate wells + 10%), and set up a

qPCR plate with the following:

5 µl of 4 µM primer (FW & RV mix)

5 µl of RT reaction

10 µl iTaq Universal SYBRgreen supermix (bio-rad)

Mix by pipetting up and down 8 times and analyze in qPCR machine using the

following settings:

Repeat the following a total of 45× :

95◦C for 3 min

95◦C for 10 s

60◦C for 30 s

Plateread

95◦C for 10 s

55◦C for 31 s

Repeat the following a total of 81× :

55◦C for 5 s

+ 0.5◦C/cycle

Ramp 0.5◦C/s
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Plateread

Option B: Elution for library prep

1. Add 25 µl freshly made elution buffer to the beads, mix the beads by inversion,

wrap the tubes in foil, and incubate them at room temperature in the dark for

15 min with rotation.

This elution buffer will reduce the disulfide bond that formed between biotin

and 4- thiouridine, thereby eluting the s4U-RNA and leaving biotin bound to

the streptavidin beads.

2. Quickly microcentrifuge the tubes and capture the beads in a 96-well magnetic

rack for 2 min. Carefully retrieve the supernatant with a pipet and save this

sample as “elution.”

3. Add another 25 µl elution buffer and immediately place tubes in 96-well magnetic

rack for 2 min. Remove the supernatant with a pipet and combine this elution

for each sample with the corresponding elution. Place samples on ice.

4. Take out 1% of the elution (e.g. 2.5 µl if elution is 25 µl) and perform RT

and qPCR as described in Elution for screening and qPCR steps 2 and 3. Add

elution buffer to the saved input material up to the final elution volume (e.g.

if input is 5 µl and elution is 25 µl, add 20 µl of elution buffer to the input

material to reduce the MTS-biotin off the RNA). Take out 1% input and precede

as with the 1% elution to assess success of enrichment over input. Save the rest

of the elution and input material for the library preparation.

5. To clean up the RNA from the elution and input samples add 1× RNAClean

beads and follow RNA isolation steps 11.-18.. Elute in 20 µl DEPC-treated
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water into new PCR tube. (Optional: Use 1 µl to assess concentration and RNA

integrity on the bioanalyzer).

TimeLapse chemistry

1. To the 20 µl of eluted RNA add:

0.835 µl 3 M sodium acetate pH 5.2,

0.2 µl 500 mM EDTA,

1.365 µl DEPC-treated water,

1.3 µl Trifluoroethylamine (TFEA)

Note: TFEA is volatile, use care when pipetting to ensure adding proper volume.

Pipetting TFEA up and down a few times will equilibrate the vapor pressure.

2. Close PCR tubes and flick tubes to mix well, spin down, then add freshly

prepared

1.3 µl of 200 mM sodium periodate (in DEPC-treated water).

3. Close PCR tubes and flick tubes to mix well and spin down.

4. Incubate in PCR cycler at 45◦C for 1h.

5. Add 25 µl RNAClean beads (1

×

volume) and purify RNA as described above. Elute in 10 µl DEPC-treated water

and transfer into a fresh PCR strip.

Reducing treatment

1. Prepare reducing master mix (2 µl per sample), for 100 µl use

58 µl of DEPC-treated water

10 µl of 1M DTT
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10 µl of 1 M Tris pH 7.4

2 µl of 0.5 M EDTA

20 µl of 5 M NaCl

2. Add 2 µl reducing master mix to each sample, flick tubes to mix, spin down and

incubate in thermocycler at 37◦C for 30 min.

3. Add 20 µl RNAClean beads (1× volume) and purify RNA as described above.

4. Elute in minimal volume of DEPC-treated water consistent with library prep

input volume restriction (e.g. Takara pico input mammalian v2 kit max. input

volume is 8 µl, so elute in 8µl to increase amount of RNA input into library

preparation).

REAGENTS AND SOLUTIONS

Use nuclease-free (DEPC-treated) water in all recipes and protocol steps unless stated

otherwise.

Bead blocking buffer

High-salt wash buffer (see recipe)

40 ng/µl glycogen (add from 20 µg/µl stock solution)

Elution buffer, 1×

100 mM dithiothreitol (DTT), freshly dissolved in DEPC-treated water

20 mM HEPES, pH 7.4

1 mM EDTA

100 mM NaCl

0.05% (v/v) Tween-20

Prepare solution fresh each experiment

(e.g. for 100 µl use 75.5 µl DEPC, 10 µl 1 M DTT, 2 µl 1 M HEPES, 2 µl 50 mM
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EDTA, 10 µl 1 M NaCl, 0.5 µl 10% Tween 20)

High-salt wash buffer

100 mM Tris Cl, pH 7.4

10 mM disodium EDTA

1 M NaCl

0.05% (v/v) Tween 20

Store at room temperature up to 6 months

(e.g. for 50 ml use 5 ml 1M Tris pH 7.4, 1 ml 0.5 M EDTA pH 8, 10 ml 5M NaCl, 250

µl 10% Tween-20, 33.75 ml DEPC)

RNA fragmentation buffer, 2×

150 mM Tris Cl, pH 8.3

225 mM KCl

9 mM MgCl2

Store at room temperature up to 6 months

(e.g. for 10 ml use 1.5 ml 1 M Tris Cl pH 8.3, 750 µl 3 M KCl, 90 µl 1 M MgCl2, 7.66

ml MilliQ)

MTS-biotin stock solution in DMF

Dilute solid MTSEA-biotin-XX (mol. wt. 607.7 g/mol) in dry DMF to 2 mg/ml. The

MTSEA-biotin-XX stocks are stable at −20◦C for at least 3 months.

TE Buffer

10 mM Tris pH 7.4

1 mM disodium EDTA

(e.g. for 50 ml use 500 µl 1 M Tris pH 7.4, 100 µl of 0.5 M EDTA, 49.4 ml MilliQ)
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[55] M. G ladysz, W. Andra lojć, T. Czapik, Z. Gdaniec, and R. Kierzek, “Thermo-

dynamic and structural contributions of the 6-thioguanosine residue to helical

properties of RNA,” Scientific Reports, vol. 9, no. 1, pp. 1–8, Dec. 2019, issn:

20452322. doi: 10.1038/s41598-019-40715-2. [Online]. Available: https:

//doi.org/10.1038/s41598-019-40715-2.

[56] A. Kumari, “Pyrimidine de novo Synthesis,” in Sweet Biochemistry, Elsevier,

ch. 20, pp. 101–103. doi: 10.1016/B978-0-12-814453-4.00020-0.

[57] S. Basu and S. A. Strobel, “Biochemical detection of monovalent metal ion

binding sites within RNA,” Methods, vol. 23, no. 3, pp. 264–275, 2001. doi:

10.1006/meth.2000.1137.

112



[58] M. Frommer, L. E. Mcdonald, D. S. Millar, C. M. Collist, F. Wattt, G. W.

Griggt, P. L. Molloyt, and C. L. Paul, “A genomic sequencing protocol that

yields a positive display of 5-methylcytosine residues in individual DNA strands,”

Genetics, vol. 89, pp. 1827–1831, 1992. doi: 10.1073/pnas.89.5.1827.

[59] “Schofield-etal 2018,”

[60] A. G. Baltz, M. Munschauer, B. Schwanhäusser, A. Vasile, Y. Murakawa, M.
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