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The advent of high throughput DNA sequencing has vastly accelerated transcriptome-

wide profiling of RNA, revealing thousands of new noncoding RNA genes in humans

and across the phylogenetic tree. Many of these noncoding RNAs are similar in

length and processing to messenger RNAs and are referred to as long noncoding RNAs

(lncRNAs). Some lncRNAs had been identified decades earlier and have genetic and

biochemical evidence for function, e.g. the Xist RNA, which is the master regulator

of X-chromosome inactivation in female mammals. Meanwhile, the functions (or lack

thereof) of many lncRNA genes are unclear, and the detailed mechanisms of lncRNAs

with known functions are also often unknown.

Beyond identification of new RNA genes, high throughput sequencing has also

enabled the adaptation of biochemical methods that were traditionally read out for

one target RNA at a time to a transcriptome-wide scale, while sometimes revealing

new types of information or making possible the study of RNAs within complex

or in vivo samples. This enables unprecedented characterization of the activities of

both noncoding RNA genes and regulatory regions within messenger RNAs, providing

potentially critical information. Each new assay brings specific analysis challenges,

including data normalization, scale of interpretation, statistical overdispersion, and

limited numbers of replicate experiments.

In this thesis, I have developed and applied computational and statistical methods

to aid the interpretation of new technologies for the study of noncoding RNA. In the



first chapter, I review the state of the field for the study of lncRNAs and general anal-

ysis challenges presented in the interpretation of high throughput sequencing data.

In the second and third chapters, I describe preliminary work in my PhD analyzing

two technologies developed by collaborators: Capture Hybridization of RNA Targets

(CHART) to reveal the spreading pattern of the Xist RNA across the X chromosome

(ch. 2); and separation of labeled RNA populations using improved disulfide chem-

istry for the study of RNA dynamics (ch. 3). In the fourth chapter, I develop a new

analysis method to model the statistical overdispersion of RNA chemical probing data

and apply this model to investigate the contribution of variability in chemical probing

data on resulting RNA secondary structure predictions. The methods described here

may facilitate the use of the described technologies for integrative analysis to help

distinguish candidate lncRNAs and specific regions within them for further study, as

well as RNA regulatory regions in which mutations may cause disease.
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Chapter 0

Overview

This thesis contains five chapters. Chapter 1 is a reproduction of a review article that

I wrote, along with Drs. Alec Sexton and Matthew Simon, describing the properties

of a class of RNAs, termed long noncoding RNAs (lncRNAs), that are transcribed

and processed like messenger RNAs but show little to no evidence of being translated.

Our review particularly discusses the established and potential roles of lncRNAs in

regulating chromatin. This chapter is related to the following published article:

• Rutenberg-Schoenberg, M, Sexton, AN, Simon, MD (2016). The Properties of

Long Noncoding RNAs That Regulate Chromatin. Annu Rev Genomics Hum

Genet, 17:69-94.

Chapters 2-4 describe work analyzing technologies that combine biochemical ma-

nipulation with high throughput sequencing to study noncoding properties of RNA.

In chapter 2, I reproduce a published article focusing on the occupancy pattern

of the Xist lncRNA, which is a master regulator of chromsomal dosage compensation

in female mammals, across the X-chromsome. I contributed analysis to this project

focusing on comparing temporal spreading patterns in different cellular contexts. This

chapter is related to the following published article:
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• Simon, MD, Pinter, SF, Fang, R, Sarma, K, Rutenberg-Schoenberg, M, Bow-

man, SK, Kesner, BA, Maier, VK, Kingston, RE, Lee, JT (2013). High-

resolution Xist binding maps reveal two-step spreading during X-chromosome

inactivation. Nature, 504, 7480:465-469.

In chapter 3, I reproduce the following published article focusing on development

of improved chemistry for isolating metabolically labeled RNA.

• Duffy, EE, Rutenberg-Schoenberg, M, Stark, CD, Kitchen, RR, Gerstein, MB,

Simon, MD (2015). Tracking Distinct RNA Populations Using Efficient and

Reversible Covalent Chemistry. Mol. Cell, 59, 5:858-66.

In chapter 4, I include a draft of an article titled “Modeling overdispersion of RNA

chemical probing data and application to RNA secondary structure prediction.” I have

this project, in collaboration with Dr. Alec Sexton, Peter Y. Wang, and under the

direction of my advisors, Dr. Mark Gerstein and Dr. Matthew Simon. Work in

this chapter demonstrates that simplifying assumptions often made when analyzing

RNA chemical probing data do not hold true formally. As a result, more flexible

distributions can provide a better fit to probing data. I further explore how variability

in probing data influences RNA secondary structure predictions.

In chapter 5, I provide a very brief conclusion and suggest future directions.

In addition to the included work, I have contributed as a co-author to several

other articles that are published or under review:

• Fang, R, Moss, WN, Rutenberg-Schoenberg, M, Simon, MD (2015). Probing

Xist RNA Structure in Cells Using Targeted Structure-Seq. PLoS Genet., 11,

12:e1005668.

• Sexton, AN, Wang, PY, Rutenberg-Schoenberg, M, Simon, MD (2017). In-

terpreting Reverse Transcriptase Termination and Mutation Events for Greater

Insight into the Chemical Probing of RNA. Biochemistry, 56, 35:4713-4721.
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• Sisu, C, Pei, B, Leng, J, Frankish, A, Zhang, Y, Balasubramanian, S, Harte,

R, Wang, D, Rutenberg-Schoenberg, M, Clark, W, Diekhans, M, Rozowsky,

J, Hubbard, T, Harrow, J, Gerstein, MB (2014). Comparative analysis of

pseudogenes across three phyla. Proc. Natl. Acad. Sci. U.S.A., 111, 37:13361-

6.

• Zhang J, Liu J, Lee D, Feng JJ, Lochovsky L, Lou S, Rutenberg-Schoenberg

M, Gerstein M (2019). RADAR: annotation and prioritization of variants in

the post-transcriptional regulome of RNA-binding proteins. BioRXiv
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Chapter 1

The Properties of Long Noncoding

RNAs that Regulate Chromatin

1.1 Summary

The central topic of this thesis is the computational analysis of experiments that

reveal noncoding biochemical properties of RNA. The review article below discusses

the history and current state of the field studying long noncoding RNAs (lncRNAs),

a class of RNAs that are transcribed and processed similarly to messenger RNAs but

are not translated, with a particular focus on those lncRNAs that regulate chromatin.

I led writing of this article, with contributions from Drs. Alec N. Sexton and Matthew

D. Simon.

The remainder of this chapter is a reproduction, with permission, of the following

publication:

Rutenberg-Schoenberg, M, Sexton, AN, Simon, MD (2016). The Properties of

Long Noncoding RNAs That Regulate Chromatin. Annu Rev Genomics Hum Genet,

17:69-94.
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1.2 Abstract

Beyond coding for proteins, RNA molecules have well-established functions in the

posttranscriptional regulation of gene expression. Less clear are the upstream roles

of RNA in regulating transcription and chromatin-based processes in the nucleus.

RNA is transcribed in the nucleus, so it is logical that RNA could play diverse and

broad roles that would impact human physiology. Indeed, this idea is supported by

well-established examples of noncoding RNAs that affect chromatin structure and

function. There has been dramatic growth in studies focused on the nuclear roles of

long noncoding RNAs (lncRNAs). Although little is known about the biochemical

mechanisms of these lncRNAs, there is a developing consensus regarding the chal-

lenges of defining lncRNA function and mechanism. In this review, we examine the

definition, discovery, functions, and mechanisms of lncRNAs. We emphasize areas

where challenges remain and where consensus among laboratories has underscored

the exciting ways in which human lncRNAs may affect chromatin biology.

1.3 LESSONS FROM EARLY DISCOVERIES OF

NONCODING RNAs

Non-protein-coding RNA transcripts (ncRNAs) have been known to regulate gene

expression since the advent of molecular biology. The roles of the first ncRNAs dis-

covered [e.g., transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and spliceosomal

RNAs] involved RNA translation and RNA processing (reviewed in [Cech and Steitz, 2014]).

The much broader scope of ncRNA-directed activities, including regulation of chro-

matin, is now widely appreciated. This understanding is built in part on discoveries

in which genes for ncRNAs (rather than protein-coding genes) were identified as mas-

ter regulators of certain biological phenomena. As an early example, while studying
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genes responsible for developmental timing in Caenorhabditis elegans, the Ambros

and Ruvkun groups identified two genes, lin-4 and lin-14, as necessary for appro-

priate development [Lee et al., 1993, Wightman et al., 1993]. One gene (lin-14) was

a protein-coding gene, as expected; the biological activity of the other gene (lin-4,

which represses lin-14) was unexpectedly caused by a short RNA molecule rather

than a protein. Although this discovery was initially considered an oddity of ne-

matode biology, similar analyses led to the realization that another gene responsible

for developmental timing in these worms (let-7) functions as a small ncRNA and is

conserved in other animals, including humans, opening the door to the now giant

field of small ncRNA biology [Neilson and Sharp, 2008]. In mammals, these small

ncRNAs are thought to function mainly in the cytoplasm (with a few exceptions,

such as the Piwi-interacting RNAs). By contrast, there is general consensus that a

different class of ncRNAs, the long noncoding RNAs (lncRNAs), includes RNAs that

play important roles in chromatin regulation in higher eukaryotes, including mammals

[Goff and Rinn, 2015, Guttman and Rinn, 2012, Vance and Ponting, 2014].

For investigators interested in lncRNAs that impact chromatin structure, the flag-

ship example is the Xist lncRNA [Gendrel and Heard, 2014, Lee, 2009]. In female

mammals, transcription from one of the two female X chromosomes is repressed,

thereby balancing dosage between females (two Xs) and males (one X). The dis-

covery of this phenomenon [LYON, 1961] led to the hypothesis that the X chromo-

some contains a master regulator of X chromosome inactivation (XCI). The subse-

quent search for this regulator uncovered the XCI center, from which a large tran-

script (∼18 kb in mice) is expressed in a sexspecific manner [Brockdorff et al., 1992,

Brown et al., 1991]. The possibility that this transcript was a protein-coding mes-

senger RNA (mRNA) was considered, but studies eventually found that the RNA

itself is the master regulator of XCI. This lncRNA was named Xist. Xist is a spliced,

polyadenylated, RNA polymerase II (Pol II) transcript that is upregulated on one of

9



the two female X chromosomes early in development. Decades of work from multiple

groups have led to consensus and a detailed understanding about the role of Xist in

certain steps of XCI [Gendrel and Heard, 2014, Lee, 2009]. Xist spreads to gene-rich

regions on the X chromosome through a two-step mechanism [Simon et al., 2013],

eventually coating the majority of the X chromosome. Xist leads to transcriptional

repression and dramatic changes to the chromatin composition, including changes

to histone composition (e.g., incorporation of macroH2A), histone modification [e.g.,

methylation of histone H3 on lysine 27 (H3K27me) [Plath et al., 2003]], and DNA

methylation. Although there is broad consensus about the importance of Xist to

the initiation of XCI, the downstream events that take place on the inactive X chro-

mosome, including the biochemical events connecting Xist to chromatin regulation

and how Xist spreads in cis across an entire chromosome, are still topics of active

investigation. After one X chromosome is inactivated, the identity of the inactive X

chromosome is mitotically stable through future cell divisions, making XCI a classic

example of chromatin-mediated epigenetic regulation.

One obvious question is why seemingly few human lncRNAs have turned up in

classic genetic screens or biologically driven studies (such as those that led to the

discovery of lin-4 and Xist). Explanations include early investigator bias toward

coding transcripts, a bias that has recently become less pronounced thanks to a

wider appreciation of the roles of ncRNAs. Furthermore, traditional mutagenesis is

relatively less likely to inactivate the function of a lncRNA than the function of a

coding gene, because lncRNAs lack features that can lead to inactivation of protein-

coding genes (nonsense, missense, and frameshift mutations). Other challenges also

might have obscured lncRNAs from these studies. For example, human lncRNAs are

rarely conserved in model organisms such as flies or worms, which would otherwise

allow faster and more comprehensive analyses; by one estimate, the majority of human

lncRNAs are not conserved beyond primates [Derrien et al., 2012]. However, there
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are well-characterized examples of lncRNAs with important biological effects that

were identified in model organisms (but not found in humans).

Perhaps the best-characterized examples of lncRNA function in model organisms

are the roX lncRNAs in flies, which (like Xist) are central to dosage compensation.

In Drosophila melanogaster, the logic of dosage compensation is different from that

in mammals: Instead of inactivating one of the two female X chromosomes, these flies

balance dosage primarily by increasing transcription on the single male X chromosome

[Conrad and Akhtar, 2012, Gelbart and Kuroda, 2009, Maenner et al., 2012]. Genetic

screens in D. melanogaster first uncovered a complex of proteins that are required for

fly dosage compensation [Belote and Lucchesi, 1980, Fukunaga et al., 1975]. Subse-

quently, an enhancer-trap screen identified a genomic region on the X chromosome

that caused sex-specific expression of the enhancer-trap reporter [Meller et al., 1997].

Investigation of this locus led to the discovery of a non-protein-coding gene dubbed

RNA on the X (roX) that coats the fly X chromosome in males, in a manner rem-

iniscent of Xist in mammals. Meller and Rattner [Meller and Rattner, 2002] later

discovered that there are two redundant roX RNAs (roX1 and roX2), at least one of

which is necessary for dosage compensation and male viability. It is worth noting that

this redundancy may be the reason that these lncRNA genes were missed in earlier

genetic screens for regulators of dosage compensation. The roX RNAs can assemble

into a chromatin-modifying complex that includes at least five proteins [male-specific

lethal 1–3 (MSL1–3), males absent on the first (MOF), and maleless (MLE)] that

had previously been implicated in dosage compensation [Conrad and Akhtar, 2012,

Gelbart and Kuroda, 2009, Maenner et al., 2012]. This complex binds to chromatin

at well-defined sites and upregulates genes on the single X chromosome. This upreg-

ulation relies on the catalytic activity of the MOF subunit, which acetylates histone

H4K16, a known activating modification that can lead to chromatin decondensation.

Although there are similarities between the roX RNAs in flies and Xist in mammals,
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there are also important differences beyond the direction of their respective regulation

(activation versus repression). The roX RNAs can rescue a roX mutant phenotype

when expressed in trans from another chromosome (they will still appropriately lo-

calize to the X chromosome), whereas Xist silences in cis on the same chromosome on

which it is transcribed, even if it is expressed from an autosome [Kelley et al., 1999].

Also, high-resolution binding studies have demonstrated that roX RNAs bind to

well-defined punctate genomic sites [Chu et al., 2011, Simon et al., 2011], whereas

similar analyses demonstrate that Xist binds much more broadly on the X chro-

mosome [Simon et al., 2013, Engreitz et al., 2013]. Nonetheless, the roX RNAs and

Xist clearly demonstrate how lncRNAs can dramatically influence chromatin biology.

There is broad consensus that the examples cited above constitute important cases

where lncRNAs influence chromatin. As with any relatively new field, there are active

areas of investigation where there is not yet consensus. There is still debate about

what constitutes a lncRNA and how many human lncRNAs exist. Furthermore,

although this review focuses on lncRNAs that influence chromatin structure, in many

cases it is not clear whether any given lncRNA functions at the level of chromatin. For

example, one of the first human lncRNAs discovered was H19 [Brannan et al., 1990],

which is expressed from a well-studied imprinted locus and has been established as

a tumor suppressor and growth suppressor [Barlow and Bartolomei, 2014]. Unlike

Xist and roX lncRNAs, which directly impact chromatin regulation, H19 is exported

to the cytosol, where it is processed to provide a source of a microRNA (miR-675)

that suppresses growth by posttranscriptional attenuation of growth-promoting genes,

including Igf1r. Only a subset of lncRNAs function by directly impacting chromatin

biology, and this review addresses different properties to consider when studying

these lncRNAs (Figure 1.1). Although there has been an upsurge in the number of

lncRNA reports, this review focuses primarily on cases where multiple investigations

have reached similar conclusions; in cases where there is not yet consensus, we focus
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Figure 1.1: Properties of lncRNAs that act on chromatin.

Abbreviations: lncRNA, long noncoding RNA; m6A,N6-methyladenosine; Me,
methylation; ORF, open reading frame; Pol II, RNA polymerase II; Ψ,
pseudouridine.
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on the biological and technical challenges that still need to be overcome.

1.4 WHAT MAKES AN RNA A LONG NON-

CODING RNA?

lncRNAs are typically defined as RNA molecules that are at least 200 nucleotides

(nt) in length and do not display potential to encode proteins [Rinn et al., 2007,

Ulitsky et al., 2011] (Figure 1.1). They are generally transcribed in a regulated

manner by Pol II and sometimes (but not always) processed similarly to mRNAs

(e.g., they are generally capped, spliced, and polyadenylated). The lncRNA clas-

sification is problematic for three reasons. First, the current definition of lncRNA

is divorced from function, in contrast to well-established families of ncRNA, such

as tRNAs, rRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoR-

NAs), and microRNAs (miRNAs). Thus, lncRNAs are likely a collection of sub-

classes of RNAs with diverse functions (and in some cases without a substantial

function). To address this issue, ongoing efforts are under way to tease out clas-

sification systems for lncRNAs that better reflect their biochemical and regulatory

attributes [Bonasio and Shiekhattar, 2014, Cech and Steitz, 2014]. Second, the arbi-

trary cutoff of 200 nt may not include some RNAs that are very similar to lncR-

NAs. This cutoff is technically expedient (200 nt is approximately the retention

of standard long RNA purification kits) [Kapranov et al., 2007] and bioinformati-

cally expedient (we need some cutoff far from small RNAs). However, some ncR-

NAs that are shorter than 200 nt and/or arise from Pol I and Pol III transcription

have been proposed to function in a manner similar to lncRNAs, including B1, B2,

and Alu RNAs (e.g., [Mariner et al., 2008]) and promoter-associated RNAs (pRNAs)

[Mayer et al., 2006, Schmitz et al., 2010], so it is reasonable to expect further refine-

ment of this distinction.
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The third problem with lncRNA classification is that the definition is negative

(i.e., lncRNAs do not have substantial coding potential), but it is the positive func-

tions of these RNA molecules (e.g., regulation of chromatin in the case of Xist and

roX lncRNAs) that make them interesting. To underscore this point, some RNAs,

such as the steroid receptor RNA activator 1 (SRA1) [Hube et al., 2006], have the

potential to both act as a coding transcript and play a regulatory role independent

of translation. Nonetheless, when trying to understand direct regulatory roles of

RNAs, it is presumably easier to begin by ignoring RNAs with another obvious func-

tion (protein coding). It is difficult to confidently establish that a putative ncRNA

lacks protein-coding potential. Many transcripts longer than 1,000 nt are expected

to have an open reading frame (ORF—i.e., a start codon and stop codon in the same

triplet reading frame) just by chance that could in principle encode a protein longer

than 100 amino acids [Dinger et al., 2008, Ulitsky and Bartel, 2013]. In some cases,

even much shorter ORFs can produce functional peptides (e.g., [Slavoff et al., 2013].

Several lines of evidence can help distinguish protein-coding and non-protein-coding

genes. On average, ORFs in bona fide protein-coding genes display sequence con-

servation signals that reflect stronger selection against mutations that change the

protein sequence (missense or frameshift mutations) compared with those that pre-

serve the sequence (synonymous mutations) [Yang and Bielawski, 2000]. Further-

more, protein sequences often contain conserved structural domains with sequence

similarity to parts of other proteins or have experimental support for expression in

proteomics databases [Bateman et al., 2015]. Data from ribosome footprinting ex-

periments (in which footprints of RNA protected by the ribosome are sequenced)

have also contributed to our understanding of which RNAs are translated into pro-

teins [Bazzini et al., 2014, Guttman et al., 2013]. Based on these and other metrics, a

wide range of tools have been developed to help distinguish newly discovered protein-

coding and lncRNA transcripts [Lin et al., 2011, Washietl et al., 2011]; this topic has

15



been reviewed in greater depth elsewhere [Housman and Ulitsky, 2016].

In summary, there is broad consensus that lncRNAs are transcribed and processed

similarly to mRNAs and can have important functions independent of translation.

Because lncRNAs are operationally defined primarily to distinguish them from other

classes of RNAs, we anticipate that more positive classifications of these RNAs will

become possible as we learn more about the biogenesis and function of lncRNAs.

1.5 HOW ARE NEW LONG NONCODING RNAs

FOUND AND ANNOTATED?

Early examples of ncRNAs such as let-7, the roX RNAs, and Xist were found serendip-

itously. Now that we know such RNAs exist, it makes sense to closely examine the

extensive noncoding transcription in the genome. The realization that large portions

of mammalian genomes lying outside of protein-coding genes are transcribed came ini-

tially from sequencing of complementary DNA (cDNA) clones [de Hoon et al., 2015].

This work was pioneered by the Functional Annotation of the Mammalian Genome

(FANTOM) consortium, which developed technology to reverse transcribe full-length

transcripts and to enrich rare transcripts from pools of RNA extracted from cells, two

key innovations that aided transcript discovery [Carninci et al., 2005, Okazaki et al., 2002].

Analysis of FANTOM noncoding transcripts indicated that these RNAs were slightly

more conserved than average genomic regions [Ponjavic et al., 2007]. Further evi-

dence of pervasive transcription was drawn from analysis of microarray data. Genome

tiling microarrays extended beyond cDNA sequencing data to show new actively tran-

scribed regions [Bertone et al., 2004]. Meanwhile, non-protein-coding genomic loci

harboring histone modification patterns characteristic of genes were found to be ro-

bustly expressed, and analysis of this long intergenic noncoding RNA set corroborated

the conservation of lncRNAs relative to the rest of the genome [Guttman et al., 2009].
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This extensive noncoding transcription has been corroborated by RNA sequencing

(RNA-Seq) [Cabili et al., 2011, Derrien et al., 2012, Djebali et al., 2012, Gu et al., 2012,

Lister et al., 2008, Nagalakshmi et al., 2008]. There is now broad consensus that this

noncoding transcription is real, but how best to annotate RNA transcripts (including

lncRNAs) from these data is still an active topic of investigation.

Although RNA-Seq provides excellent information about relative RNA expression

levels, annotating full-length RNA transcripts (including locations of RNA splic-

ing sites) from short-read high-throughput sequencing data presents a challenge.

Because most transcripts are much longer than sequence read lengths, it is often

unclear whether distant exons are present together in a single transcript. Algo-

rithms to address this problem [e.g., Cufflinks [Trapnell et al., 2010] and Scripture

[Guttman et al., 2010]; reviewed in [Martin and Wang, 2011]] generally proceed by

merging overlapping sequence reads into putative exons, connecting adjacent exons

using reads mapping to splice junctions, and finally merging sets of distant exons

into transcripts based on the assumption that read coverage will be uniform along a

given transcript [Trapnell et al., 2010]. Using these algorithms with increased focus

on RNAs with at least one splice junction, which guarantees that they contain se-

quences that could not arise from genomic DNA contamination, can aid annotation

specificity [Cabili et al., 2011] but undoubtedly ignores some lncRNAs that are not

spliced [e.g., nuclear-enriched autosomal transcript 1 (NEAT1, also known as MEN

β)]. In addition to the above algorithms, new formats for short-read sequencing

that maintain information about entire RNA molecules [Tilgner et al., 2015] and in-

creases in throughput of single-molecule long-read DNA sequencing methods [e.g., se-

quencing in zero-mode waveguides [Eid et al., 2009] or nanopores (Oxford NanoPore)

[Clarke et al., 2009]] have the potential to greatly improve lncRNA annotation be-

cause they provide a clearer picture of individual RNA transcripts. These technologies

have already shown promise for discovering new transcripts and may also be useful for
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RNA quantification applications [Sharon et al., 2013]. These advances will help ad-

dress the important challenge of accurately annotating lncRNAs and their transcript

structures. A range of projects, including Ensembl [Cunningham et al., 2015], GEN-

CODE [Derrien et al., 2012], and RefSeq [Pruitt et al., 2014], have devoted consider-

able effort to annotating lncRNAs, particularly in the human genome. These annota-

tion groups rely on cDNA sequencing, supplemented by RNA-Seq, as source informa-

tion for transcripts. The GENCODE project supplements computationally predicted

transcript annotations with manual expert curation based on cDNA, RNA-Seq, and

other genome signals [e.g., chromatin immunoprecipitation sequencing (ChIP-Seq) of

histone modifications] and validates transcripts with weak evidence by quantitative

polymerase chain reaction (qPCR) [Derrien et al., 2012]. Because these large anno-

tation projects are relatively conservative in their annotations of lncRNAs, additional

efforts [e.g., LNCipedia [Volders et al., 2015] and NONCODE [Xie et al., 2014]] have

sought to incorporate as much available RNA-Seq data as possible. In addition to

annotations based on sequence and expression, at least one database (lncRNAdb) has

been developed to catalog functional studies of lncRNAs [Quek et al., 2015].

1.6 HOW MANY LONG NONCODING RNAs

ARE THERE?

There is not yet a consensus estimate of the number of bona fide lncRNAs expressed

in the human genome. Numbers from the reference annotations discussed above

range from tens of thousands to hundreds of thousands of lncRNA genes, with larger

numbers of unique transcripts produced by alternative splicing [Derrien et al., 2012,

Xie et al., 2014] (Figure 2a). Part of the complexity arises because current sequenc-

ing data do not accurately represent expression from all types of tissues, conditions,

and developmental timing. Given the well-documented tissue specificity of lncR-
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NAs [Cabili et al., 2011], it thus remains unclear how many lncRNA transcripts are

substantially expressed only under specific conditions that are not well represented

in current data. Perhaps an even larger problem when counting lncRNAs is deter-

mining how much expression should be required to constitute reliable evidence of a

lncRNA. A practical answer to this question depends on the mechanisms by which

these lncRNAs function. It is essential to consider what level of expression would

be required to support a proposed mechanism of action. For example, if a lncRNA

needs to bind another biomolecule with high stoichiometry in order to function, then

the lncRNA must achieve cellular concentrations compatible with the interactor’s

copy number and dissociation constant. At the extreme, if a lncRNA acts as a high-

affinity tether to recruit chromatin modifications to its endogenous genomic locus, one

lncRNA molecule transiently expressed could conceivably be sufficient, especially if

the recruited chromatin marks are epigenetically stable and able to propagate along

the chromatin. On the other hand, for mechanisms in which the lncRNA behaves

like a transcription factor or subunit of a chromatin-modifying complex, we would

expect the lncRNA to exceed 100 copies per cell to achieve nanomolar concentrations

in the nucleus [most transcription factors exceed 1,000 copies per cell [Biggin, 2011]].

Thus, there is consensus that there are at least thousands of lncRNAs, and useful

estimates of the number of lncRNAs will continue to improve as we learn more about

the mechanisms of the subset of lncRNAs that play functional roles.

What is the distribution of cellular lncRNA expression levels, and how many

achieve concentrations similar to those of other types of chromatin-modifying ma-

chinery? It is well documented that lncRNAs on average have substantially lower

expression than mRNAs (Figure 1.2c). In keeping with the discussion above, expres-

sion levels can be thought of in terms of copies per cell. Estimates for lncRNA copy

numbers range from less than one copy per cell for HOTTIP [Wang et al., 2011] to

tens of thousands for NEAT1 and metastasis-associated lung adenocarcinoma tran-
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script 1 (MALAT1), which are some of the most abundant transcripts in the cell,

on a similar level to abundant mRNAs such as those that encode ribosomal pro-

tein RPLP2 [Cabili et al., 2015]. Despite these estimates, RNA copy numbers have

proven difficult to measure directly in high throughput, even when simplifying by

omitting consideration of different possible transcript isoforms (e.g., from alterna-

tive splicing). The traditional gold standard for determining the concentration of

an RNA in a population of cells is a quantitative northern blot experiment, in

which the cellular RNA levels are compared with authentic standards. Other ap-

proaches include qPCR (in comparison with standards) and measurement of abso-

lute copies per cell using single-molecule fluorescence in situ hybridization (smFISH)

[Crosetto et al., 2015, Raj et al., 2008], which also provides information about the

distribution of copy numbers in a cell population. By contrast, most high-throughput

data on RNA expression come from RNASeq experiments (most frequently without

internal standards), but using these RNA-Seq data to estimate copy number is chal-

lenging. Because some high-throughput smFISH studies have been conducted, it

would be useful to relate those measurements of relative molecular concentration to

RNA-Seq in a standardized way to the number of copies of an RNA molecule per cell.

Indeed, Battich et al. [Battich et al., 2013] reported a high correlation between their

RNA-Seq and smFISH measurements of nearly 1,000 RNAs (Pearson’s r = 0.45, real

scale; r = 0.84, log2 scale) (Figure 1.2c). However, making a more general state-

ment about the relationship between RNA-Seq expression measurements and actual

copies of RNAs per cell requires careful consideration [Pachter, 2014]. One important

piece of information needed to connect measurements of relative molecular concen-

tration and molecules per cell is how variable quantities of total RNA are among

cells of a given type and those of different types: Human cells can vary in RNA

content by as much as an order of magnitude [Marinov et al., 2014]. Also relevant

are technical aspects of both RNA-Seq and smFISH quantification. RNA-Seq expres-
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sion implicitly measures relative molecular concentrations, which depend on which

RNAs are being quantified and thus on the chosen RNA annotation. Furthermore,

short sequencing reads that map ambiguously to the genome must be assigned, usu-

ally by expectation-maximization algorithms, which are helpful but cannot overcome

imperfect data [Li and Dewey, 2011, Trapnell et al., 2010]. Beyond this, RNA-Seq

quantifications are often reported in reads or RNA fragments per kilobase per mil-

lion reads (RPKM or FPKM, respectively) [Mortazavi et al., 2008]. These metrics

accurately represent relative molecular concentration, but mean RPKMs vary among

experiments depending on the relationship between length and transcript abundance.

More recently, a metric called transcripts per million (TPM) has been proposed as a

useful alternative to RPKM/FPKM that more consistently normalizes for transcript

length and has a consistent mean between different experiments, so long as the same

annotation is used ([Li and Dewey, 2011]; for a more detailed explanation, see Refer-

ence [Wagner et al., 2012] and the section 1.6.1, Metrics for Quantifying Transcripts

in RNA-Seq).

As with RNA-Seq, there are technical issues to consider with smFISH quantifica-

tions. For example, Cabili and colleagues [Cabili et al., 2015, Dunagin et al., 2015]

recently conducted an smFISH study of the expression of over 50 lncRNAs in three

different cell lines. In contrast to mRNAs, which typically display diffuse expression,

many of the lncRNAs chosen for analysis clustered in particular loci in the cell. As

the unit of smFISH expression quantification is typically spots per cell, these quan-

tifications may be underestimated for some lncRNAs, or for any RNA that has a

three-dimensionally clustered expression pattern. Despite these challenges, can we

use these data to estimate the number of lncRNAs in a cell? To explore how much

consensus there is in lncRNA numbers when comparing across techniques, we re-

quantified both coding and noncoding transcripts from the RNA-Seq data from HeLa

cells and compared 791 mRNAs with the reported numbers of molecules per cell from
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Figure 1.2: Quantifying lncRNA expression with RNA-Seq and smFISH.

(a) Estimates of the number of lncRNA genes by five annotation consortia as of
November 2015. (b) Comparison of RNA-Seq and smFISH measurements of the
expression of 791 mRNA genes in HeLa cells. The solid line indicates a fit by linear
regression, and the dashed lines indicate its 95% confidence interval. Quantifications
of RNAs annotated by the GENCODE project (version 19) were performed from
polyadenylated RNA-Seq data from the ENCODE project [Djebali et al., 2012]
using Kallisto [Bray et al., 2016]. (c) Cumulative distributions of expression levels
measured using RNA-Seq for lncRNAs or mRNAs from the GENCODE project. (d
) Predicted numbers of lncRNA and mRNA transcripts at varying absolute
expression levels. Ranges of predicted copies are indicated by the shaded regions for
lncRNAs (red ) and mRNAs (blue). To make rough estimates of absolute RNA copy
numbers, we used several regression methods to compare the relative quantifications
of RNA-Seq data to absolute quantifications from smFISH data for the 791 mRNA
genes shown in panel b. Abbreviations: lncRNA, long noncoding RNA; mRNA,
messenger RNA; RNA-Seq, RNA sequencing; smFISH, single-molecule fluorescence
in situ hybridization; TPM, transcripts per million.
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smFISH experiments [Battich et al., 2013] (Figure 1.2 b). These data can provide a

rough estimate that 1 molecule per cell corresponds to roughly 1–10 TPM in HeLa

cells. This estimate implies that a handful to tens of lncRNAs are present at 100 or

more copies per cell in HeLa cells, and that hundreds to approximately 1,000 lncR-

NAs are expressed with at least 1 copy on average per cell (Figure 1.2 c,d ). These

estimates are rough and may be relatively low, because branched DNA FISH, the sm-

FISH technique used by Battich et al. [Battich et al., 2013], primarily detects RNA

in the cytoplasm. Although most mRNAs exist predominantly in the cytoplasm, in-

clusion of nuclear RNA signal would increase the estimated number of RNA molecules

represented by 1 TPM in RNA-Seq data.

It is also likely that the relationship between RNA copy numbers and measure-

ments of relative concentrations from RNA-Seq vary more widely than the above

estimates when considering a wider range of cell types with varying RNA content.

For example, single-cell RNA-Seq of GM12878 lymphoblastoid cells using synthetic

standards led to the estimate that there are 50,000 to 300,000 transcripts per cell,

implying that 1 molecule per cell corresponds to ∼3–20 TPM, which in turn im-

plies that only 0–4 lncRNAs are expressed at 100 copies per cell in this cell line

[Djebali et al., 2012]. By contrast, a recent smFISH survey of lncRNAs by Cabili and

colleagues [Cabili et al., 2015] found that 2–5 of ∼50 lncRNAs measured in three dif-

ferent cell lines (some of which were chosen for their known functions) were expressed

at 100 or more copies per cell, possibly implying that more lncRNAs than we suggest

are expressed at that level. Either way, these rough estimates suggest that relatively

few lncRNAs achieve cellular concentrations comparable with those of transcription

factors.

In summary, the human genome is thought to contain thousands to hundreds of

thousands of lncRNAs, and annotation efforts are ongoing. However, careful con-

sideration of RNA expression levels, especially considered intuitively as estimates
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of molecules per cell or molecular concentrations, may help winnow this large list

of genomic elements to smaller numbers that may be amenable to investigations of

potential mechanistic roles and in particular cell lines.

1.6.1 METRICS FOR QUANTIFYING TRANSCRIPTS IN

RNA-SEQ

RNA-Seq methods aim to measure the relative concentrations of the RNA molecules

expressed in a cell. Here, we describe two metrics for quantifying this expression,

reads per kilobase per million reads (RPKM) and transcripts per million (TPM);

highlight factors that affect the values of both metrics; and discuss why TPM may

be an improvement over RPKM. Definitions. Let t represent each transcript in the

genome, which has N annotated transcripts. Also let rt represent the reads mapping

to that transcript, typically after a reassignment of ambiguously mapping reads by

expectation maximization [Li and Dewey, 2011, Trapnell et al., 2010]; lr represent the

length of each read; lt represent the length of the transcript; and R represent the total

number of mapped reads in the experiment. Reads per kilobase per million reads

(RPKM). RPKM is the most common metric used to describe the relative molecular

concentrations of RNAs from an RNA-Seq experiment:

RPKMt = rt ∗
103

lr
∗ 106

R

Indeed, this metric correlates to relative molecular concentration (see, e.g., [Wagner et al., 2012]).

However, the mean value of RPKM is not identical from experiment to experiment:

〈RPKM〉 =

∑N
t=1RPKMt

N
=

109

R ∗N

N∑
t=1

rt
lt

This is because the summation term
∑N

t=1
rt
lt

varies based on the relationship be-
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tween the length and abundance of different transcripts.

Transcripts per million (TPM). TPM is a more recently proposed metric that

also represents relative molecular concentration but has a consistent mean, which aids

comparisons between experiments [Li and Dewey, 2011, Wagner et al., 2012]. Like

RPKM, its values are dependent on which (and how many) transcripts are anno-

tated. The underlying assumption of the TPM metric is that each read samples the

proportion of the transcript that is the ratio of the read length to the length of the

transcript. The number of transcripts sampled, Tt, is given by

Tt =
rt ∗ lr
lt

TPMt is then the ratio of the number of transcripts of the specific transcript

sample to the total number of transcripts observed, Ttot, multiplied by 1 million:

TPMt =
Tt ∗ 106

Ttot

where

Ttot =
N∑
t=1

Tt

This gives a mean value for TPM that depends only on N, the number of total

annotated transcripts encoded from the genome:

〈TPM〉 =

∑N
t=1 TPMt

N
=

∑N
t=1 Tt ∗ 106

Ttot ∗N
=

106

N
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1.7 WHERE ARE LONG NONCODING RNAs

EXPRESSED?

One important clue to the function of a lncRNA is where it is present. Accord-

ingly, much attention has been paid to the tissue specificity and cellular localization

patterns of lncRNAs. The realization that lncRNAs are expressed more tissue specifi-

cally than mRNAs [Cabili et al., 2011, Derrien et al., 2012, Mele et al., 2015] has mo-

tivated several studies searching for roles of lncRNAs in regulating cell differentiation

(e.g., [Guttman et al., 2011], [Sun et al., 2013]), although it has been aptly argued

that tissue specificity is not in itself evidence for function [Ulitsky and Bartel, 2013].

Moreover, lncRNAs are widely reported to be enriched relative to mRNAs in the

nucleus and on chromatin. Whether the majority of lncRNAs actually reside in the

nucleus is hard to determine from RNA-Seq experiments, as this requires information

about the relative quantities of RNA in different subcellular fractions. The recent

smFISH survey of lncRNA expression indicated that two-thirds of the ∼50 lncR-

NAs studied were localized primarily to the nucleus [Cabili et al., 2015], although

the selected set of RNAs chosen in this study was not intended to be representa-

tive. In addition to providing information about the localization of known RNAs,

RNA-Seq experiments of chromatin fractions have been fertile ground for discover-

ing new noncoding transcripts, which may be detected clearly only in a subcellular

fraction where they are enriched [Tilgner et al., 2012, Werner and Ruthenburg, 2015].

Deeper analysis of lncRNA localization by FISH and RNA-Seq of chromatin fractions

may help uncover more lncRNAs that are candidates for roles in chromatin biology.

For example, the localization of roX lncRNAs on chromatin (which is particularly

noticeable in salivary gland cells that produce polytene chromosomes) is the key ob-

servation that led to the hypothesis that roX lncRNAs act at the level of chromatin

[Meller and Rattner, 2002].

26



1.8 WHAT ARE THE REGULATORY ROLES OF

CHROMATIN-ACTING LONG NONCODING

RNAs?

Efforts to systematically uncover the function of lncRNAs have been conducted since

2005, when Willingham et al. [Willingham et al., 2005] conducted a small hairpin

RNA (shRNA) screen against ncRNAs to identify genes that modulate the activity

of nuclear factor of activated T cells (NFAT) and identified the noncoding repres-

sor of NFAT (NRON) lncRNA. Despite a decade of efforts, searching for function

among the thousands of lncRNAs transcribed from mammalian genomes remains

challenging. A broad screen of lncRNA knockdown in embryonic stem cells led one

group of researchers to conclude that more than 90% of lncRNAs act together with

chromatin-modifying machinery and have a dramatic impact on gene expression in

trans, suggesting that their importance is comparable to that of transcription fac-

tors [Guttman et al., 2011]. On the other extreme, loss-of-function studies in mice

have often demonstrated relatively modest roles for lncRNAs, leading to a growing

consensus for a need for extra scrutiny when examining loss-of-function studies of

lncRNAs [Bassett et al., 2014, Goff and Rinn, 2015]. Indeed, on occasion, reanaly-

ses of the same data have led different groups to draw different conclusions about

the potential mechanisms of regulatory effects observed upon lncRNA knockdown

[Guttman et al., 2011, Tan et al., 2015]. Fetal-lethal noncoding developmental regu-

latory RNA (Fendrr) and megamind are two examples of lncRNAs that have been

examined by multiple groups, and they highlight both the potential and challenges

of studying lncRNA function.

Fendrr is transcribed antisense to the Foxf1 transcription factor gene [Grote et al., 2013],

and several groups have examined its function. Insertion of a transcription termina-

tion signal in the first exon of Fendrr hindered heart and body wall development and
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led to embryonic lethality in mice [Grote et al., 2013]. Introducing another element

containing the Fendrr-Foxf1 locus, but with a transcription termination site in the

Foxf1 gene, rescued the developmental phenotype of Fendrr transcription termina-

tion, supporting the conclusion that the original phenotype was due to loss of Fendrr

lncRNA. This rescue also demonstrated that the Fendrr lncRNA can function outside

its endogenous genomic locus. Others corroborated that the Fendrr locus is impor-

tant to embryonic development [Sauvageau et al., 2013]. A deletion of the Fendrr

locus led to embryonic lethality but caused defects in lung development as opposed

to heart development, which highlights the fact that removal of subtly different com-

binations of ncRNA and regulatory DNA may have substantially different phenotypic

consequences [Grote et al., 2013, Sauvageau et al., 2013].

The megamind lncRNA was first examined because of its conserved synteny be-

tween humans and zebrafish (in both organisms, it is expressed antisense from within

the intron of birc-6 ). A hidden Markov model–based sequence search, which is much

more sensitive than tools like BLAST, showed that 19 noncontiguous nucleotides of

megamind were perfectly conserved among 75 copies of the RNA in 47 vertebrate

species. These isolated sites of perfect conservation contrasted with low general se-

quence conservation in the RNA [Ulitsky et al., 2011]. Three diverse morpholino

oligonucleotides that targeted megamind (or, more specifically, targeted a conserved

region or one of two splice sites in the RNA) led to deformed head and brain de-

velopment, consistent with the brain-specific expression of megamind RNA in both

zebrafish and humans. Careful controls in this experiment included a morpholino

oligonucleotide with mismatches (no phenotype was observed) and rescue of the mor-

pholino phenotype by coinjection of zebrafish megamind RNA (or of human and

mouse orthologs). Further support for this conclusion came from an independent

group that identified this locus (they dubbed this RNA TUNA) based on an shRNA

screen of more than 1,000 lncRNAs to identify RNAs that disrupt the pluripotency
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of mouse embryonic stem cells [Lin et al., 2014]. Corroborating the findings with

megamind, they found that TUNA/megamind expression is restricted to neural tis-

sue and that knockdown of TUNA impedes differentiation of both mouse and human

embryonic stem cells into neural tissue. Morpholino oligonucleotides against TUNA

impeded the locomotor response of zebrafish larvae. Even with this high degree of

validation across independent research groups, these results have been challenged by

a study demonstrating that morpholino oligonucleotides directed against megamind

lead to the same phenotype even in a megamind knockout zebrafish [Kok et al., 2015],

implying that the morpholino phenotype was due to off-target effects. Additional

complexity in this case arises because some organisms have multiple copies of the

megamind RNA, and the two morpholino oligonucleotides tested had partial com-

plementarity to the other RNA (76% and 68%) [Kok et al., 2015]. Regardless of

how these discrepancies are eventually resolved, this example highlights both inno-

vative approaches to uncover a conserved, functional lncRNA—megamind is one of

the best-validated lncRNAs uncovered in recent years—and the challenges of building

consensus about the function of newly discovered lncRNAs.

Results such as the examples above have led to an appreciation of the need for

complementary approaches to uncover lncRNA function. The possibility that some

lncRNAs may have few if any functions was raised when a recent analysis of an-

other lncRNA implicated in neuronal development, Visc-2, did not provide a pheno-

type upon genetic ablation despite high conservation and tissue-specific expression

[Oliver et al., 2015], similar to other examples reviewed previously [Nakagawa, 2016].

However, it is worth noting that the absence of a loss-of-function phenotype may be

the result of compensation or redundancy (e.g., individual knockouts of roX1 and

roX2 have little if any phenotype). Even when a phenotype is observed, it is worth

considering that the genetic deletions of an entire lncRNA can also lead to deletion

of regulatory DNA elements [Bassett et al., 2014, Goff and Rinn, 2015]. These DNA
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elements can have critical impacts on gene expression, especially transcription from

nearby loci. Knockdown by RNA interference or morpholinos targets RNA directly,

but the specificity is not always guaranteed, and it can be difficult to predict off-

target effects (see [Kok et al., 2015] and [Rossi et al., 2015] and a critical discussion

in [Blum et al., 2015]).

Bassett et al. [Bassett et al., 2014] have proposed that complementation is the

ideal method of demonstrating lncRNA function when using reverse genetic ap-

proaches. Inserting a lncRNA-encoding sequence at a separate genomic locus sep-

arates potential DNA regulatory elements from their targets and tests the idea that

the RNA of interest alone causes the observed phenotype. Similarly, injecting or

transfecting RNA into cells in which the RNA is knocked down is a promising way to

show that the RNA is responsible for the knockdown phenotype [Arab et al., 2014,

Ulitsky et al., 2011], although even this control has proven unreliable in some cases

[Kok et al., 2015].

Because of these challenges, surgical manipulation of subelements within lncRNA

loci, enabled by recent advances in using CRISPR/Cas9 and other gene editing

systems [Boettcher and McManus, 2015, Hsu et al., 2014, Wright et al., 2016], will

likely play an essential role in discovering new functional lncRNAs and in testing

whether observed phenotypes are caused by specific RNA sequences or transcription.

At the same time, ever-increasing genetic and functional genomic data will help im-

prove hypotheses about which lncRNAs are worth prioritizing for experimental inves-

tigation. For example, ChIP-Seq data can guide study of lncRNAs that are regulated

by pluripotency factors and whose knockdown induces differentiation away from the

pluripotent state as well as lncRNAs that help mediate the p53 DNA damage re-

sponse [Huarte et al., 2010, Sheik Mohamed et al., 2010]. Many lncRNAs have been

investigated because of their association with various diseases [e.g., prostate cancer

[Prensner et al., 2011, Walsh et al., 2014]; reviewed in [Lee and Bartolomei, 2013]].

30



The explosion of whole genome sequencing through projects such as the Cancer

Genome Atlas promises to further guide investigation toward lncRNAs whose expres-

sion or sequence changes in disease states [Weinstein et al., 2013], as may extensive

investigation of protein binding of RNAs through the latest phase of the ENCODE

project [Dunham et al., 2012]. We anticipate that improved genetic tools and mining

of genetic data will speed discovery of functional lncRNAs and help focus functional

investigations of new lncRNAs.

1.9 WHAT ARE THE BIOCHEMICAL ACTIVI-

TIES OF LONG NONCODING RNAs?

Even among lncRNAs that act on chromatin, there are diverse possibilities for where

lncRNAs act, how they are associated with chromatin, and how they function bio-

chemically. Broader discussions of ncRNA activities, including models in which

they act as sinks for proteins [Yin et al., 2012] or miRNAs [Poliseno et al., 2010,

Tan et al., 2015], have been published elsewhere [Tay et al., 2014]. Two extreme

models of the activities of lncRNAs on chromatin are (a) that lncRNAs act locally

at the sites where they are transcribed and (b) that lncRNAs are trans-acting factors

(more akin to transcription factors) that can regulate well-defined sites independent

of where they are expressed. As the examples below make clear, many models of

lncRNA function fall between these two extremes (see also [Dimitrova et al., 2014,

Huarte et al., 2010]. A landmark in the lncRNA field was the discovery of an RNA

in the human HOXC locus that was expressed at the boundary between the genes

that are expressed and not expressed [Rinn et al., 2007]. This lncRNA, dubbed

HOX transcript antisense RNA (HOTAIR), was initially hypothesized to act lo-

cally to mark the boundary between the expressed and nonexpressed genes. Sur-

prisingly, small interfering RNA (siRNA)–induced knockdown of HOTAIR did not
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lead to changes in cis on the HOXClocus, but instead led to expression changes

in the HOXD locus, which is on a different chromosome. As HOX loci are reg-

ulated by Polycomb group (PcG) machinery, an analogy was drawn to the Xist

lncRNA [which eventually results in Polycomb repressive complex 2 (PRC2) re-

cruitment to the inactive X chromosome], leading to the hypothesis that HOTAIR

interacts with PRC2. This hypothesis was supported by RNA immunoprecipita-

tion experiments demonstrating enrichment of HOTAIR upon immunoprecipitation

of members of the PRC2 complex. This finding, along with the ensuing explo-

ration of lncRNAs hypothesized to influence PRC2, has been the subject of in-

tense debate [Brockdorff, 2013, Davidovich and Cech, 2015, Davidovich et al., 2013,

Davidovich et al., 2015, Kaneko et al., 2014b, Zhao et al., 2010]. The targeting of

PRC2 by lncRNAs is an attractive hypothesis both because this model would help

resolve the mystery of how PRC2 is recruited to specific genomic loci in mammals

[Margueron and Reinberg, 2011, Simon and Kingston, 2013] and because PRC2 was

already implicated in XCI [Plath et al., 2003]. PRC2 recruitment and H3K27me3

modification are well-established hallmarks of the inactive X chromosome, as was

originally shown using immunofluorescence experiments in mice [Plath et al., 2003]

and humans [Chadwick and Willard, 2004], leading to examination of the hypoth-

esis that Xist directs PRC2 activity [Zhao et al., 2008]. The conclusion that Xist

directs PRC2 on the inactive X chromosome has been bolstered by allelespecific high-

resolution mapping experiments comparing PRC2 localization and Xist lncRNA lo-

calization in differentiating mouse embryonic stem cells. This work demonstrated

that PRC2 and Xist colocalize on gene-rich regions of the inactive X chromosome

during XCI. The broad localization of PRC2 on the inactive X chromosome during

XCI is qualitatively different from that observed for PRC2 enrichment elsewhere in

the genome, supporting the notion that, in this case, PRC2 localization is directed

by Xist. Understanding how this direction is accomplished is an active area of inves-

32



tigation. Current models include both direct and indirect recruitment of PRC2 by

Xist (critically analyzed in [Brockdorff, 2013, Davidovich and Cech, 2015]).

The idea that lncRNAs can collaborate with chromatin-modifying complexes to

regulate chromatin at numerous genomic loci has an early precedent from the roX

lncRNAs. Determining the genomic localization of lncRNAs was originally accom-

plished by in situ hybridization [Gall and Pardue, 1969] or through biochemical hy-

bridization capture approaches [Mariner et al., 2008] analogous to ChIP. To achieve

higher resolution, the hybridization capture approaches were optimized for use in

genome-wide sequencing, leading to approaches such as capture hybridization analysis

of RNA targets sequencing (CHART-Seq) [Simon et al., 2011], chromatin isolation by

RNA purification sequencing (ChIRP-Seq) [Chu et al., 2011], and RNA antisense pu-

rification sequencing (RAP-Seq) [Engreitz et al., 2013] that provide high-resolution

analysis of genome-wide lncRNA localization [Simon, 2016]. These approaches are

particularly useful when a lncRNA is hypothesized to act at genomic sites distant

from its site of transcription (e.g., [Chalei et al., 2014, Hacisuleyman et al., 2014,

Brown et al., 2012, Vance et al., 2014]). The original differences between these ap-

proaches include the choice of cross-linker (formaldehyde for CHART, glutaraldehyde

for ChIRP, and disuccinimidyl glutarate supplemented with formaldehyde for RAP)

and the choice of biotinylated capture oligonucleotides used (a few curated short

DNAs for CHART, two cocktails of short DNAs that tile the RNA for ChIRP, and

tiling RNAs for RAP). Since the initial reports of these techniques, there have been

further modifications and some convergence between techniques [Simon, 2016]. Al-

though there are many caveats to interpreting the results from these studies, roX2

[Chu et al., 2011, Simon et al., 2011] and Xist [Engreitz et al., 2013, Simon et al., 2013]

lncRNA localization has been validated by independent approaches (Figure 1.3).

From these studies, the common mechanisms for the collaboration between lncRNAs

and chromatin-modifying machinery are still being developed.Many possibilities have
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been considered [Bonasio and Shiekhattar, 2014, Goff and Rinn, 2015, Guttman and Rinn, 2012,

Ulitsky and Bartel, 2013], including the idea that lncRNAs can act through base-

paring or triplex formation with local DNA or RNA [Arab et al., 2014, Buske et al., 2012,

Martianov et al., 2007, Postepska-Igielska et al., 2015, Schmitz et al., 2010]. Alter-

natively, as in the case of the roX lncRNAs, the specificity could be directed by

proteins in the complex [Soruco et al., 2013]; even in this case, however, it is unclear

what causes the target sites on the X chromosome to be favored over similar sites on

autosomes.

In addition to the possibility that lncRNAs act in trans together with chromatin-

modifying machinery at distant sites in the genome, lncRNAs can also act locally

near their sites of transcription. It has been well established that some lncRNAs (e.g.,

NEAT1) assemble with protein complexes at their sites of transcription [Mao et al., 2011].

An attractive hypothesis is that lncRNAs can mark their transcription locus simply

by remaining as a nascent transcript (i.e., tethered through the RNA polymerase)

or by binding tightly and never dissociating. One early example of a lncRNA that

was thought to employ this mechanism is Airn, a 118-kb lncRNA transcript that

suppresses transcription of the antisense gene Igf2r [Wutz et al., 1997], whose pro-

moter is 30 kb downstream of Airn. It was hypothesized that, like many lncRNAs

in chromatin, Airn recruits chromatin-modifying complexes, and this hypothesis was

supported by RNA immunoprecipitation assays [Nagano et al., 2008]. The functional

significance of the Airn lncRNA as a mark has been called into question because the

RNA itself was not found to be important for silencing of Igf2r—rather, the act of anti-

sense transcription through the Igf2r promoter drives suppression [Latos et al., 2012].

The importance of the act of transcription rather than the RNA was determined by

moving the Airn promoter and using a series of premature poly(A) termination sites

[Latos et al., 2012, Stricker et al., 2008].

A similar example is the 60-kb imprinted lncRNA Kcnq1ot1, which is paternally
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Figure 1.3: Cases of agreement between different hybridization capture approaches
that reveal lncRNA genomic localization.

(a) Comparison of roX2 CHART [Simon et al., 2011] and roX2 ChIRP
[Chu et al., 2011] tracks from S2 cells. The roX2 lncRNA binds at discrete sites
along the X chromosome (example on left) but not autosomes (example on right) in
the fly genome, as seen in both roX2 CHART and ChIRP. The raw tracks were
made by reprocessing data from these two datasets using the same pipeline. Briefly,
reads were aligned to the fly genome (dm6), normalized to the respective input
using the spp package [Kharchenko et al., 2008], and normalized to total reads on
chromosome 2L. The final ChIRP signal (roX2 ChIRP calc., downloaded from
Reference 29 and converted from dm3 to dm6) was calculated from the common
regions of enrichment between two independent capture oligonucleotide cocktails
(even and odd). The raw signal for these distinct biochemical experiments,
processed identically to the CHART signal, is shown below the combined calculated
signal. Track scales are shown using a mean windowing function and are presented
on the same scale for the X chromosome (left) and chromosome 2L (right). The raw
ChIRP signals are shown with a lower scale to display roX2 peaks at a similar scale
as the calculated track. (b) Comparison of Xist CHART [Simon et al., 2013] and
Xist RAP [Engreitz et al., 2013] from differentiating female mouse embryonic stem
cells, showing broad agreement of Xist localization along the X chromosome (entire
chromosome shown). Tracks were reprocessed from Engreitz et al. (from 6-h
retinoic-acid-induced differentiation; [Engreitz et al., 2013]) and Simon et al. (day 7
of leukemia inhibitory factor withdrawal) using the pipeline described above (but
aligned to the mouse genome, mm9) [Simon et al., 2013]. Both tracks are consistent
with the initial targeting of Xist to gene-rich regions on the X chromosome.
Abbreviations: CHART, capture hybridization analysis of RNA targets; ChIRP,
chromatin isolation by RNA purification; lncRNA, long noncoding RNA; RAP,
RNA antisense purification.
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expressed antisense to the potassium channel–coding gene Kcnq1 and was originally

identified by associating mutations in the locus with Beckwith-Wiedemann syndrome

in humans [Kanduri et al., 2006, Lee et al., 1999, Mitsuya et al., 1999, Smilinich et al., 1999].

Partly on the basis of RNA immunoprecipitation experiments, Kcnq1ot1 has been re-

ported to interact with a variety of repressive chromatin-modifying machinery, includ-

ing components of PRC2, G9a, and DNA (cytosine-5)-methyltransferase 1 (DNMT1)

[Fitzpatrick et al., 2002, Pandey et al., 2008, Pandey et al., 2008]. Similar to earlier

Airn studies, insertion of an early polyadenylation signal results in loss of silencing

of its antisense target, Kcnq1. Additionally, although the 5′ region of Kcnq1ot1 con-

tains a putative structured region with multiple hairpins, deleting this specific region

does not result in derepression of its antisense target [Mancini-Dinardo et al., 2006].

Although it is unknown whether, as with Airn, simple overlap of the Kcnq1ot1 tran-

scribed DNA with the transcription start site of its antisense target is sufficient to

recapitulate silencing, studies have shown that transcription start site overlap and the

length of the Kcnq1ot1 transcript are correlated with deposition of heterochromatin

marks [Kanduri et al., 2006].

The examples above underscore the need to critically evaluate the assumption

that the sequence and composition of lncRNA molecules, rather than the act of their

transcription or overlapping cis-acting DNA elements, are generally important for

regulation. Nonetheless, it is remarkable that most imprinted loci that have been

discovered are also associated with the expression of lncRNAs (e.g., Airn, Kcnq1ot1,

and H19) [Barlow and Bartolomei, 2014]. Local action is a viable hypothesis that

needs to be evaluated on a case-by-case basis.

Although the origin of genomic specificity for lncRNAs that act immediately at

their site of transcription is self-evident, some cis-acting RNAs are thought to regulate

gene expression in cis but across longer distances. These distances can extend across

thousands of base pairs or even across hundreds of megabases (in the case of Xist) of
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linear DNA sequence. For longer-distance targeting, models have been proposed (for

examples, see [Engreitz et al., 2013, Hacisuleyman et al., 2014, Lai et al., 2015]) in

which the lncRNA acts through the three-dimensional organization of chromatin (e.g.,

through looping and topologically associated domains). In these models, the RNA

could either drive the looping interaction or use preexisting chromatin interactions

to drive genomic specificity. These models of looping interactions are reminiscent of

enhancer-promoter looping interactions, and in this light, it is interesting that some

lncRNAs are expressed from enhancer regions of the genome [Kim et al., 2010]. The

regulatory significance of enhancer transcription and related lncRNAs is an active

area of investigation [Kim et al., 2015, Orom and Shiekhattar, 2013].

As noted above, in many cases where lncRNA transcription has been observed,

there is reason to wonder whether the RNA or the transcription (or perhaps neither)

is important for regulation. The distinction between transcription-based models and

RNA-based models of local regulation may be a false dichotomy. Another model

that has recently been the focus of intense study is that local RNA, with minimal

sequence requirements, could assist in binding and recruitment of proteins. This

would explain the relatively low sequence specificity observed when examining the

RNA-binding specificity of chromatin-modifying machinery such as PRC2 and still

support a role for RNA in chromatin regulation. This model was proposed in re-

ports focusing on PRC2 recruitment [Davidovich et al., 2013, Kaneko et al., 2014b,

Kaneko et al., 2014a], and similar models have been proposed for YY1 [Sigova et al., 2015]

and the targeting of Tip60-p400 by R loops [Chen et al., 2015]. These models of rela-

tively nonspecific local RNA binding have been proposed to either stimulate or repress

chromatin modifications, depending on the context.
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1.10 HOW DO RNA ELEMENTS WITHIN LONG

NONCODING RNAs INFLUENCE THEIR

FUNCTION?

Although very little is known about the structure and mechanism of mammalian lncR-

NAs, substantial progress has been made using approaches to study how lncRNA el-

ements influence processing, stability, modification, conformation, and binding prop-

erties of the lncRNA. In many cases, these developments use techniques pioneered

for studying abundant RNAs (such as rRNAs), and adapting these approaches to

new sequencing platforms can improve throughput and sensitivity. The biogene-

sis of most lncRNAs is thought to be similar to that of protein-coding mRNAs.

However, there are some interesting examples where lncRNAs have different pro-

cessing mechanisms that relate to their stabilities (reviewed in [Wilusz, 2016]. One

example is an RNA-stabilizing element that was discovered in a lncRNA in the Ka-

posi’s sarcoma–associated herpesvirus that accumulates to high concentrations in the

lytic phase of viral infection [Conrad et al., 2007, Conrad et al., 2006]. This element

forms a triple helix with the tail of the RNA [Mitton-Fry et al., 2010]. Similar sta-

bilizing triple-helical structures were identified for the endogenous lncRNAs NEAT1

and MALAT1 [Brown et al., 2012, Wilusz et al., 2012]. Interestingly, NEAT1 and

MALAT1 also have noncanonical 3′ processing pathways involving RNase P cleavage

of a tRNA-like element from the 3′ end [Wilusz, 2016]. Another processing path-

way that stabilizes RNAs is circularization [Gardner et al., 2012, Qian et al., 1992,

Zhang et al., 2013], demonstrating a diversity of mechanisms by which lncRNA bio-

genesis and stability can differ from canonical mRNA processing pathways.

RNA stability, whether controlled by these noncanonical pathways or by more

traditional mechanisms, is important to lncRNA biology because steady-state RNA

levels are determined by both synthesis and degradation. The importance of regu-
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lated RNA degradation has attracted increased attention and has motivated large

studies to monitor RNA turnover transcriptome-wide. In these experiments, non-

canonical nucleosides can be fed to cells, where they are integrated into new tran-

scripts (reviewed in [Tani et al., 2012]. Improvements to chemical enrichment strate-

gies [Duffy et al., 2015] and analysis pipelines [Rabani et al., 2014] have added to the

power of these experiments. Approaches to examine RNA stability have been used to

distinguish long-lived from short-lived lncRNAs, with the hypothesis that long-lived

lncRNAs are less likely than short-lived lncRNAs to result from transcriptional noise

[Clark et al., 2012].

Covalent modifications to individual nucleosides can also influence lncRNA stabil-

ity and function. Hundreds of posttranscriptional RNA modifications have been dis-

covered across different branches of life (mostly in tRNA and rRNA), and it is unclear

how many of these play an important role in influencing mammalian lncRNAs that

regulate chromatin. Thus far, genome-wide approaches have shown extensive mod-

ification of mammalian RNAs by deamination, pseudouridylation, and methylation

[specifically of the exocyclic amine of adenine, forming N6-methyladenosine (m6A)]

[Carlile et al., 2014, Dominissini et al., 2012, Ramaswami et al., 2012, Schwartz et al., 2014].

In the case of m6A, this modification has been connected to regulation of RNA degra-

dation [Wang et al., 2014].

In addition to these covalent alterations to RNA connectivity and base chem-

istry, extensive progress has been made in understanding noncovalent conformations

of RNA. There is extensive precedent for RNA to fold into elaborate structures

capable of diverse biochemical activities. Examples with structural characteriza-

tion include the ribosome [Moore and Steitz, 2002], the self-splicing group II intron

[Toor et al., 2008], and a diverse array of prokaryotic riboswitches [Roth and Breaker, 2009].

These examples demonstrate both the binding and the regulatory potential of various

relatively short RNA structures. In general, we know little about mammalian lncRNA
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structure, including the degree of conformational homogeneity, the roles of proteins

in stabilizing ribonucleoprotein structure and function, and the degree of local- ver-

sus higher-order structure of lncRNAs. Early lessons from extensive in vitro probing

of SRA and HOTAIR lncRNAs [Novikova et al., 2012, Somarowthu et al., 2015] have

demonstrated that lncRNAs can adopt complex conformations. Chemical probing

experiments have recently been extended to transcriptome-wide analysis of lncRNA

in mammalian cells [Ding et al., 2014, Rouskin et al., 2014, Spitale et al., 2015b]. To

address the relatively low concentrations of lncRNAs in mammalian transcriptomes,

this probing can be performed in a targeted format [Kwok et al., 2013]. One such

approach has led to conformational models of all elements of Xist that are pre-

dicted to be structured [Fang et al., 2015]. In the longer term, structural char-

acterization of lncRNAs will undoubtedly provide important insight into lncRNA

mechanisms and interactions. For example, in the case of the roX lncRNAs, ATP-

dependent remodeling of a stem loop by the MLE RNA helicase leads to assembly

of the MSL chromatin-modifying complex. Understanding RNA elements can lead

to mechanistic insight into lncRNA functions on chromatin. Further biochemical

characterization will provide a necessary foundation for structural characterization

of lncRNAs and their complexes with chromatin-modifying proteins. Traditional

techniques to reconstitute and study protein-RNA interactions include gel shift ex-

periments, nucleotide interference mapping, and footprinting. Recent efforts have

used sequencing platforms or technology to expand the throughput of these exper-

iments to large arrays [Tome et al., 2014] or the entire transcriptome (discussed in

[Baltz et al., 2012, Silverman et al., 2014]). In vivo cross-linking has been central to

defining RNA-protein interactions using both protein-centric techniques [e.g., cross-

linking and immunoprecipitation [Licatalosi et al., 2008]] and RNA-centric techniques

[e.g., CHART mass spectrometry (CHART-MS) [West et al., 2014]]. Indeed, hy-

bridization capture analyses have led to the discovery of new proteins that bind
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lncRNAs, such as an interaction between SHARP/SPEN and Xist [Chu et al., 2015,

McHugh et al., 2015, Minajigi et al., 2015].

In summary, we still know very little about the biochemistry of lncRNAs, their

structures, and their interactions with chromatin proteins. Nonetheless, rapid progress

in probing and enrichment techniques and the increased sensitivity of sequencing and

mass spectrometry platforms provide reason for optimism.

1.11 Outlook

It is clear that lncRNAs can play important roles in regulating chromatin struc-

ture, yet we still know little about the scope of this regulation, its impact, and

its mechanisms. Techniques for classifying and annotating these RNAs are still

evolving. Although the discovery of classic lncRNAs that function on chromatin

was largely serendipitous, most recent reports of functional lncRNAs have emerged

from targeted loss-of-function studies. By contrast, one recently uncovered class

of lncRNAs, named asynchronous replication and autosomal RNAs (ASARs), was

discovered at loci responsible for the replication timing of individual chromosomes

[Stoffregen et al., 2011]. ASARs can spread in cis along the chromatin, providing an

intriguing hypothesis for how lncRNAs could be involved in coordinating the repli-

cation timing of a chromosome [Donley et al., 2015]. This hypothesis highlights one

interesting theme that has emerged regarding lncRNA function in the genome: cis-

regulation, but at a distance.

Increased clarity will come as the biochemical specificity of lncRNAs is connected

to the functional specificity observed in vivo. Along these lines, one particularly

exciting development has been the use of CRISPR/Cas9 proteins to direct RNA

elements to well-defined sites in the genome [Shechner et al., 2015]. This type of tool

can potentially help connect the biochemistry of individual RNA elements with their
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functions on chromatin.

Beyond the discovery of new lncRNA functions, we look forward to more examples

like roX and Xist lncRNAs, in which multiple laboratories corroborate each other’s

results. There is growing consensus about the challenges of studying the functions

and mechanism of lncRNAs. Understanding these challenges is the key to developing

new and better technologies to understand lncRNAs and design appropriate control

experiments. We expect these advances to be instrumental in revealing the roles of

lncRNAs in the regulation of chromatin biology.
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Chapter 2

High-resolution Xist binding maps

reveal two-step spreading during

X-chromosome inactivation

2.1 Summary

This chapter describes collaborative work analyzing the association pattern of the

Xist RNA across the X-chromosome, its establishment during development, and its

recovery process from perturbation in somatic cells. All of these analyses have the

goal of understanding the Xist RNA’s role in X-inactivation. Below, I describe my

role in this project, referencing figures from the published journal article related to

this work. I then reproduce (with permission) the full journal article journal article

with slight modifications:

• Simon, MD, Pinter, SF, Fang, R, Sarma, K, Rutenberg-Schoenberg, M, Bow-

man, SK, Kesner, BA, Maier, VK, Kingston, RE, Lee, JT (2013). High-

resolution Xist binding maps reveal two-step spreading during X-chromosome

inactivation. Nature, 504, 7480:465-469.
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I also list all figures within this paper that I drew directly and those that were

drawn using my analysis.

2.2 Description of indepedent work within collab-

oration

As discussed is chapter 1, the Xist RNA is the master regulator of the transcrip-

tional inactivation of one of the two X-chromosomes in most female mammalian cells

[Lee, 2009]. The Xist RNA was already known to associate with the inactive X chro-

mosome from fluorescence in situ hybridization (FISH) experiments [Lee, 2009]. How-

ever, the association pattern was not known in greater detail. In this study, we used

the then recently developed Capture Hybridization of RNA Targets (CHART-Seq)

technology to map the pattern of Xist association with the inactive X-chromosome

in mouse cells [Simon et al., 2011]. This technology is analogous to the widely used

chromatin immunoprecipitation and sequencing (ChIP-Seq), but whereas antibodies

are used to enrich DNA crosslinked to transcription factors and chemically modified

histones in ChIP-Seq, biotinylated antisense oligonucleotides are used to enrich DNA

crosslinked to an RNA of interest in CHART-Seq.

Within this collaborative project, I focused on comparison of Xist association

patterns between different cell states, as well as reproducibility of CHART-Seq data

between replicates. Unlike transcription factors and chemically modified histones

[Park, 2009], as well as the roX2 RNA, which regulates chromosomal dosage com-

pensation in Drosophila [Simon et al., 2011], the Xist RNA is enriched across nearly

the entire X-chromosome in mouse embryonic fibroblasts, which have undergone full

transcriptional inactivation 2.1c. This meant that traditional peak-calling methods

to identify relatively short enriched regions (∼ 100s-100,000s bp) had limited appli-

cations to comparing patterns of Xist enrichment across cellular conditions.
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As an alternative approach, I compared the normalized signal in 40kb bins be-

tween conditions. Pearson correlations of different datasets provided insight into the

reproducibility of replicate experiments (Figure 2.5d) as well as overall similarity be-

tween conditions (Figure 2.6a). We further were interested in visualizing areas with

signal differences between conditions. To do this, we identified signal bins with > 10-

fold differences in signal between conditions and plotted these differences across the

X-chromosome.

Our group conducted CHART-Seq experiments in three different sets of biological

contexts, and I used the above methodology to compare results from each to one

another. First, we conducted CHART-Seq in mouse embryonic fibroblasts, which

are differentiated cells that display full inactivation of the X-chromosome. These

cells display enrichment of the Xist RNA across nearly the entire X-chromosome.

To investigate the establishment of Xist association with the X-chromosome during

development, we performed CHART-Seq to measure Xist association in mouse em-

bryonic fibroblasts (MEFs) at different time points after LIF withdrawal (0 days, 3

days, 7 days, and 10 days). We also measured the recovery of Xist association in MEF

cells after knockoff in with locked nucleic acid (LNA) probes that had previously been

shown to displace Xist from the inactive X-chromosome [Sarma et al., 2010].

For all of the above experiments, biological samples were provided by the Jeannie

Lee lab and cell culture was conducted by Drs. Stefan Pinter, Kavitha Sarma and

Rui Fang. Technology development for CHART-Seq experiments was conducted by

Drs. Rui Fang and Matthew D. Simon and final experiments were conducted by Dr.

Rui Fang. Read alignment and signal normalization to provide input for my analysis

was conducted by Dr. Matthew D. Simon (see detailed methods below).

I first focused on the pattern of establishment of the X chromosome inactivation

in mouse embryonic stem cells. It was notable that the bins containing 10-fold en-

richment between time points (day 7 vs. day 3) and between a late time point and
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differentiated cells (day 7 vs. MEF) were highly clustered within the X-chromosome

and lay at the edges of domains with high Xist association signal (Figure 2.1d,e).

This enabled us to conclude that in our embryonic stem cell model, Xist initially

targets a set of “early” domains before spreading toward near-full coverage of the

X-chromosome.

In addition to comparing stages of establishment of X inactivation to fully differ-

entiated cells, I also examined the restults of experiments in which Xist was knocked

off of the X-chromosome using antisense LNA probes and then allowed to recover.

Specifically, cells were treated with each of two different LNA for 3 hours, at which

point most Xist association with the inactive X-chromsome was lost by fluorescence,

and then allowed to recover to an 8 hour timepoint, where Xist association was par-

tially regained. Using the same procedure to compare Xist CHART-Seq profiles, I

identified differential regions with > 10-fold differences between the Xist depletion (3

hr) and recovery (8 hr) timepoints. Strikingly, even though Xist signal magnitude

had not fully recovered to normal levels, enriched Xist regions were spread throughout

the X-chromosome (Figure 2.3b-f). This contrasted with the establishment of Xist

association with the X-chromosome in mouse embryonic stem cells, where specific

domains were enriched prior to further spreading across the chromosome.

To quantify our comparison between patterns of Xist deposition patterns in de-

velopment and in recovery from LNA knockoff in MEF cells, we chose to focus on

comparisons of “early” and “late” domains. To make this possible, I defined late

domains as those where Xist signal in MEF cells was at least 10-fold enriched over

day 7 mouse embryonic stem cells. I let other X-chromosomal regions become early

domains by default. Using this demarcation and my processed signal files, Dr. Rui

Fang plotted figures comparing the signal in late domains relative to signal in early

domains (Figure 2.3g and Figure 2.10). These plots show that “late” domains are

significantly enriched in LNA recovery in MEF cells, relative to intermediate points
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in Xist deposition in ES cells (day 3 and day 7).

Based on my analysis, we specifically demarcated “early” and “late” domains by

defining late domains as those where Xist signal in MEF cells was at least 10-fold

enriched over day 7 mouse embryonic stem cells. Other X-chromosomal regions were,

by default, referred to as early domains. This demarcation of different X-chromosome

regions enabled comparison of relative signal in early and late domains (Figure 2.3

g). To further illustrate the differences in Xist deposition patterns between mouse

ES cells and recovery from LNA knockoff in MEF cells, I identified 10-fold different

regions between MEF, d7, and LNA 8hr samples in comparison to all other samples.

This analysis illustrates that regions that are enriched in ES day 7 over LNA 8 hr

time points primarily lie in “early” domains and regions where LNA 8 hr time points

are enriched over ES day 7 are primarily in “late” domains (shown as MEF > d7;

Figure 2.11).

Within the work described below, I plotted the following figures:

• Figure 2.1 d,e

• Figure 2.3 e,f

• Figure 2.5 d

• Figure 2.6 a

• Figure 2.11

Additionally, the following figures incorporate analyses that I conducted:

• Figure 2.3 b,c,d,g

• Figure 2.6 c

• Figure 2.10
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2.3 High-resolution Xist binding maps reveal two-

step spreading during X-chromosome inactiva-

tion

2.3.1 Abstract

The Xist long noncoding RNA (lncRNA)is essential for X-chromosome inactivation

(XCI), the process by which mammals compensate for unequal numbers of sex chro-

mosomes [Disteche, 2012, Wutz, 2011, Lee, 2012]. During XCI, Xist coats the future

inactive X chromosome (Xi) [Clemson et al., 1996] and recruits Polycomb repressive

complex 2 (PRC2) to the X-inactivation centre (Xic) [Zhao et al., 2008]. How Xist

spreads silencing on a 150-megabase scale is unclear. Here we generate high-resolution

maps of Xist binding on the X chromosome across a developmental time course us-

ing CHART-seq. In female cells undergoing XCI de novo, Xist follows a two-step

mechanism, initially targeting gene-rich islands before spreading to intervening gene-

poor domains. Xist is depleted from genes that escape XCI but may concentrate

near escapee boundaries. Xist binding is linearly proportional to PRC2 density and

H3 lysine 27 trimethylation (H3K27me3), indicating co-migration of Xist and PRC2.

Interestingly, when Xist is acutely stripped off from the Xi in post-XCI cells, Xist

recovers quickly within both gene-rich and gene-poor domains on a timescale of hours

instead of days, indicating a previously primed Xi chromatin state. We conclude that

Xist spreading takes distinct stage-specific forms. During initial establishment, Xist

follows a two-step mechanism, but during maintenance, Xist spreads rapidly to both

gene-rich and gene-poor regions.
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2.3.2 Introduction

Xist RNA is a prototype lncRNA with global epigenetic function[Disteche, 2012,

Wutz, 2011, Lee, 2012, Pontier and Gribnau, 2011]. The initiation of XCI depends on

Xist [Brown et al., 1992] and loading of the Xist–PRC2 complex at a nucleation site

within the Xic [Jeon and Lee, 2011]. Thereafter, Xist RNA forms a “cloud” over the

X-chromosome, signalling the initiation of chromosome-wide silencing [Clemson et al., 1996].

Concurrently, PRC2 accumulates broadly along the X-chromosome [Pinter et al., 2012].

Although Xist RNA coats the Xi at cytological resolution, whether and where Xist

binds at molecular resolution remains unknown. In one model, Xist targets PRC2 to

the Xic, but outward spreading of PRC2 does not involve Xist. Alternatively, both

nucleation and spread involve Xist, in which case Xist and PRC2 would co-migrate

at a molecular scale.

2.3.3 Results and Discussion

We mapped genome-wide binding locations of Xist RNA by performing CHART-

seq (capture hybridization analysis of RNA targets with deep sequencing), a tech-

nique to localize lncRNAs on chromatin using complementary oligonucleotides to

enrich for DNA targets [Simon et al., 2011] (Figure 2.1a). We designed a cocktail of

11 complementary oligonucleotides for Xist CHART based on conserved or func-

tional Xist domains [Brown et al., 1992, Brockdorff et al., 1992, Wutz et al., 2002,

Sarma et al., 2010] and RNase H mapping for accessibility (Figure 2.4b,c and Ex-

tended Data Table 1). Allele-specific CHART-seq was performed at four develop-

mental stages (Figure 2.4d): before XCI in undifferentiated female mouse embryonic

stem (ES) cells (d0; ,1% of nuclei XCI positive, showing an Xist cloud or H3K27me3

focus), early-XCI (d3; ,10% positive), mid-XCI (d7; 40–50% positive), and post-

XCI (mouse embryonic fibroblast (MEF) clone, > 95% positive). About 600,000

sequence polymorphisms between the Mus musculus (mus) and Mus castaneus (cas)
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X-chromosomes enabled > 35% allele-specific mapping to Xi and Xa (active X chro-

mosome), respectively [Pinter et al., 2012]. Disabling the musTsix allele in the female

ES cells ensured that the mus X will be Xi [Ogawa et al., 2008]. We validated results

by comparing two independent capture oligonucleotide sub-mixtures and an alter-

native 40-oligonucleotide cocktail targeting across the length of Xist (Figure 2.2a-e

and Extended Data Table 1). Regions with significant Xist enrichment localized al-

most exclusively to Xi ( >99% X-linked, P < 0.001; >90% Xi-skewed, P < 0.05,

Figure 2.5f,g,i). On autosomes, binding was minimal and of questionable signifi-

cance. Enriched segments were not complementary to capture-oligonucleotides and

showed minimal enrichment on Xa of d0, d3, d7 and MEF cells. Enrichment was

not observed using sense control oligonucleotides (Figure 2.2a,c). These experiments

excluded artefactual enrichment, validating Xist CHART-seq specificity.
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Figure 2.1: CHART-seq reveals a two-step mechanism of Xist spreading during de
novo XCI.
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a, Xist RNA is enriched on Xi. Normalized read densities displayed in mus, cas

and composite (comp) tracks. b, Coverage of enriched segments on the X chromosome

and the autosomes. c, Xist coverage at indicated time points relative to gene silencing.

Enriched segments shown beneath in grey. Brackets, y-axis scale of normalized Xist

density as in all figures. Xist peaks at d0 have less amplitude and density, but reflect

d3 and d7 patterns, and are Xi-enriched (Figure 2.5f), consistent with initial Xist

spreading to local regions, suggesting initial differentiation in a subfraction of cells.

RNA-seq of d7 and MEF is shown below. Skewed allelic expression consistent with

Xi-silencing (value -0.5 = threefold expression difference between Xi and Xa). d, e,

Xist CHART signals (40-kilobase bins) from d7 correlate with d3 (d) and MEF (e)

(see Figure 2.6). Regions showing more than tenfold differences after normalization

are coloured purple and displayed on the X chromosome in screenshot panels below.

f, Depletion of Xist at a representative escapee. g, Xist preferentially targets genes

in active chromatin (H3K4me3-marked on d7). Xist densities shown for gene bodies

of active (n = 532), inactive (n = 475) and escapee genes (n = 10). Medians are

indicated. Individual data points overlaid on boxplot; error bars, 1.5-fold interquartile

range. *p < 0.05, **p < 10−8, ***p < 2.2 × 10−16, Mann–Whitney U tests. h, Xist

RNA distribution from d7 cells relative to 200-kb binned chromatin features (y-scale

is fraction of binned sequence unless otherwise indicated): SINEs, LINE1s (multiple

LINE1 annotations from RepeatMasker included, fraction of SINE
LINE1

nucleotides in

200-kb windows; LINE1s with chosen midpoint of 0.6 to highlight anti-correlation),

DNase hypersensitive sites (DNase-HS), Xic Hi-C (y-scale is normalized Hi-C signal

from 40-kb Xic bin containing Xist), active
inactive

genes (classification based on presence of

H3K4me3 at Xa promoters in d7 ES cells), and lamin B1 association and replication

timing (y-scale is normalized microarray probe intensities).
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The dominant CHART peak was in Xist exon 1 and was specific to Xi (Fig.

2.1a). A developmental time course demonstrated a progression in Xist density, with

enriched segments increasing from 0.1% coverage of the X in pre-XCI cells to ap-

proximately 20% in early- and midXCI, and approximately 54% in post-XCI cells

(Fig. 2.1b,c and Extended Data 2.2h). Thus, Xist RNA not only forms a cytologi-

cal cloud but also binds broad swaths of the Xi at molecular resolution. Xist could

either spread uniformly along the Xi or target specific regions. Intriguingly, in cells

undergoing XCI (d3, d7), Xist preferentially targeted multimegabase domains (Fig.

2.1c). In post-XCI MEFs, Xist spread into intervening gene-poor regions throughout

the Xi. The d3 and d7 patterns were more similar to each other than to MEF pat-

terns (Fig. 2.1d,e and Extended Data Fig. 2.6a). Furthermore, comparative analysis

identified MEF-specific domains not found during XCI (Fig. 2.1e). Despite hetero-

geneity in the onset of XCI in the ex vivo ES differentiation system, the highly similar

d3 and d7 distributions show that Xist targets generich domains first. Extension of

ES differentiation to d10 showed statistically significant filling in of gene-poor do-

mains (Extended Data 2.6b,c), although not to the extent observed in somatic cells

(MEFs). We infer that full spreading across Xi may only be achieved later in devel-

opment, once differentiation into somatic lineages occurs. Thus, during de novo XCI

in the embryo, Xist probably follows a two-step pattern of spreading, first targeting

gene-rich clusters (hereafter, early domains) and eventually spreading to intervening

gene-poor regions (late domains). Throughout the process, gene bodies of escapees

[Berletch et al., 2011, Carrel and Willard, 2005] were depleted of Xist, but occasion-

ally demonstrated Xist enrichment in flanking regions (Fig. 2.1f and Extended Data

Fig. 2.7), indicating boundaries that sequester Xist and prevent spreading into neigh-

bouring privileged escapee loci.

We investigated what might target Xist to early domains by comparisons with

various chromatin features (see Methods) [Pinter et al., 2012, Splinter et al., 2011,
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Figure 2.2: Co-spreading of Xist RNA and PRC2.

a, Normalized read densities of Xist, EZH2 and H3K27me3 on the X chromosome in
d7 cells. b, Xist densities (200-kb bins) correlated with EZH2, H3K27me3 and
H3K4me3 signals at different stages of XCI. Pearson’s r displayed.
EZH2/H3K27me3 R2 values: 0.3/0.37 for d0, 0.77/0.88 for d7, and 0.23/0.66 for
MEFs, respectively. H3K4me3 R2 values: < 0.15 across all samples.
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Figure 2.3: Figure 3 Xist knockoff uncovers a distinct spreading method during the
maintenance phase.

a, RNA FISH shows depletion and recovery of Xist RNA (green) in MEF cells after
Xist knockoff. Per cent of nuclei with Xist clouds and sample size (n) shown. Scr,
scrambled LNA. b, Chromosome-wide recovery of Xist after LNA-4978 knockoff on
chromosomes X and 13. Regions of recovery comparing 8 h over 3 h LNA-4978 were
determined using a maximum likelihood enrichment (MLE) estimate. c, d, Xist
knockoff and recovery across the X chromosome. Coloured regions show more than
tenfold median-normalized differences between samples. d, Expanded view of one
region with more late domain recovery (right) than the other (left). e, f, Xist
CHART signals (40-kb bins) from LNA-4978 8 h correlated with MEF (e);
LNA-4978 3 h correlated against LNA-4978 8 h (f). Regions showing more than
tenfold differences after normalization are coloured as shown in d. g, Xist recovery
in indicated samples, with 40-kb-binned Xist densities normalized to median levels
of early domains of each sample, to determine how early and late domains recover
from knockoff compared to during de novo XCI. Normalized median values for each
sample indicated above box. ∗P < 0.05; ∗ ∗ ∗P < 10−8, Wilcoxon test, as in
Extended Data Figs 7c and 3c. h, Model, distinct methods of Xist spreading during
establishment and maintenance.
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Dixon et al., 2012, Chadwick and Willard, 2004, Chadwick and Willard, 2003, Marks et al., 2009,

Calabrese et al., 2012]. Interestingly, Xist is more likely to target genes in regions

of active chromatin in ES cells. Allele-specific RNA sequencing analysis demon-

strated the preference of Xist for genes that are active (for example, on the Xa

and in d0 and d7 cells) and showed skewed expression in d7 ES cells and in MEFs

element-1 (LINE1) (r = −0.54), and lamin-associated domains (LADs, r = −0.48)

[Bickmore and van Steensel, 2013]. Xist partitioning did not correlate with cytoge-

netic banding on the X chromosome (2.1h) [Chadwick and Willard, 2004, Duthie et al., 1999].

LINE1s have been proposed as spreading elements25, but repetitive reads from Xist

CHART-seq aligning to LINE1 were not enriched over input (Figure 2.8c). The local-

ization of Xist showed modest positive correlation with Xic looping contacts inferred

from HiC (high-throughput chromosome conformation capture) through an anchor

within the Xist locus (2.1h and Extended Data Fig. 2.8b). Together, these data

support a role for open chromatin in guiding Xist, with Xist coming into contact

with gene-rich regions (early domains) first, and spreading secondarily to more distal

gene-poor inter-regions (late domains).

Given co-nucleation of Xist and PRC2 at the Xic [Jeon and Lee, 2011], we asked

whether Xist continues to associate with PRC2 during spreading. Comparison of

Xist, EZH2 and H3K27me3 enrichment revealed strikingly similar chromosome pro-

files across time (2.2a and Extended Data Fig. 2.9a–c). By contrast, PRC2 and

H3K27me3 densities on Xa did not correlate with Xist, nor did those on chromo-

some 13, a representative autosome (Extended Data 2.9a). Consistent with the idea

that Xist directs PRC2 localization onto Xi [Zhao et al., 2008], Xist densities demon-

strated an extensive linear relationship with EZH2 and its product H3K27me3 across

the X chromosome in mid-XCI but not pre-XCI cells (Fig. 2.2b). Correlation with the

H3K4me3 control (active mark) was poor. In MEFs, densities of H3K27me3 and Xist

remained highly correlated, whereas reduced densities of PRC2 were observed during
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maintenance. Interestingly, Xist densities were not necessarily greater at previously

defined “PRC2 strong sites” [Pinter et al., 2012] (Figure2.9d,e); instead, Xist densi-

ties showed a general correlation with Xi-specific PRC2 enrichment (Extended Data

Figs 2.8b and 2.9b,h). This supports the idea that strong sites are Xist-independent

(as indeed they are present in d0 cells [Pinter et al., 2012]) and indicate that Xist and

PRC2 co-migrate to new regions within the early domains on the Xi.

We then asked if localization mechanisms were inherent to Xist RNA or chro-

matin context. In perturbation experiments, we stripped away Xist RNA and ob-

served recovery on the Xi of MEFs at 1 h, 3 h and 8 h. Locked nucleic acids (LNA)

directed against repeat C of Xist RNA prevented nucleation and therefore spread-

ing [Sarma et al., 2010]. RNA fluorescence in situ hybridization (FISH) showed that

LNA-4978 did not overtly perturb Xist at 1 h, but led to full Xist displacement by

3 h, with Xist reassociation at 8 h (Fig. 2.3a). As reassociation requires newly

synthesized Xist rather than relocalization of displaced Xist [Sarma et al., 2010], re-

association must depend on outward spreading of new RNA from the Xic, just as

during XCI establishment.

Interestingly, however, CHART-seq revealed a pattern not evident cytologically

by RNA FISH. At 1 h, when Xist was still visualized on Xi (Fig. 2.3a), CHART-seq

demonstrated a relative loss in late domains (Fig. 2.3b-d), indicating that Xist binds

more weakly to gene-poor than to gene-rich regions, and consistent with the banded

pattern of Xist on the metaphase Xi observed cytologically [Duthie et al., 1999]. At 3

h, Xist was strongly depleted from both regions. At 8 h, partial recovery was evident

in both regions. However, unlike spreading during de novo XCI (d3, d7), spreading of

Xist during the somatic maintenance phase (MEF) did not follow a two-step process,

as Xist reassociation in early and late domains occurred simultaneously (Fig. 2.3b-d).

Therefore, spreading during de novo XCI was restricted to early domains and occurred

on a timescale of days in the ex vivo system. In contrast, recovery and re-spreading
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in post-XCI cells occurred more generally in both domains and on a timescale of

hours. This quantitative difference is significant, with accumulation in late domains

appearing on the same timescale as early domains during the recovery period after

Xist knockoff (Fig. 2.3e-g and Extended Data Figs 2.10 and 2.11). Similar results

were observed using an independent LNA, LNA-C1, targeted to a different sequence in

the repeat C region and in multiple replicates (Figures 2.3a, 2.5, 2.6 , 2.10, and 2.11).

Despite LNA-C1 being faster acting [Sarma et al., 2010] (Figure 2.3a), LNA-C1 and

LNA-4978 treatment resulted in remarkably similar Xist knockoff and recovery on Xi.

Taken together, these data provide evidence for distinct mechanisms of Xist

spreading during establishment (de novo XCI) in early embryonic cells, when spread-

ing occurs in a two-step fashion (early to late domains), and during maintenance in

somatic cells, when Xist spreads more generally into both early and late domains (Fig-

ure 2.3h). The Xi may retain an epigenetic memory of Xist [Kohlmaier et al., 2004],

enabling more efficient spreading during maintenance. As Xist mostly dissociates

from the Xi during mitosis [Clemson et al., 1996], epigenetic memory could facilitate

the resynthesis of Xist and re-spreading in G1, and duplication of Xist patterns after

DNA replication. Indeed, the continued action of Xist is essential for maintenance

of XCI [Yildirim et al., 2013]. In summary, we have illuminated the mechanism by

which Xist spreads on a 150-Mb scale. Comparing localization dynamics of Xist

relative to other lncRNAs (E. Hasiculeyman and J. Rinn, personal communication,

[Hacisuleyman et al., 2014]) and three-dimensional conformations [Engreitz et al., 2013]

may prove highly informative for understanding general mechanisms of RNA-directed

chromatin change.

2.3.4 Methods

Capture oligonucleotides. Capture oligonucleotides were designed based either on

repetitive sequences in Xist RNA (X.A, X.C, Extended Data Fig. 1b and Extended
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Data Table 1), or by using RNase H mapping [Simon et al., 2011] of functional regions

of Xist [Wutz et al., 2002] to identify sites in Xist RNA available for hybridization in

crosslinked chromatin extracts (Figure 2.4c and Extended Data Table 1). Regions of

sensitivity were further interrogated by BLAST to identify oligonucleotides both with

minimal cross-hybridization potential to other RNAs and genomic sites, as well as

similar melting temperatures. Oligonucleotides were either synthesized as previously

described on an Expedite Oligo synthesizer and purified using reverse phase cartridges

(Poly-Pak II, Glen Research) [Simon et al., 2011], or ordered commercially (IDT, 39-

biotinTEG, iSp18 spacer modified, salt free) and used without further purification.

Alternative capture oligonucleotides. Alternative capture oligonucleotides

(CO40; see Extended Data Fig. 2a, c, d) were designed using the oligowiz soft-

ware [Wernersson and Nielsen, 2005] limiting lengths to 22–28 nucleotides and other-

wise default parameters. Mouse (mm9) transcripts were screened to minimize cross-

hybridization to off-target transcripts and 40 oligonucleotides (out of 263 candidates)

were picked manually to cover the length of the Xist transcript in 300–500 nucleotide

intervals where possible (Extended Data Table 1). Standard unmodified desalted

oligonucleotides were ordered commercially (IDT), resuspended and pooled. 39 bi-

otinylation of pooled oligonucleotides was carried out as previously described31 using

biotin-16-UTP, and biotinylated oligonucleotides recovered after a single chloroform

extraction and nucleotide removal (Qiagen). Xist CHART enrichment. Clonal fe-

male MEFs [Yildirim et al., 2011] and female TsixSTOP ES cells [Ogawa et al., 2008]

were cultured as previously reported [Pinter et al., 2012], including differentiation

of ES cells by LIF withdrawal. Xist CHART enrichment was performed as previ-

ously reported [Simon et al., 2011] with minor modifications. Briefly, 108 cells were

crosslinked initially with 1% formaldehyde for 10 min at room temperature. The

crosslinking reaction was stopped by adding 0.125 M glycine. After washing 3 times

with PBS, crosslinked cells were re-suspended in 10 ml sucrose buffer, dounced 20
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times with a tight pestle, and kept on ice for 10 min. Nuclei were collected by cen-

trifugation at 1,500g for 10 min on top of a cushion of 25 ml glycerol buffer. Nuclei

were further crosslinked with 3% formaldehyde for 30 min at room temperature. Af-

ter washing three times with PBS, nuclei were extracted once with 50 mM HEPES

pH 7.5, 250 mM NaCl, 0.1 mM EGTA, 0.5% N-lauroylsarcosine, 0.1% sodium deoxy-

cholate, 5 mM DTT, 100 U ml−1 SUPERasIN (Invitrogen) for 10 min on ice, and

centrifuged at 400g for 5 min at 4 uC. Nuclei were resuspended in 1.5 ml 50 mM

HEPES pH 7.5, 75 mM NaCl, 0.1 mM EGTA, 0.5% N-lauroylsarcosine, 0.1% sodium

deoxycholate, 5 mM DTT, 100 U ml−1 SUPERasIN, and sonicated in microtubes us-

ing Covaris E210 sonicator at 10% duty cycle, 200 bursts per cycle, intensity 3 for 5

min. The median size of chromatin fragments was ,3 kb as determined by agarose gel

electrophoresis with ethidium bromide post-staining. For each CHART enrichment,

120 ml of cleared chromatin extract was incubated overnight with 36 pmol capture

oligonucleotides in a total volume of 360 ml 33 mM HEPES pH 7.5, 808 mM NaCl,

0.17% N-lauroylsarcosine, 2.5 mM DTT, 0.33% SDS, 5X Denhardt’s, 5 mM EDTA,

1X protease inhibitor cocktail (Roche), 100 U ml−1 SUPERasIN at room temperature.

The hybridized material was captured after 3 h of incubation with 240 ml MyOne

streptavidin beads (Invitrogen), washed sequentially once with 30 mM HEPES pH

7.5, 240 mM NaCl, 2 M urea, 1.5 mM EDTA, 0.75 mM EGTA, 0.65% SDS, 0.75%

N-lauroylsarcosine, four times with 10 mM HEPES pH 7.5, 250 mM NaCl, 2 mM

EDTA, 1 mM EGTA, 0.2% SDS, 0.1% N-lauroylsarcosine and once with RNase H

elution buffer (50 mM HEPES pH 7.5, 75 mM NaCl, 0.125N-lauroylsarcosine, 0.5%

Triton X-100, 0.5 M urea, 10 mM DTT), and eluted by 10 ml RNase H (5 U ml−1,

New England Biolabs) digestion in 100 ml RNase H elution buffer for 10 min at room

temperature. Eluent was subjected to crosslink reversal by treatment with SDS (1%

final), proteinase K (1 mg ml−1 final) and Tris pH 7.5 (100 mMfinal) and heating for

1 h at 55 µC and 1–3 h at 65 µC. The enriched DNA was purified using the Qiagen
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PCR purification kit per manufacturer’s instructions. Prior to preparing libraries for

high throughput sequencing, CHART-enriched DNA was treated with RNase cocktail

(Roche) and further sheared to below 500 base pairs (Covaris E210 sonicator, at 5%

duty cycle, 200 bursts per cycle, intensity 5 for 4 min total process time).

qPCR analysis and validation. The Xist CHART enrichment at several DNA

loci was determined using real-time PCR (Bio-Rad iTaq Universal SYBR Green Su-

permix) under standard conditions for both conventional and allele-specific PCR us-

ing the primers listed in Extended Data Table 2. Enrichment values were calculated

as 2DCtrelative to input. The real-time PCR experiments were from biologically

independent CHART samples (that is, not the samples used for CHART-seq) as in-

dependent confirmation of the sequencing results (Extended Data Figs 2e, 4d).

Library preparation, replicates and sequencing. Sequencing libraries were

either constructed by standard ChIP-seq protocols by the Yale Center for Genomic

Analysis (YCGA), or as described previously33. Briefly, sequencing libraries were

prepared by first repairing DNA-ends, A-tailing, ligating to universal adapters, and

amplifying for 12 cycles with indexed primers. Excess adapters were removed by

purification with Agencourt AMPureXP beads (Beckman Coulter) before sequencing.

Sequencing was performed at the YCGA on Illumina HiSeq 2500 instruments. To

confirm Xist distribution on the X chromosome, we produced biological replicates

for d0, d7, MEF, and technical replicates for d3 and LNA knockoff experiments.

Except for d0 where Xist CHART-seq showed mostly background signals, all replicates

showed excellent positive correlation (Pearson’s r < 0.9, Extended Data Fig. 2d). In

addition, the replicates of ES d3 and d7 confirmed the specific enrichment in early

domains and depletion at late domains. For LNA knockoff experiments, recovery

profiles of Xist were confirmed by reCHART replicates of LNA-4798 at 3 h and 8

h. We further confirmed our LNA knockoff results with a time course for LNA C1,

which targets a different sequence within the repeat C region of Xist (see Fig. 3 and
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Figs 2.10 and 2.10).

Identification of early and late Xist domains. (Note: this subsection

is an addendum to the published article) After observing that Xist d3 and d7

samples are much more correlated to each other (Pearson’s r = 0.92) than to MEF

(Pearson’s r = 0.71, 0.69, respectively), we wanted to distinguish X chromosomal

regions that were covered by Xist initially (by d7) from those covered only after full

X inactivation (in MEFs). Using the same methodology as above, we called regions of

10x median-corrected enrichment of MEF Xist signal over d7 “late” domains and all

other regions “early” domains. To assess whether Xist recovery in MEF cells treated

with LNAs was similar to Xist establishment, we compared Xist density between

samples in both early and late domains, normalized for the median value of the early

domains for each sample (Fig. 2.3g, Fig. 2.10c). Differences in Xist late domain

signal between samples were assessed using the Wilcoxon rank sum test.

RNA-seq library. RNAs greater than 200 nucleotides from d7 cells and MEFs

were purified using the mirVana RNA extraction kit (Ambion), cleared of ribosomal

RNA (Ribozero, Epicentre) and sheared to a median size of 200 nucleotides using

the Covaris S2 sonicator. After treatment with T4 polynucleotide kinase, a com-

mercial 5′ adenylated linker (miRNA Cloning Linker 1, IDT) was ligated to the 3′

end of RNAs using T4 RNA ligase 2 (truncated, NEB) followed by reverse transcrip-

tion (SuperScriptIII, Invitrogen) using a primer (CCGATCTATTGATGGT GCC-

TACAG) matching the linker. After reverse transcription, RNA was hydrolysed in 10

mM Tris pH 10, 5 mM MgCl2 at 95 uC for 15 min and cDNA products greater than

100 nucleotides size selected and purified on AMPureXP. A barcoded (NNNNNN)

59 phosphorylated linker (GATCGGAAGAGCACACGTCTGAAC TCCAGTCACC-

NNNNNNATCTCGTATGCCGTCTTCTGCTTGddC) matching Illumina adapters

was ligated to the 3′ end of the cDNA using T4 RNA ligase 1 (NEB) and di-

rectly amplified using custom forward (AATGATACGGCGACC ACCGAGATCTA-
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CACTCTTTCCCTACACGACGCTCTTCCGATCTATTGAT GGTGCCTACA∗G)

and reverse (CAAGCAGAAGACGGCATACGA∗G) primers (∗ denotes phosphoroth-

ioate bond at 3′ terminal nucleotides), matching the Illumina TruSeq primers. Se-

quencing of purified libraries was carried out on an Illumina HiSeq instrument for

either paired or single-end 50 nucleotides reads. Reads were aligned allele-specifically

to 129S1/SvJm (mus) and CAST/EiJ (cas) genomes using Tophat2 [Kim et al., 2013]

with the “b2-sensitive” preset and otherwise default parameters (further described in

‘Allele-specific alignments’). After removal of PCR duplicates, all unique reads map-

ping to gene bodies were summed for cas, mus and comp tracks. Read numbers over

genes in the allelic tracks were used to calculate skew (mus−cas
mus+cas

) and genes skewed

significantly (P < 0.01, cumulative binomial probability) in d7 cells and MEFs were

plotted (Fig. 2.1c and Extended Data Fig. 2.8a). A skew of -0.5 corresponds to three-

fold difference in inferred expression between Xa and Xi, equal to 67% inactivation

of the Xi gene.

LNA displacement. LNAs synthesized by Exiqon were introduced into mouse

embryonic fibroblasts (MEFs) as previously described [Sarma et al., 2010]. Briefly,

2 ∗ 106 cells were resuspended in 100 µl MEF nucleofector solution with LNAs at a

final concentration of 2 µM and nucleofected using a T-20 program. Fresh culture

medium was added to the cells and they were collected and formaldehyde crosslinked

at the time points indicated.

Allele-specific alignments. Paired-end sequencing data from CHART-seq were

aligned allele-specifically as previously described [Pinter et al., 2012]. Briefly, each

data set was aligned to variant CAST/EiJ and 129S1/SvJm genomes constructed us-

ing high quality polymorphisms [Keane et al., 2011] to the C57/Bl6 reference genome

(mm9 build). Pairs aligning to only one variant genome and pairs aligning better to

one variant genome (in number of nucleotide edits to reference) than the other were re-

tained (allele-specific), as were pairs aligning equally well (non-allele-specific). Only
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unique pairs were used for this analysis and approximately half of all pairs in the

CHART-seq data provided allelic information.

Generation of normalized coverage tracks. Xist CHART-seq reads were fil-

tered for quality and repetitive alignments; low-quality alignments and duplicate reads

were removed. The resulting files were analysed using SPP software [Kharchenko et al., 2008].

In this analysis, all tags were included and the coverage generated with smoothing us-

ing 1-kb bins every 500 bp to generate input-subtracted, normalized read densities. To

account for different read depths across data sets, each coverage file was scaled using

the total positive read density on an autosome (chromosome 4) from the corresponding

composite track (that is, the mus, cas and comp tracks were all scaled using the same

factor). These data were visualized with either the IGV [Thorvaldsdottir et al., 2013]

or UCSC genome browser [Kuhn et al., 2007] displaying all tracks using a mean win-

dowing function and scales indicated in each figure. We note that other methods

to generate normalized coverage files, including the generation of conservative enrich-

ment and maximum likelihood estimates, resulted in similar distribution patterns, but

did not aid in comparisons across data sets with diverse read depths. To determine

regions of Xist recovery after LNA treatment, in addition to the normalization and

analysis described above, we separately subjected data from 8 h LNA-4978 treatment

and 8 h LNA-C1 (time points with partial recovery of Xist density) to normalization

using 3 h LNA-4978 and 1 h LNA-C1 reads, respectively (the time point where most

of Xist has been removed from the chromatin). The recoveries were determined using

the maximum likelihood estimate function in SPP (Fig. 2.6b, Extended Data Fig.

2.10b, indicated by “MLE”).

Identification of Xist-enriched segments. Significant segments of Xist enrich-

ment were determined using Epicentre software [Huang et al., 2011] using a whole-

genome semidynamic 5-kb window scan, and selecting only windows with P , 0.001

from an exact-rate ratio test. The distribution of the overlap between enriched seg-
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ments and genomic features (Figure 2.5h) was determined using CEAS [Ji et al., 2006].

Meta-site and meta-gene analysis. Smoothed normalized read density for

ChIP and CHART experiments generated as described above, (with the exception

that these were calculated with 2,000-bp windows recorded every 50 bp to avoid alias-

ing difficulties) were used to calculate average density profiles using CEAS software

[Ji et al., 2006].

Definition and significance estimation of allelic skew. The definition of

allelic skew is based on the distribution of unique fragments (excluding PCR dupli-

cates) in the allele-specific experimental and input tracks. Allele-specific coverage

tracks were queried for a given interval and the cumulative binomial probability es-

timated by normal approximation from the number of effective fragments based on

the interval length and the median sequenced fragment size (200 bp). Skew is then

defined as ranging from -1 (fully cas) to -1 (fully mus) and as shown in Figures 2.1c

and 2.8a. For example, a threefold difference between alleles is expressed as a skew

of (±) 0.5.

Correlation analyses and significance estimates. Coverage densities over

all tracks were tabulated for non-overlapping 40-kb, 200-kb and 1-Mb bins across

the chromosome. For analysis and presentation of 40-kb bins that display differ-

ential enrichment between samples (Figures 2.1d,e and 2.1e,f, 2.10 and 2.11), bins

were identified where the average median-normalized sum was greater than ten-

fold enriched. These enriched bins were displayed as coloured data on log2 en-

richment plots. The location of these bins were identified and displayed as a sep-

arate browser track using the intensities from the enriched coverage file (Figs 2.1d,e,

2.3c,d, and 2.11). Correlations between Xist CHART samples were evaluated us-

ing Pearson’s r and presented as scatterplots or heat maps. Pairwise comparisons

of Xist, EZH2, H3K27me3 and H3K4me3 coverage densities were also used for lin-

ear regressions shown in scatter plots (Fig. 2.2b). For correlation of Xist seg-
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ment density maps with various genomic features (Fig. 2.1h), the density of each

feature was calculated for the same 40-kb, 200-kb and 1-Mb bins and Pearson’sr

was determined for all pairwise comparisons and displayed as a heat map (Figure

2.8b). Dendrograms are shown where hierarchical clustering was performed based

on distance matrices, and the resulting clusters were consistent across a range of

bin sizes. Genomic features annotated in the mm9 reference were obtained via the

UCSC table browser and included genes (RefSeq), repeats (RepeatMasker), GC%,

CpG islands and conservation [Davydov et al., 2010]. In addition, peaks of DNase

hypersensitivity [John et al., 2011], replication timing [Hiratani et al., 2008], lamin-

association [Peric-Hupkes et al., 2010] and HiC data from the Xist locus viewpoint

[Dixon et al., 2012] were queried for correlation with Xist segment density maps in

this fashion. LINE1s were queried using all annotations (Figure 2.1h, Pearson’s

r = −0.54 with Xist CHART d7 ES) or single, merged annotations (r = −0.56).

Moreover, repetitive sequences were aligned to the full murine RepeatMasker database

and fraction of all hits compared between Xist d7 cells and corresponding input sam-

ple (Figure 2.8c).

Comparison of Xist spreading patterns. To assess the degree of Xist spread-

ing and compare spreading patterns across samples, we focused on chromosomal re-

gions where fully differentiated MEF cells had tenfold greater Xist signal (defined

above) than d7 cells, which represent the intermediate stage of Xist spreading. We

refer to these regions as “late” domains, and to other chromosomal regions as “early”

domains. For each sample, we normalized both early and late domain signals to the

median of the early domain signal.We then plotted these normalized early and late

domain signals (Figures 2.3g, 2.10c), and evaluated differences between samples were

assessed using the one-sided Wilcoxon test.
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Figure 2.4: Mapping genome-wide distribution of Xist RNA at different stages of XCI
using CHART-seq.

a, Experimental scheme for allele-specific analysis of Xist localization by
CHART-seq. CO and C-Oligo, capture oligonucleotide; SAV, streptavidin; cas,
CAST/EiJ; mus, 129S1/SvJm; comp, composite tracks. b, Carets above Xist
schematic indicate target sites of the capture oligonucleotides (labelled 1–9, A, C;
see Extended Data Table 1 for sequences). Letters below indicate the location of
repeat sequences. XCI activity defined previously12. c, Sites available for
capture-oligonucleotide hybridization were determined by RNase H mapping
candidate regions of Xist RNA. The RNase H sensitivity of Xist RNA in the
presence of various short DNA oligonucleotides (see Extended Data Table 1) was
measured by qRT–PCR, compared to a no-oligonucleotide control and to other
amplicons of Xist that are not expected to be affected by cleavage. Primers Xp1–6
are defined in Extended Data Table 2. Regions Xp1 and Xp6 demonstrated minimal
sensitivity, but regions Xp2, Xp3 and Xp4 demonstrated broad sensitivity and were
used to design capture oligonucleotides for CHART. d, Scheme for time- course
allele-specific analysis in genetically marked cell lines. Approximate fractions of
Xi-positive cells defined by Xist RNA-FISH or H3K27me3 staining.
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Figure 2.5: Validation and analysis of Xist CHART-seq enrichment.
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Validation and analysis of Xist CHART-seq enrichment. a, The genome-

wide density of seven input-normalized CHART-seq data sets used in this study based

on comp reads. b, Allele-specific enrichment on each chromosome based on raw

aligned reads relative to input (MEF). c, Allele-specific enrichment of control Xist

CHART-seq experiments in MEF, including SO (sense oligonucleotide control) and

CO40 (CHART-seq performed with alternate mix of 40 capture oligonucleotides, see

Methods and Extended Data Table 1), both presented in comparison to CO11 (Ex-

tended Data Table 1, capture oligonucleotides used throughout study). Data shown

for the X chromosome and a representative autosome (chromosome 13). d, Linear

correlation analyses of Xist CHART-seq data sets, including LNA-treated samples,

using the comp track showing high reproducibility. Pearson’s r correlation coefficient

indicated. Replicates were either biological (d0; d7; MEF) or based on replicate

CHART experiments (ES d3; LNA-4978 3 h; LNA-4978 8 h; LNA-C1 3 h). e, Two

independent sub-mixtures of capture-oligonucleotides confirm Xist CHART-seq en-

richment patterns by qPCR from an independent Xist CHART experiment in MEF

cells. Sub-mixture 1 is composed of capture-oligonucleotides X.1, X.3, X.5, X.7, X.9,

X.A; sub-mixture 2 is composed of capture-oligonucleotides X.2, X.4, X.6, X.8, X.C

(for primer locations see Figure2.7 and Extended Data Table 2). f, Allele-specific

analysis of d0, d3, d7 and MEF similar to that presented in Fig. 2a. g, Allelic break-

down of enriched Xist segments with grey (n/d, not determined due to lack of SNPs),

light blue and red (leaning towards Xa or Xi, respectively), and dark colours for sig-

nificantly skewed towards Xa (blue) or Xi (red), as defined by cumulative binomial

probability (P < 0.05) after normal approximation from effective fragments. h, The

locations of the enriched regions compared to the mouse genome (mm9) and the over-

lap determined for various genomic features. Below, table summarizing peak numbers

and chromosomal origin and coverage (in bp, or per cent chromosome length).
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Figure 2.6: Correlation analyses of CHART-seq data sets.
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Correlation analyses of CHART-seq data sets.

a, Scatter plots (below diagonal) of 40 kb-binned Xist CHART-seq comp signals

across all pair-wise comparisons. Pearson’s r correlation coefficients are shown in

corresponding squares above the diagonal. b, Overview of Xist spreading during

XCI. Comp tracks of Xist CHART-seq signals of d7 and d10 replicates (blue), MEF

(black). c, Box plot of normalized Xist densities (40-kb bins) at early and late

domains. Data were processed as in Fig. 2.3g and Fig. 2.10c. Normalized median

values for each sample are indicated above box. ∗ ∗P < 10−4; ∗ ∗ ∗P < 10−6, one-side

Wilcoxon test. The median Xist densities in late domains relative to early domains

increase moderately from d7 to d10.
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Figure 2.7: The gene bodies of escapees are depleted of Xist, but are often near peaks
of Xist enrichment.

a–c, Xist distribution at Kdm5c, Ddx3x and Eif2s3x genes that escape X
inactivation in MEF. cas (Xa), mus (Xi) and comp tracks of Xist and comp track of
H3K27me3 ChIP-seq are shown. d, qPCR validation of Xist enrichment. Locations
of qPCR amplicons are indicated in a–c. pro, promoter; coding, coding region; cas,
cas (Xa)-specific; mus, mus (Xi)-specific. Allele-specific qPCR results shown in
red/blue (mus/cas). Autosomal active and inactive genes were used as negative
controls (Actb, Scn2a1, U2 ). Yields determined relative to input DNA. Consistent
with CHART-seq results, promoter regions of Kdm5c and Ddx3x showed higher Xist
signal than corresponding coding regions. Xi-specific enrichment of Xist was only
observed at the 3′ region of Eif2s3x, but not at the coding region of Kdm5c. e,
Metagene analysis of Xist density across XCI-repressed and escapee genes.
Normalized composite density from Xist CHART using post-XCI (MEF) cells was
smoothed (2,000-bp windows, sampled every 50 bp using SPP software) and
averaged across genes on the X that are either repressed (black, defined by those
that are active on the Xa but not on the Xi in MEF cells) or escape XCI (red,
excluding escapee genes at the Xic). Repressed and escapee genes were determined
previously. Profiles calculated using the CEAS softwarepackage with default
settings.
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Figure 2.8: Xi-wide gene repression patterns in d7 and MEF cells, and the relationship
of Xist establishment domains with various chromatin features of the X-chromosome.
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Xi-wide gene repression patterns in d7 and MEF cells, and the rela-

tionship of Xist establishment domains with various chromatin features of

the X-chromosome.

a, RNA-seq reads aligned allele-specifically were tabulated over gene bodies of Ref-

Seq genes (indicated below in grey). Skew in allele-specific reads (mus-cas/mus+cas)

is plotted on a range of −1 (expression fully cas-linked) to +1 (expression fully mus-

linked). Bar chart shows allelic skew (red> 0, blue< 0) values over gene bodies

for all genes that were significantly skewed (cumulative binomial probability). Grey

lines indicate midpoint (skew = 0) for balanced expression between alleles, and −0.5,

signifying threefold depletion of the mus-allele and amounting to 67% inactivation.

Two replicates each are shown for d7 and MEFs. Analysis here is similar to Fig. 1c.

b, Chromosomal organization directs Xist enrichment. Correlation matrix at 200-kb

resolution, featuring significantly enriched Xist segments across XCI time course (d0,

d3, d7 and MEF Xist), major repeat classes (SINEs, LINEs, LTRs, simple repeats),

active and inactive genes (based on calls in d7 cells), strong and moderate EZH2 bind-

ing sites, CpG islands, CG%, conservation (GERP), DNase hypersensitivity (DNase

HS), early replication timing (in male (1) and female (2) MEF and male d0 cells),

Lamin B1 association (in male ES d0 and MEF), and HiC interaction frequencies in

male d0 with the Xist locus (Xic HiC) using two restriction digests (HindIII, NcoI).

Colours for positive (magenta) and negative (blue) correspond to Pearson’s r val-

ues. See Methods for references to source data. c, Repetitive sequences including

LINEs, SINEs and simple repeats are not significantly enriched or depleted from d7

Xist CHART DNA compared to input. Repetitively aligning reads excluded from

the other analyses were re-aligned to the entire library of known repeat elements in

the mouse genome (http:// www.girinst.org/repbase/). Hits in Xist CHART in d7

cells were compared to their corresponding input samples. All repeat types (grey),

LINEs (pink), SINEs (green) and simple (blue) repeats are shown. Dashed lines rep-
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resent twofold enrichment or depletion. The results show no enrichment of LINEs in

repetitively aligning reads in the Xist CHART relative to input.
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Figure 2.9: Xist binding correlates with previously identified moderate EZH2 sites.
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Xist binding correlates with previously identified moderate EZH2 sites.

a, Normalized read densities of Xist, EZH2 and H3K27me3 on chromosome 13 in

d7 cells shown as in Fig. 2a. b, c, Overview of the correlation of Xist RNA with PRC2

and H3K27me3 on the X chromosome and chromosome 13 in d0 (b) and MEF (c).

Xa and Xi allele specific and composite (comp) tracks for Xist, EZH2 and H3K27me3

are displayed as in Fig. 2a. d, Strong EZH2 sites have above average ChIP-seq

density compared to the broad EZH2 signals on the X in d7. Comp tracks are shown.

Many of the strong EZH2 sites are present before XCI in d0 cells, therefore PRC2

can bind these sites independently of Xist. e–g, Meta-site analysis of the average

EZH2, H3K27me3 and Xist signals around strong EZH2 sites identified in d7 (ref 9).

The strong enrichment of H3K27me3 signals at strong EZH2 sites are in agreement

with the strong correlation of EZH2 and H3K27me3. h, The density plot of moderate

EZH2 enrichment sites (blue) is consistent with the broad distribution of EZH2 on

the X, and correlates with Xist in d7. Comp tracks are shown.
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Figure 2.10: An independent LNA confirmed the chromosome-wide re-spreading of
Xist.
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An independent LNA confirmed the chromosome-wide re-spreading of

Xist. a, Overview and zoom-in (bottom) of differential Xist density in MEF cells

subjected to LNA-C1 treatment. Comp tracks of Xist CHART-seq signals on the

chromosome X of indicated cells are shown in black. Differential regions showing

>tenfold enrichment are displayed in purple or grey as in Fig. 3c, d. b, Genomic

distribution of normalized Xist CHART densities in comparison with a maximum

likelihood enrichment estimate of LNA-C1 8 h over LNA-C1 1 h CHART-seq signals

(LNA-C1 8 h > 1 h, green), showing broad, chromosome-wide recovery of Xist on

the X in comparison to an autosomal control. c, Significant increase of Xist density

within late regions was observed in MEFs recovering from LNA treatment. Top, Xist

density changes during XCI establishment in ES cells and in MEFs before and after

LNA treatment. Boxplots of 40-kb-binned Xist CHART-seq signals of early and late

domains. During ES differentiation, increased Xist density was observed within early

domains where genes are enriched, but remained at low levels in late domains where

gene densities are low. After LNA treatment, MEFs showed reduced Xist signals

within both domains, indicating global loss of Xist coverage and partial recovery

at later time points on chromosome X (LNA-4978 8 h and LNA-C1 3 h and 8 h,

compared to LNA-4978 1 h and LNA-C1 1 h, respectively). Bottom, Xist recovery

in indicated samples, with 40-kb-binned Xist densities normalized to median levels of

early domains of each sample to determine how early and late domains recover from

LNA knockoff as compared to levels found during de novo XCI. Normalized median

values for each sample indicated above box. *P < 0.05; **P < 0.005; ***P < 0.0001,

one-sided Wilcoxon test. Two independent LNAs consistently showed significant

Xist recovery in late domains within hours post LNA treatment. d, Pattern of Xist

recovery after LNA treatment with LNA-4978 and LNA-C1. Xist enriched segments

(segs) in MEFs (grey, 16,760 total) were split into those common to both MEF and d7

cells (dark grey, 8,910 total) and those specific to MEFs (white, 7,850 total). Changes
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in Xist density over these sites are shown for d3 - d0, d7 - d0, MEF - d7 and LNA

samples (LNA-4978: 3 h stripped, 8 h recovery; LNA-C1 1 h stripped, 3 h, 8 h, 24 h

recovery). Replicates indicated with #1/#2. Numerical fold-difference in median of

changing Xist density between MEF-specific segs and common-segs indicated above

box-plots. After LNA treatment, recovery of Xist density over MEF-specific enriched

segs is close to that of common segs (only 1.2 − 1.3× lower), whereas during XCI

establishment Xist increase over these sites is 3.4× and 2.3× higher in d3 - d0 and

d7 - d0, respectively. These values are highly reproducible between replicates. Width

of notched box plots scaled to square root of total number of enriched segs in each

group. Error bars indicate 1.5× interquartile range without extending beyond min
max

data points.
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Figure 2.11: Comparison of Xist distribution post-LNA treatment with establishment
and maintenance stages of XCI.
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Comparison of Xist distribution post-LNA treatment with establish-

ment and maintenance stages of XCI.

a–d, 40-kb- binned Xist CHART-seq data from comp tracks are plotted on a

log2 scale. Bins with tenfold enrichment or depletion (median corrected) of one sam-

ple versus another are coloured in purple and green, respectively. These regions of

difference between samples were mapped along the X chromosome by plotting the

CHART-seq signal of the enriched sample. Complete CHART-seq tracks are shown

in black. Comparisons are centred on maintenance (a), de novo establishment (b)

and recovery from LNA treatment in post-XCI cells, with knockoffs using two inde-

pendent LNAs showing similar results (c, d).

82



Chapter 3

Tracking Distinct RNA

Populations Using Efficient and

Reversible Covalent Chemistry

3.1 Summary

The chapter below describes collaborative work, which was led by Dr. Erin Duffy, to

identify a better reagent for biochemical purification of 4-thiouridine labeled RNA. I

led the computational analysis for this project, which produced a variety of specialized

RNA-Seq datasets, in collaboration with Dr. Duffy and Dr. Robert R. Kitchen,

under the supervision of Drs. Mark Gerstein and Matthew D. Simon. Additional

experimental work for this study was conducted by Catherine D. Stark. Below, I

describe my role in this project, referencing figures from the published journal article

related to this work. I then reproduce (with permission) the full journal article journal

article, with slight modifications:

Duffy, EE, Rutenberg-Schoenberg, M, Stark, CD, Kitchen, RR, Gerstein, MB, Si-

mon, MD (2015). Tracking Distinct RNA Populations Using Efficient and Reversible
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Covalent Chemistry. Mol. Cell, 59, 5:858-66.

I also list all figures within this paper that I drew directly and those that were

drawn using products of my analysis.

3.2 Description of indepedent work within collab-

oration

Metabolic labeling of RNA is a set of techniques, in which a modified nucleoside or

nucleobase is fed to cells and is incorporated as a label into newly transcribed RNA.

Metabolic labeling has been instrumental to the study of RNA dynamics and can help

to distinguish gene regulation that occurs at the level of RNA stability or degradation

from the more commonly studied regulation of transcription. To make studies of

RNA dynamics using metabolic labeling possible dynamics using metabolic labeling,

labeled RNA must be quantified specifically and compared to total RNA levels. This

is commonly achieved by biochemical purification using specific properties of the

labeled nucleotides.

One of the most common metabolic labels used to study RNA dyanmics is 4-

thiouridine (s4U). The central topic of this study is development of more efficient

reversible chemistry to purify s4U-labeled RNA for applications in the study of RNA

dynamics. In previous work, s4U-labeled RNA had been captured by reaction with

HPDP-biotin, followed by purification on streptavidin beads. In this study, Dr. Erin

Duffy showed that the pyridylthiol group in HPDP-biotin reacts inefficiently with

s4U, whereas a different reagent–methanethiosulfonate–reacts much more efficiently

(>95% vs. <20% efficiency, Figure 3.1). Based on this finding Dr. Duffy applied

MTS chemistry to metabolic labeling experiments in cultured cells, which were read

out by RNA-Seq.

The first question we wanted to address was whether the increased efficiency of
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MTS chemistry compared to HPDP chemistry for reaction with s4U RNA would lead

MTS-biotin to be a more efficient than HPDP-biotin for capture of s4U-labeled RNA

in cultured cells. Whereas most RNA-Seq experiments are interpreted in terms of

relative quantities of different RNA molecules, this question requires absolute mea-

surement of the proportion of a given RNA that is enriched by disulfide capture. To

faciliate this analysis, we used a similar approach to Sun et al. (2012) and spiked in

S. pombe RNA as a standard against which to compare the total quantity of human

RNA (from cultured 293T cells) in our samples.

To map RNA-Seq reads from both s4U-enriched and input samples, I constructed

a joint genome containing both human (hg19) and S. pombe chromosomes. I then

aligned reads using TopHat2 [Langmead and Salzberg, 2012]. I then quantified gene

expression at both the gene and transcript levels using Cufflinks [Trapnell et al., 2010].

By quantifying the ratios of total mapped reads in the human and S. pombe, I was

able to see that our MTS-bioitin enriched samples had a much higher proportion of

human reads than HPDP-enriched samples, but also very low levels of human reads

in samples that lacked s4U (Figure 3.1B). Our next goal was to normalize genome-

wide alignment tracks and quantifications of gene expression based on the S. pombe

spikes. Because there is potential for cross-mapping of human and S. pombe reads

to regions of the other genome that are conserved, we reasoned that using RNA

quantifications from Cufflinks, which employ expectation maximization to reassign

reads that map ambiguously based on information from specifically mapping reads,

might help alleviate this problem. We thus normalized our human gene quantifications

as follows:

FPKMnorm = FPKMrawSnorm

where FPKMnorm is the normalized FPKM of a human transcript or gene, FPKMraw
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is the original FPKM calculated for the sample of interest, and Snorm is the slope of

the linear regression line of raw S. pombe gene FPKMs.

I took a similar approach to normalize genome-wide coverage tracks, with addi-

tional normalization to the total number of reads in each sequencing sample:

Coveragenorm = CoveragerawSnorm
Rsample

Rnorm

where Coveragenorm and Coverageraw are the normalized and raw read coverages

at a given genomic position, and Rsample and Rnorm are the numbers of unique reads

in the sample of interest and the normalizing sample, respectively.

Normalization of coverage tracks enabled me to visualize the fact that the in-

creased quantity of human RNA in MTS-enriched s4U samples is seen widely across

the genome (Figure 3.2C). Meanwhile background in samples with no s4U is relatively

low and uniform.

One previously known issue with RNA-Seq following s4U enrichment with HPDP-

biotin was that long transcripts enriched over short transcripts. This was interpreted

to be the result of rare incorporation of s4U into transcripts, with transcripts contain-

ing more uridines having more chances to incorporate s4U [Sun et al., 2012]. We were

thus interested in whether increasing the rate of s4U biotinylation could help alleviate

this bias. Upon examination of the genome-wide coverage tracks that I had created,

we noticed that many short transcripts were depleted in HPDP-enriched samples but

not in MTS-enriched samples (Figure 3.2E).

I then sought to quantify the difference in length bias between HPDP-biotin and

MTS-biotin enriched s4U RNA more broadly across the transcriptome. Previous

work had mostly been conducted in yeast, which have constitutive splicing, making

it clear how many uridines are in most transcripts. Alternative splicing in humans

makes determining the number of uridines in transcripts more complicated. However,
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taking note of work that shows that many genes express a single isoform dominantly

in any given tissue or cell line [Gonzalez-Porta et al., 2013], I chose to focus on genes

for which a single transcript comprised at least 90% of the total gene expression as

quantified by Cufflinks. Focusing on these transcripts, I binned groups of transcripts

by the number of uridines and noticed a significant relationship between number of

uridines in HPDP-enriched samples but very little difference between length groups

for MTS-enriched samples (Figure 3.2D). For further discussion of the relationship

between s4U incorporation, disulfide coupling, and length bias, see the appendix

titled “Modeling expected yields of s4U enrichment in metabolic labeling experiments”

below (this is part of the supplemental information from our publication).

Having established that efficient disulfide coupling with MTS enables more effec-

tive enrichment of long RNA in cell culture experiments, we sought to apply MTS

chemistry to enrich miRNAs. Because miRNAs have very few uridines, they would be

very difficult to enrich without efficent disulfide coupling to biotin. Accordingly, the

stability of these important regulatory RNAs had only been studied under conditions

of transcription inhibition [Guo et al., 2015].

To study miRNA turnover, we used the RATE-Seq approach, feeding 293T cells

with s4U and observing time points toward the approach to equilibrium levels of

s4U incorporation [Neymotin et al., 2014]. To quantify miRNA samples, I used a

pipeline developed by Dr. Robert R. Kitchen in the Gerstein lab, using a com-

bination of the software sRNAbench [Rueda et al., 2015] and the Bowtie2 aligner

[Langmead and Salzberg, 2012]. This pipeline maps reads in small RNA-Seq experi-

ments hierarchically, first to rRNA, UniVec laboratory contaminants, and long RNA

transcriptss and only subsequently to miRNAs and other small RNAs. This approach

is helpful for filtering out contaminating reads from sources other than the intended

miRNA population.

We had originally hoped to use these experiments to model miRNA half lives.
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However, in analyzing quantities of synthetic spike-in RNAs, I found that these val-

ues were too noisy to produce robust absolute quantifications. However, I observed

that adjacent time points correlate well throughout the RATE-Seq experiment, im-

plying that relative quantities of different RNAs change in a consistent fashion (Fig-

ure 3.3C). This motivated analysis of differential expression between an early time

point (20 minute s4U feed) and a late time point (6 day s4U feed), using edgeR

[Robinson and Smyth, 2008, Robinson et al., 2010]. miRNAs that were enriched in

the 20 minute time point were interpreted as being fast turnover, whereas RNAs

enriched at the later time point were interpreted as slow turnover (Figure 3.3D). In-

terestingly, many of the miRNAs that were identified as fast turnover were annotated

as miRNA-stars, or the less stable of the complementary miRNAs produced during

the maturation process (Figure 3.3D). Strikingly, the miRNAs with the most signifi-

cant differences between early and late time points display consistent changes across

the time course experiment, implying that this method helps to assess the relative

turnover of different miRNAs (Figure 3.3E).

Though this project was successful in validating that MTS chemistry enables

better enrichment of s4U-RNA, including the first investigation of miRNA turnover

in a proliferating system. An outstanding technical question that remained was how

to normalize data with spike-in controls. Subsequent experimental work in the Simon

lab helped to address this challenge by recoding s4U to cytosine analogues. This

enables enrichment and spike-in free analysis [Schofield et al., 2018].

Within the work described below, I plotted the following figures:

• Figure 3.2 D

• Figure 3.3 C,D,E

• Figure 3.5 B

• Figure 3.6 A-C,E
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Additionally, the following figures incorporate analyses that I conducted:

• Figure 3.2 B,C,E

• Figure 3.5 A,C-F

• Figure 3.6 D,F

3.3 Tracking Distinct RNA Populations Using Ef-

ficient and Reversible Covalent Chemistry

3.3.1 Abstract

We describe a chemical method to label and purify 4-thiouridine (s4U)-containing

RNA. We demonstrate that methanethiosulfonate (MTS) reagents form disulfide

bonds with s4U more efficiently than the commonly used HPDP-biotin, leading to

higher yields and less biased enrichment. This increase in efficiency allowed us to

use s4U labeling to study global microRNA (miRNA) turnover in proliferating cul-

tured human cells without perturbing global miRNA levels or the miRNA processing

machinery. This improved chemistry will enhance methods that depend on tracking

different populations of RNA, such as 4-thiouridine tagging to study tissue-specific

transcription and dynamic transcriptome analysis (DTA) to study RNA turnover.

3.3.2 Introduction

RNA is continuously transcribed and degraded in a tightly regulated and transcript-

specific manner. The dynamics of different RNA populations can be studied by

targeted incorporation of non-canonical nucleosides. These nucleosides can provide

a chemical handle for labeling and enriching RNA subpopulations. The labeling

of RNA employs 5-bromouridine (5-BrU; [Tani et al., 2012], 5-ethynyluridine (5-EU;
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[Jao and Salic, 2008], and 4-thiouridine (TU or s4U; [Cleary et al., 2005, Miller et al., 2009]),

which provide different vehicles for antibody detection, cycloaddition reactions, and

thiol-specific reactivity, respectively. 4-thiouridine holds the advantage that label-

ing is covalent, unlike the antibody detection of 5-BrU, and also that the disul-

fide bond is reversible, unlike the click chemistry used to label 5-EU (reviewed in

[Tani and Akimitsu, 2012]). Methods to enrich s4U-incorporated RNA (s4U-RNA)

initially relied on organomercurial affinity matrices (Melvin et al., 1978), but the use

of s4U in metabolic labeling expanded after HPDP-biotin, a 2-pyridylthio-activated

disulfide of biotin, was developed as a practical means to biotinylate s4U-RNA us-

ing reversible disulfide chemistry, followed by enrichment using a streptavidin ma-

trix [Cleary et al., 2005, Dolken et al., 2008]. The s4U-RNAs can be eluted by re-

duction of the disulfide linkage and subsequently analyzed by microarray, qPCR,

or deep sequencing. This modified protocol sparked a surge in techniques that

use s4U metabolic labeling. For example, half-lives of specific RNAs can be mea-

sured using s4U metabolic labeling by quantifying the ratio of pre-existing (flow

through) to newly transcribed (elution) RNA [Dolken et al., 2008]. This approach

has been extended to genome-wide analysis using high-throughput sequencing (s4U-

seq; [Rabani et al., 2011]).

Combining s4U metabolic labeling with dynamic kinetic modeling has led to the

development of dynamic transcriptome analysis (DTA; [Miller et al., 2011]), and com-

parative dynamic transcriptome analysis (cDTA) when using S. pombe standards

for normalization, which allows the determination of absolute rates of mRNA syn-

thesis and decay [Sun et al., 2012]. Reversible transcriptional inhibition has been

combined with s4U metabolic labeling to measure transcriptional elongation rates

[Fuchs et al., 2014]. Recently, s4U metabolic labeling has been used with approach-

to-equilibrium kinetics to determine absolute RNA degradation and synthesis rates

based on multiple time points after s4U labeling (RATE-seq; [Neymotin et al., 2014]).
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In addition to these methods for analyzing RNA turnover, the enrichment of s4U-RNA

can also be used to determine cell-type-specific transcription (4-thiouridine tagging),

which is particularly helpful for analyzing the transcriptomes of cell types that are

difficult to isolate by dissection or dissociation methods [Miller et al., 2009]. As the

efficient chemical modification of s4U is central to all of these techniques, we tested

the reactivity of s4U with HPDP-biotin. Here we report that the reaction and corre-

sponding enrichment of s4U-RNA with HPDP are inefficient. Therefore, we developed

and validated chemistry using activated disulfides to label and enrich s4U-RNA. This

chemistry increases labeling yields and decreases enrichment bias. Due to the in-

creased efficiency of this chemistry, we were able to extend s4U-metabolic labeling

to the study of microRNAs (miRNAs), providing insight into miRNA turnover in

proliferating cells without inhibition of miRNA processing pathways. Our studies ex-

pand the utility of s4U in metabolic labeling applications and provide the foundation

for clearer insight into cellular RNA dynamics through the improvement of all the

methods listed above.

3.3.3 Design

We sought chemistry to enrich s4U-RNA that satisfied several considerations. First,

the chemistry should be efficient, leading to high yields of labeled s4U residues. To

maintain the advantages of reversible covalent chemistry, we focused on activated

disulfide reagents, which allow reductive release after enrichment. This labeling chem-

istry should be rapid, minimizing time required for purification and decreasing RNA

degradation during handling. Finally, the chemistry needs to be specific for s4U and

should not react with RNA that lacks thiol groups. These improvements would lead

to a more robust protocol for s4U RNA isolation. Additionally, optimized chemistry

could allow the extension of labeling to small RNAs including miRNAs. Smaller

RNAs are expected to be particularly sensitive to the efficiency of s4U labeling, as
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they tend to have fewer uridine residues and therefore have lower probability of suc-

cessful labeling. To develop chemistry that meets the above criteria, we first used

simple chemical systems to determine the reactivity of activated disulfides. We stud-

ied the specificity of labeling chemistry using synthetic RNA with and without s4U.

We used metabolic labeling experiments together with RNA sequencing (RNA-seq) to

test the application of this chemistry in the context of complex RNA samples. Finally,

we evaluated the use of this chemistry to study miRNA turnover, revealing fast- and

slow-turnover miRNAs in proliferating cells without perturbing miRNA processing

pathways.

3.3.4 Results

Optimizing Labeling Chemistry Using Free Nucleosides To examine the re-

activity of s4U-RNA with HPDP-biotin, we first studied the labeling of the s4U nu-

cleoside using liquid chromatography coupled to mass spectrometry (LC-MS; Figures

3.1A and 3.1B). We found biotinylation of the s4U nucleoside with HPDP-biotin to

be inefficient when using buffer conditions that are commonly used in the retrieval

of s4U-RNA [Gregersen et al., 2014]. This inefficiency stems from the forward and

reverse disulfide exchange reactions (Figure 3.1A). Any disulfide formed with the

electron-poor pyrimidine ring of s4U results in a more activated product, therefore

favoring the reverse rather than the forward labeling reaction. For this reason, it is

not surprising that HPDP-biotin is an inefficient reagent for disulfide exchange with

s4U. Improving this chemistry would expand the utility of s4U, improve the sensitivity

of s4U labeling, and reduce bias in s4U-RNA enrichment.

Of the numerous activating chemistries used to make asymmetric disulfides [Jeschke, 2013,

Kenyon and Bruice, 1977], thiosulfates and alkylthiosulfonates are particularly at-

tractive (Figure 3.1C). We found that, in sharp contrast to the slow and inefficient

reaction with HPDP-biotin, methylthiosulfonate-activated biotin (MTS-biotin) reacts
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efficiently with s4U, leading to >95% conversion to the mixed disulfide within just 5

minutes (Figure 3.1D). We validated this difference in s4U reactivity between MTS

reagents and 2-pyridylthio-activated disulfides using NMR (Figures 3.1E and 3.4A-

C). While only a minority of s4U reacted using 2-pyridylthio chemistry (<20%), MTS

chemistry led to >95% conversion of s4U to the mixed disulfide.

Extending MTS Labeling Chemistry to s4U-RNA This MTS chemistry

could be used to specifically fluorescently label s4U-RNA in the context of cell extracts

(Figure 3.4D). Furthermore, we found that the use of MTS-biotin leads to superior

biochemical enrichment of s4U-RNA in comparison to HPDP-biotin (compare flow

through to eluent in Figures 3.1F and 3.1G) or thiosulfate-biotin (TS-biotin, Figures

S1E–S1G). Importantly, MTS and HPDP chemistries are specific for enrichment of

s4U, as no significant enrichment of RNA without s4U occurred in either case (Figures

3.1F,G and 3.4H). We therefore conclude that MTS chemistry provides a specific and

highly efficient means of detecting and biochemically purifying s4U-RNA.

We next tested the efficacy of MTS biotin as a reagent to examine newly tran-

scribed RNA in HEK293T cells (Figure 3.2A). We treated cells with s4U-supplemented

media and reacted the isolated RNA with either HPDP-biotin (as described previously

by [Gregersen et al., 2014]) or MTS-biotin. Biotinylated RNA was enriched and then

analyzed by RNA-seq. To compare the RNA-seq reads across experiments, we used a

normalization approach developed by Sun et al. (2012) in which the same amount of

RNA from S. pombe is added to each sample prior to constructing the library for RNA-

seq [Sun et al., 2012]. Consistent with our prior analysis, compared to HPDP-biotin,

the use of MTS-biotin led to significantly greater normalized coverage of the human

transcriptome (Figures 3.2B-C). This enrichment was reproducible across biological

replicates (Pearson’s r = 0.92, Figures 3.5A-D) and was validated by qPCR (Figures

3.5E-F). To test the specificity of MTS chemistry, we examined MTSbiotin-treated

RNA from cells that had not been treated with s4U and found substantially fewer
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normalized reads than with either HPDP-biotin or MTS-biotin-enriched s4U-RNA

(Figures 3.2B-C). The result from this control experiment validated the specificity of

MTS-biotin for metabolically labeled s4U-RNA.

Alleviating Length Bias Using MTS-Biotin We next compared the dis-

tributions of enriched RNAs using MTS- and HPDP-biotin. Purification of s4 U-

RNA using HPDPbiotin is reported to bias enrichment toward longer RNAs that

tend to contain increasing numbers of uridines, hereafter referred to as length bias

[Miller et al., 2009, Miller et al., 2011]. This bias was confirmed in our study (Fig-

ure 3.2D). While this bias can be partially mitigated statistically [Miller et al., 2009,

Miller et al., 2011], more fruitful biochemical enrichment is clearly preferable, espe-

cially when examining overlapping transcript models of different sizes (e.g., spliced

and unspliced, see Supplemental Information). To examine how MTS chemistry im-

pacted the length bias in comparison with other activated disulfides, we used an in

vitro transcribed RNA ladder with and without s4U to test the relative yields of

RNAs with different lengths. This analysis confirmed the presence of a length bias,

and agrees well with modeling results (Figure 3.4G), demonstrating how MTS chem-

istry largely alleviates length bias in RNA turnover experiments. Indeed, analysis

of our RNA-seq data reveals that MTS-biotin is less prone to length bias compared

to HPDP-biotin (Figure 3.2D). For example, long transcripts like MALAT1 (8.7 kb)

are isolated by HPDP-biotin and MTS-biotin with approximately equal efficiency,

whereas shorter transcripts like SCYL1 and LTBP3 (2.3 kb and 3.4 kb, respectively,

when fully spliced) are found at much greater levels in the MTS-biotin pull down

(Figure 3.2E).

Studying miRNA Turnover Using MTS Chemistry Given the substantial

increase in s4U-RNA yields we observed when using MTS chemistry, we hypothesized

that this chemistry could extend s4U metabolic labeling to the study of miRNAs.

The dynamics of miRNA biogenesis and degradation have gained interest because
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Figure 3.1: Efficient Formation of Disulfides with s4U via MTS Chemistry

(A) s4U disulfide exchange with HPDP-biotin. (B) LC-MS extracted ion
chromatograms of s4U (red) and biotin-s4U (blue) for HPDP-biotin at the indicated
reaction times. (C) s4U disulfide exchange with MTS-biotin. (D) LC-MS
chromatograms as in (B). (E) Downfield 1H NMR spectra of (top) s4U alone,
(center) s4U reacted with 3-[2-Pyridyldithio]propionyl hydrazide (PDPH), an
HPDP-like disulfide, and (bottom) methyl-MTS. Peaks for the starting material
(red shading) and products (blue shading) were integrated and normalized to the
sum of the anomeric protons of s4U and its products (5.9 ppm). For full spectra, see
Figures 3.4A-C. (F and G) Enrichment of a singly thiolated 39-nt RNA by
HPDP-biotin (F) or MTS-biotin (G). Fluorescently labeled 39-nt RNAs with or
without a single s4U were biotinylated with the indicated reagent and enriched on
streptavidin beads, followed by urea-PAGE and fluorescence imaging. See also
Figure 3.4.
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disruption of miRNA homeostasis is implicated in many diseases, particularly for

miRNAs that regulate progression through the cell cycle [Chang and Mendell, 2007].

Generally, miRNA turnover has been investigated by blocking transcription or by in-

hibiting miRNA processing, followed by analysis of miRNA stability [Bail et al., 2010,

Gantier et al., 2011, Guo et al., 2015]. These approaches have demonstrated that

while many miRNAs remain stable for tens of hours, there are also some miRNAs that

turn over much more quickly (e.g., miR222). Extending these studies using metabolic

labeling would allow the analysis of native miRNA levels in a proliferating system (un-

like those studies using transcriptional block) without perturbing miRNA biogenesis

or global miRNA levels (unlike studies where miRNA processing is blocked).

To investigate rates of global miRNA turnover, we treated HEK293T cells with

s4U for a range of times (Figure 3.3A) and enriched s4U-miRNAs using MTS chem-

istry, followed by deep sequencing. To test whether s4U perturbs miRNA steady-state

levels, we examined miRNA levels in cells with and without s4U treatment for 22 days,

and we found high correlations in miRNA levels (Pearson’s r = 0.99, Figure 3.6A),

demonstrating that s4U incorporation has minimal impact on miRNA levels. Our

findings are consistent with previous accounts that s4U causes minimal perturbation

of longer transcripts [Gregersen et al., 2014, Hafner et al., 2010] and our own data

with longer RNAs (Figure 3.6B). Consistent with our previous results and modeling,

a positive control miRNA (a s4U-miRNA spike-in added to cellular small RNAs) was

enriched when using MTS-biotin but was not significantly enriched with HPDP-biotin

(Figure 3.6D). We next evaluated the s4U-miRNAs at different times after initiating

s4U treatment. We found miRNAs levels were reproducibly enriched from replicate

samples (Figures 3.6C,E). Furthermore, miRNA levels in neighboring time points were

most similar to each other, and those enriched at later time points (1 day, 3 days, and

6 days) approached the levels observed at steady state (22 days). As expected, the

steady-state miRNA levels most closely resembled the input miRNA levels (Figure
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3.3C). To determine which miRNAs turned over most quickly, we analyzed the rela-

tive distribution of enriched miRNAs at early time points (20 min) versus steady state

(6 days or greater; Figure 3.3D). We identified many RNAs whose relative enrichment

was significantly different from steady state at early time points and found these miR-

NAs displayed a consistent trend across time (Figure 3.3E). We expect fast-turnover

miRNAs to be overrepresented relative to the population in early time points and

slow-turnover miRNAs to be under-represented (Figure 3.3B). To evaluate this expec-

tation, we took advantage of established properties of miRNA processing (reviewed in

[Ruegger and Grosshans, 2012, Winter et al., 2009]). During miRNA biogenesis, one

of the two strands from the duplex precursor generally degrades rapidly (referred to

here as the miR-star), while the other strand is incorporated into the RNA-induced

silencing complex (RISC) and exhibits higher stability. Therefore, we hypothesized

that the miR-star sequences would be over-represented at early time points, and this

hypothesis was verified: of the 52 significantly enriched and depleted miRNAs (FDR

< 5 3 105), about one-third of the fast-turnover miRNAs were miR-star sequences

(11/30), while none of the stable miRNAs (0/22) were annotated as miR-star se-

quences. The fast-turnover miRNAs we identified include miRNAs that agree with

previous results using transcriptional blockade (e.g., miR-222; [Guo et al., 2015]).

Other miRNAs were found to be slow turnover (e.g., miR-7), and many of these are

also in agreement with past studies [Bail et al., 2010, Guo et al., 2015]. In general,

our results using metabolic labeling of miRNAs agree well with results from analysis

of degradation after blocking miRNA production [Bail et al., 2010, Guo et al., 2015].

There are exceptions, however, such as miR-98-5p and miR191-5p, which were iden-

tified as fast-turnover miRNAs in our analysis (Figures 3.3D-E and 3.6F for qPCR

validation; for a full list of fast-turnover non-star miRNAs, see Table S2), yet upon

transcriptional blockade these miRNAs are stable [Bail et al., 2010, Guo et al., 2015].

While these results may be due to tissue or cell line differences, it is more likely the
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Figure 3.2: MTS-Biotin Affords Higher Specific Yields and Lower Length Bias of
s4U -RNA

(A) Schematic of s4U metabolic labeling. 293T cells were treated with s4U (700µM)
for 1 hr, followed by total RNA extraction, biotinylation with either HPDP- or
MTS-biotin, and enrichment on streptavidin-coated magnetic resin. (B) Total reads
for each RNA-seq sample that mapped to the H. sapiens genome, divided by total
number of reads that mapped to the S. pombe genome. (C) Whole-genome
alignments of eluted samples from HPDP- or MTS-biotin enrichments. y axis
indicates number of reads normalized by S. pombe spike-ins (see Experimental
Procedures). Forward and reverse strand reads are represented as positive and
negative values on the y axis, respectively. To compare coverage between samples on
the same y axis scale, in some cases, read coverage exceeds the y axis upper limit in
MTS-biotin (127 cases) and HPDP-biotin (4 cases). Chromosomes are indicated
below the mapped reads. (D) Box plot of transcripts recovered by MTS-biotin and
HPDP-biotin binned by transcript length. Blue, MTS-biotin; purple, HPDP-biotin.
(E) Examples of genes enriched by HPDP- and MTS-biotin, along with a no
s4U -feed control. MALAT1 (8.7 kb), SCYL1 (2.3 kb cDNA), and LTBP3 (3.4 kb
cDNA) gene architectures displayed below. See also Figure 3.5.
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Figure 3.3: MTS Chemistry Reveals Fast- and Slow-Turnover miRNAs in miRNA
RATE-Seq Experiments

(A) Schematic of s4U treatments used in miRNA RATE-seq. (B) Cartoon of
anticipated behavior of fast-turnover and slow-turnover miRNAs in comparison to
average. Fast-turnover miRNAs are expected to be over- represented in the early
time points, whereas slow-turnover miRNAs are depleted, relative to steady state
(ss). (C) Heatmap depicting correlation coefficients (Pearson’s r) between miRNA
levels at different times after s4U treatment. Replicate samples are indicated by
(rep). (D) Volcano plot depicting results from a comparative analysis of miRNAs
that are significantly enriched or depleted in early time points (20 min, 1 hr)
relative to steady-state levels (6 and 22 days). Fast-turnover miRNAs (fold
difference early time points from steady state > 4; p value < 2× 10−5; Bonferroni
family-wise error rate < 0.005) are colored red; slow-turnover miRNAs (fold
difference early time points from steady state < 0.25; p value < 2× 10−5; Bonferroni
family-wise error rate < 0.005) are shown in blue. Stars indicate miRNAs defined as
miRNA-stars (see Experimental Procedures); the others are indicated with circles.
(E) Heatmap indicating normalized miRNA enrichment relative to steady-state level
at each time point in RATE-seq for the fast- and slow-turnover miRNAs in (C). For
clarity of presentation, the most significant fast-turnover miRNA in this analysis
(miR-4521, log2(fold change) = 10.8; p value = 2.9× 10−40) has been omitted from
(C) and (D) due to values exceeding the indicated scales.
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faster turnover we observed for miR-98-5p and miR-191-5p is due to the cell-cycle

regulation of these miRNAs [Polioudakis et al., 2015, Ting et al., 2013]. Turnover in

response to progression through the cell cycle is masked when using transcriptional

inhibition, but this turnover is evident using a metabolic labeling approach to study

miRNA dynamics in dividing cells, underscoring one of the advantages of this im-

proved chemistry.

3.3.5 DISCUSSION

Together, our results demonstrate that MTS-biotin is a specific reagent that can be

used to efficiently label and enrich s4URNA with higher yields and less bias than

the commonly used HPDP-biotin. The dramatic improvement over existing s4U bi-

otinylation protocols renders MTS chemistry useful for studying dynamics of free

nucleosides (Figures 3.1B, D, and E), synthetic RNAs (Figures 3.1F, G), E. coli ex-

tracts (Figure 3.4), and s4URNA in metabolic labeling experiments (Figure 3.2). In

RNA-turnover experiments, for example, the superior MTS chemistry alleviates tran-

script length bias, decreases the amount of starting material required, and may allow

for the use of lower doses of s4U to avoid potential toxicities that some have observed

[Burger et al., 2013], but not others [Gregersen et al., 2014, Hafner et al., 2010], when

metabolically labeling cells. We demonstrate the utility of this MTS chemistry using

miRNA RATE-seq, which allowed us to identify fast- and slow-turnover miRNAs in

proliferating cells with flux through the miRNA pathway (Figure 3.3). This advance

provides the foundation for more detailed kinetic analyses of miRNA processing and

turnover. More generally, applying the chemistry described herein should provide a

superior means to gain insights into RNA dynamics in diverse biological systems.
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3.4 Limitations

This manuscript describes improved capture of s4U-RNA, but the enrichment will only

be successful when the RNA contains sufficient levels of s4U. In metabolic labeling

experiments, incorporation of s4U into RNA can be controlled by the concentration of

s4U during cell treatment and the time of s4U exposure. Insufficient s4U incorporation

leads to low yields and will also favor enrichment of longer transcripts that have

more uridine residues (and therefore a greater probability of s4U incorporation). For

technical considerations while performing s4U-RNA enrichment, see Experimental

Procedures and the Detailed Protocol included in the Supplemental Information.

3.5 EXPERIMENTAL PROCEDURES

Cell Lines and s4U Metabolic Labeling HEK293T cells were cultured in high-

glucose DMEM media supplemented with 10% (v/v) fetal bovine serum, and 1% (v/v)

2 mM L-glutamine. For labeling of long RNAs, cultured cells at 80% confluence were

treated with 700 mM s4U for 60 min, washed with PBS, trypsinized, and harvested.

Cells were resus- pended in TRIzol reagent, flash frozen, and stored overnight at 80

C. Cell ly- sates were chloroform extracted once, and total RNA was purified by the

RNeasy mini kit (QIAGEN). For miRNA labeling, cultured cells were grown for 6 days

and split 1:8 on day 3. Cells were grown in the presence of 100 mM s4U for 22days,

6days, 3days, 1day, 9hr, 3hr, 1hr, 20min, or in the absence of s4U. On day 6, all

cells were harvested using trypsin and resuspended in TRIzol reagent with exogenous

s4U-containing miRNAs (Dharmacon) and one exogenous non-s4U miRNA (IDT).

Samples were flash frozen and stored overnight at 80 C. Cell lysates were chloroform

extracted once and total RNA purified by the miRvana miRNA isolation kit (Life

Technologies).

Purification of s4U-Labeled RNA Biotinylation and s4U-RNA enrichment
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with HPDP-biotin were carried out based on protocols adapted from Gregersen et

al. (2014) and optimized for MTS-biotin. Reactions were carried out in a total

volume of 250 ml, containing 70 mg total RNA, 10 mM HEPES (pH 7.5), 1 mM

EDTA, and 5 mg MTSEA biotin- XX (Biotium) or 50 mg HPDP-biotin (Pierce)

freshly dissolved in DMF (final con- centration of DMF = 20%). Reactions were

incubated at room temperature for 2 hr (HPDP) or 30 min (MTS) in the dark.

Following biotinylation, excess biotin reagents were removed by addition of 1 volume

phenol:chloroform (Sigma), followed by vigorous mixing for 15 s, 2 min incubation at

RT, and centrifugation in a Phase-Lock-Gel tube (5Prime) at 12,000 3 g for 5 min.

Supernatant was removed, and RNA was precipitated with a 1:10 volume (20 ml) of

5 M NaCl and an equal volume of isopropanol (200 ml) and centrifuged at 20,000

3 g for 20 min. The pellet was washed with an equal volume of 75% ethanol. Pu-

rified RNA was dissolved in 50 ml RNase-free water and denatured at 65 C for 10

min, followed by rapid cooling on ice for 5 min. Biotinylated RNA was sepa- rated

from non-labeled RNA using mMacs Streptavidin Microbeads (Miltenyi). Beads (200

ml) were added to each sample and incubated for 15 min at room temperature. In

the meantime, µColumns were placed in the magnetic field of the µMacs separator

and equilibrated with nucleic acid wash buffer supplied with the beads (Miltenyi).

Reactions were applied to the mColumns, and flow-through was collected as the pre-

existing RNA fraction. mColumns were washed twice with high-salt wash buffer (500

ml each, 100 mM Tris- HCl [pH 7.4], 10 mM EDTA, 1 M NaCl, and 0.1% Tween-

20). s4U-RNA was eluted from mColumns with 100 ml freshly prepared 100 mM

DTT followed by a second elution with an additional 100 ml 5 min later. RNA was

recovered from the flow-through and eluent samples using the MinElute Spin columns

(QIAGEN) according to the instructions of the manufacturer. S. pombe total RNA

(11 ng, a generous gift from Julien Berro) was added to each sample for downstream

normalization.
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s4U-Seq Library Preparation and Sequencing All sequencing libraries were

constructed using standard protocols by the Yale Center for Genomic Analysis (YCGA)

and run on Illumina HiSeq 2500 instru- ments. Long RNA-seq was performed using

5 mg of RNA from input RNA, flow-through, or eluted fractions. Strand-specific

library preparation was performed using poly-A-selected RNA collected from flow-

through and eluted fractions. Samples were multiplexed using Illumina bar codes

and sequenced using paired-end 2 3 75-nt cycles. For small RNA-seq, 10% input and

RNA collected from eluted fractions were used for small RNA library preparation and

sequenced with single-end 75-nt cycles.

Mapping and Quantification of s4U-Seq Libraries For long RNA-seq, se-

quencing reads were aligned using Tophat2 (version 2.0.12; Bowtie2 version 2.2.3), to a

joint index of the H. sapiens and S. pombe genomes (hg19 and PomBase v22) and tran-

scriptomes (GENCODE v19 and Ensembl Fungi v22; [?, Kersey et al., 2014], respec-

tively). Alignments and analyses were performed on the Yale High Performance Com-

puting clusters. Following this, we used Cufflinks (version 2.2.1; [Trapnell et al., 2010])

to quantify annotated H. sapiens and S. pombe transcripts, using only reads that were

uniquely mapped (MAPQ ¿ 20) and that aligned with up to two mismatches to the

reference.

s4U-Seq Normalization To compare transcript levels between samples, we nor-

malized expression values to S. pombe spike-ins as follows:

FPKMnorm = FPKMrawSnorm

where FPKMnorm is the normalized fragments per kilobase per million reads

(FPKM) of a human transcript or gene, FPKMraw is the original FPKM calculated

for the sample of interest, and Snorm is the slope of the linear regression line of raw

S. pombe gene FPKMs, with the normalizing sample on the y axis and the sample of
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interest on the x axis (Figure 3.5B). To normalize genomic coverage tracks, we used

a similar scheme:

Coveragenorm = CoveragerawSnorm
Rsample

Rnorm

where Coveragenorm and Coverageraw are the normalized and raw read cover-

ages at a given genomic position, and Rsample and Rnorm are the numbers of

unique reads in the sample of interest and the normalizing sample, respectively. The

Rsample

Rnorm
adjustment factor reflects that we are comparing raw reads instead of FP-

KMs. We generated stranded genomic coverage tracks using IGVTools (version 2.3.32;

[Thorvaldsdottir et al., 2013]). For all analyses, we normalized to the S. pombe spike

in the HPDP-biotin sample. We also accounted for the 10-fold biochemical dilution

of the input samples prior to library preparation by multiplying normalized values

for these samples by ten.

Assessment of Length Bias in Eluted s4U-Seq RNA Because incorporation

and biotinylation of s4U are not perfectly efficient, especially when using HPDP-

biotin, it is expected that transcripts with more uridines will be purified at rates

greater than or equal to those of shorter tran- scripts. To assess length bias for each

reagent, we binned transcript isoforms by numbers of uridines present and compared

the fractions of total input RNA that were purified between bins using the Wilcoxon

rank-sum test. To avoid noise from misassignment of reads between isoforms of

individual genes, we included only the dominant isoforms of genes (¿90% of total

expression) in all samples included in the analysis. We only included transcripts

greater than 200 nt, since shorter transcripts were biochemically depleted in the

library preparation, and removed transcripts with expression levels in the bottom

quartile of the input sample.

qPCR Assays For qPCR analysis of long RNA, input or enriched RNA was
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converted into cDNA with VILO reverse-transcription kit (Life Technologies). qPCR

was carried out on the CFX96 real-time system (BioRad) with the iTaq Universal

SYBR Green Mix. Results from all primers used were corrected for amplification

efficiency. For miRNA analysis, qPCR was performed using TaqMan miRNA as-

says (Life Technologies) according to the instructions of the manufacturer for the

following targets: hsa-miR-7, UGGAAGACUAGU GAUUUUGUUG; hsa-miR-20a,

UAAAGUGCUUAUAGUGCAGGUAG; hsa- miR-98, UGAGGUAGUAAGUUGUAU-

UGUU; hsa-miR-99b, CACCCGUAGAA CCGACCUUGCG; hsa-miR-191, CAACG-

GAAUCCCAAAAGCAGCUG; hsa- miR-222, AGCUACAUCUGGCUACUGGGU-

CUC; EED004r, CCAUUUGUAU GUUCGGCUAACU; and EED095r, CCAUUUCGCUCGGGUGCUAACU.

miRNA RATE-Seq s4U RNA Enrichment Biotinylation and s4U-RNA en-

richment were carried out as described above (purification of s4U-labeled RNA) with

the following modifications. Excess biotinylation reagent was removed using a nu-

cleotide cleanup kit (QIAGEN). Following enrichment, RNA was concentrated by

ethanol precipitation and resuspended in 14 ml RNase-free water. After enrichment,

samples were supple- mented with four synthetic miRNA standards (Dharmacon).

miRNA RATE-Seq Bioinformatic Analysis To analyze our smRNA RATE-

seq data, we used a hierarchical mapping pipeline combining the sRNAbench (Rueda

et al., 2014), Bowtie (Langmead et al., 2009), and Bowtie2 tools (Langmead and

Salzberg, 2012). Before mapping the reads, we removed sequencing adapters, using

fastx-clipper (hannonlab.cshl.edu/fastx toolkit/). We then proceeded to use Bowtie2

to map reads first to synthetic spikes, and then to the UniVec laboratory con-

taminant database (www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) and ribosomal

RNAs from the GENCODE v19 annotation (Harrow et al., 2012). These two cat-

egories of sequences are not expected to produce reads in our miRNA libraries,

except by contamination or RNA degradation. The remaining unmapped reads

were then mapped using sRNAbench, first to the miRBase miRNA 21 annotation
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[Kozomara and Griffiths-Jones, 2014], and then to the entire human genome (hg19).

Input reads under 19 nt or with greater than one mismatch were removed from all

analyses of miRNA and spike quantifications.

To perform differential expression analysis between smRNA RATE-seq time points,

we used the edgeR package (version 3.2.4; [Robinson and Smyth, 2008, Robinson et al., 2010]).

Specifically, we compared three early time points (both 20 min replicates and a deeply

sequenced 1 hr time point) to three late time points (two 6-day replicates and a 22-day

sample). miRNA read counts and dispersions were fit to a negative binomial distri-

bution, and differential expression was evaluated using the negative binomial exact

test. To correct for multiple hypothesis testing, we used the Bonferroni correction,

and set a family-wise error rate of 0.005 to select differentially expressed miRNAs

between early time points and the steady state.

Mass Spectrometry of s4U Disulfide Exchange Reactions (50 ml) contained

s4U (50 mM), buffer (20 mM HEPES [pH 7.5], 1 mM EDTA), and MTS- or HPDP-

biotin (5 mM) dissolved in DMF (final concentration of DMF = 5%). Aliquots were

taken at designated time points and analyzed on an Agilent 6650A Q-TOF using

a reverse phase column (Thermo Scientific Hypersil GOLD 3 mm, 160 3 2.1 mm)

detected by electrospray ionization (positive ion mode). Chromatography conditions

were established based on Su et al. (2014). Briefly, analysis was initiated with an

isocratic gradient of 100% buffer A at 0.4 ml/ min for 6 min followed by a linear

gradient of 0%–50% buffer B over 6 min, 50%–75% buffer B over 2 min, then an

isocratic elution at 75% buffer B (buffer A: H2O in 0.1% [v/v] formic acid; buffer B:

acetonitrile in 0.1% [v/v] formic acid).

NMR of s4U Disulfide Exchange Reactions (600 ml) were performed in D2O

containing 10 mM HEPES, s4U (1 mg, 6.4 mM), and five equivalents of MeMTS or

PDPH dissolved in DMF-d7 (60 ml, 10% total volume). These reactions were incu-

bated in the dark, 2 hr for PDPH and 30 min for MeMTS. Reactions were analyzed
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on an Agilent DD2 400 MHz NMR with 16 scans.

Enrichment of Singly Thiolated RNA Two fluorescently labeled RNAs were

synthesized for s4U enrichment: non- s4U 39-nt RNA (DY647 - GGAACCGCCCG-

GAUAGUGUCCUUGGGAAACCAA GUCCGGGCACCA) and one s4U 39-nt RNA

(DY547 – GGAACCGCCCGGA [s4U]AGUGUCCUUGGGAAACCAAGUCCGGGCACCA)

(Dharmacon). Bio- tinylation reactions (50 ml total) contained RNA (1 mM), 10 mM

HEPES (pH 7.5), 1 mM EDTA, and 25 mM MTS- or HPDP-biotin (dissolved in DMF

at 250 mM). Reactions were incubated at room temperature in the dark for 30 min or

2 hr, respectively. Following biotinylation, excess biotinylation reagents were removed

with two consecutive chloroform washes, followed by purification with a nucleotide

cleanup kit (QIAGEN) according to the manufac- turer’s instructions. Biotinylated

RNA was separated from non-labeled RNA using Dynabeads MyOne Streptavidin

C1 beads (Invitrogen). Biotinylated RNA was incubated with 50 ml Dynabeads with

rotation for 1 hr at room temperature in the dark. Beads were magnetically fixed and

washed twice with Dynabeads high-salt wash buffer. s4U-RNA was eluted with 100

ml of elution buffer (10 mM Tris [pH 7.4] and 100 mM DTT). Fractions were concen-

trated by ethanol precipitation, separated on a 12% urea-PAGE gel, and visualized

by Typhoon fluorescence imager (GE).

Enrichment of an In Vitro Transcribed RNA Ladder An RNA ladder of

100–1,000 nt was transcribed in vitro using the RNA Century Plus Marker Template

and Maxiscript T7 transcription kit (Invitrogen) using Cy5-CTP at a ratio of 1:1 Cy5-

CTP:CTP for downstream visualization, with the option of adding s4UTP (TriLink

Biotechnologies) at a ratio of s4UTP:UTP to the reaction. After the reaction, ex-

cess nucleotides were removed by an Illustra Microspin G-25 column (GE Healthcare

Life Sciences) according to the manufacturer’s instructions. RNA ladders were re-

acted with HPDP-, MTS-, or thiosulfonate-biotin (Biotium), following the protocol

described above. Enriched samples were separated on a 5% urea-PAGE gel, stained
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with GelGreen, and visualized by Typhoon fluorescence imager (GE).

Enrichment of Thiolated tRNA from E. coli E. coli WT and ∆thiI cultures

were grown to mid-log phase in LB media. Strains were a generous gift from Eugene

Mueller [Mueller et al., 1998]. Cells were pelleted at 3,250 3 g for 10 min at 4 C.

Total RNA was purified by the mirVana miRNA isolation kit (Life Technologies).

RNA pull downs were performed as above (Purification of s4U-labeled RNA) and

fractions separated on a 5% urea-PAGE gel, followed by visualization with GelGreen

stain.
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Figure 3.4: Reactivity of activated disulfides with s4U and in vitro modulation of bias
in MTS- and HPDP-biotin enrichments
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Figure 3.4: Reactivity of activated disulfides with s4U and in vitro

modulation of bias in MTS- and HPDP-biotin enrichments

(A) 1H NMR spectrum of s4U alone. Peak labeled with a red “*” corresponds

to the starred proton in the s4U structure. (B) 1H NMR spectrum of s4U when

treated with methane methylthiolsufonate (MeMTS), the same reactive disulfide of

MTS-biotin. MeMTS was incubated with s4U for 30 min and the extent of disulfide

exchange was monitored by the chemical shift in proton labeled with a red “*”. Peak

labeled with a blue “*” represents the chemical shift upon disulfide bond formation.

(C) 1H NMR spectrum of s4U when treated with a compound containing the same

functional group of HPDP-biotin. Pyridyldithio]propionyl hydrazide (PDPH) was

incubated with s4U for 2 hr and the extent of disulfide exchange was monitored by

changes in chemical shift as in (B). (D) RNA from E. coli K-12 cells was reacted

with MTS-TAMRA fluorescent dye and visualized on a 5% urea-PAGE gel. K-12

cells express ThiI, an enzyme that selectively modifies U8 of tRNA to s4U8 (Mueller

et al., 1998b). RNA from a ∆thiI knockout shows little TAMRA signal (traces of

unmethylated 2-thiouridine on tRNA can still react), whereas a strong TAMRA signal

is present in the K-12 cells only in tRNA. Total RNA was stained with GelGreen.

(E) Schematic of in vitro enrichment of s4U-RNA using an RNA ladder. An RNA

ladder was in vitro transcribed with Cy5-CTP and with or without added s4UTP. s4U-

RNAs were enriched by reacting with disulfide-activated biotin derivatives using either

HPDP, MTS, or thiolsulfonate (TS, an alternative disulfide activated biotin reagent)

chemistry. (F) Input, flow-through, and elution RNAs were analyzed by urea-PAGE

and visualized by Cy5 fluorescence. Band intensities were quantified using ImageJ.

(G) Comparison between the yields observed in (E) and expected enrichment using

models that assume different biotinylation efficiencies. In all cases modeled lines

assume ratio of s4U/Utotal = 0.075 to determine the expected yield given different

biotinylation efficiencies (ybio) based on the equation:
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yieldRNA =
Ni∑
j=0

[1− (1− ybio)j ]p(Ui=j))]

In comparison to the models results, empirical yields using the band intensities

from (B) were plotted based on transcript length. (H) Effects of biotin concentration

on modeled s4U-RNA enrichment. Synthetic short RNAs (1 nM) with one s4U residue

(red) or zero s4U residues (green) were enriched by 200 µM (comparable to 50 µg biotin

in total RNA pulldown) or 20 µM HPDP- or MTS-biotin. No significant difference

in enrichment was observed using these two concentrations of MTS-biotin eluent,

whereas 200 µM HPDP-biotin showed 6-fold greater enrichment over 20 µM HPDP-

biotin.
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Figure 3.5: Reproducibility of MTS-biotin enrichment
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Figure 3.5: Reproducibility of MTS-biotin enrichment

(A) Whole genome alignments of RNA-Seq samples as in Figure 3.2B. The y-

axis indicates the number of reads normalized to total number of S. pombe aligned

reads. To compare coverage between samples using the same scale on the y-axis, in

many cases read coverage exceeds the y- axis upper limit in Input (135 cases), MTS-

biotin (127 cases) and HPDP-biotin (4 cases). Chromosomes are indicated below

the mapped reads. (B) Scatter plots and Pearson correlations of normalized FPKM

values for H. sapiens transcript isoforms. Plots show Input 1 vs. Input 2 (left), MTS-

biotin replicate 1 vs. HPDP-biotin (center), and MTS-biotin replicate 1 vs. MTS-

biotin replicate 2 (right). (C) Example of genes enriched by HPDP-biotin and MTS-

biotin as in Figure 3.2C. (D) Total reads for each RNA-Seq sample that mapped to

the H. sapiens genome, normalized by total number of reads that mapped to the S.

pombe genome, as in Figure 3.2D. (E) Samples enriched by MTS- or HPDP-biotin

from RNA-seq submission were analyzed by qPCR using gene-specific primers for

RPL18A, MOV10, HOXA9, CBX6, and UPF1 with two replicates. Ct values from

qPCR were used to calculate percent input using the equation:

1

2Ctsample−Ctinput

where the input is the average of two replicates. Error bars indicate the mean of

two technical replicates +/- SEM. (F) Ct values from qPCR were plotted against the

number of reads (log2 transformed) for deep sequencing in input (triangles), MTS-

(circles) and HPDP- (squares) enriched samples.
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Figure 3.6: Analysis of s4U metabolic labeling and enrichment for miRNA RATE-Seq
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Figure 3.6: Analysis of s4U metabolic labeling and enrichment for

miRNA RATE-Seq

(A-C) Scatter plots and Pearson correlations of RNA-Seq quantifications of H.

sapiens miRNA transcripts. Plots show (A) reads from miRNA isolated from cells

with not s4U treatment compared to reads from total miRNA from cells after 22 days

of s4U treatment; (B) analysis of long RNAs from the same cells as in (A); and (C)

analysis of miRNA isolated from 22 day s4U treatment (10% input) vs. MTS-biotin

enriched miRNA from 22 days of s4U treatment. (D) miRNAs enriched with HPDP-

and MTS-biotin. Control miRNA spikes containing one s4U (EED004r) or zero s4U

(EED0095r) were enriched with s4U-miRNA samples and enrichment was detected by

qPCR using the same equation as above. The s4U-containing spike-in control was not

significantly enriched over background by HPDP-biotin (p = 0.27), whereas the s4U-

containing spike-in control was significantly enriched by MTS-biotin (p = 0.034). (E)

Heatmap similar to Figure 3.3C with annotated correlation coefficients (Pearson’s r)

between miRNA levels at different times after s4U treatment. Replicate samples are

indicated by (rep). (F) The enrichment of select miRNAs using MTS-biotin after 1 hr

and 6 days s4U treatment was validated by qPCR and quantified as fold enrichment

as in Figure 3.5E. Error bars indicate the mean of three technical replicates +/- SEM.
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3.6 Appendix: Modeling expected yields of s4U

enrichment in metabolic labeling experiments

The objective of the experiment described above is to determine the fraction of newly

transcribed RNA (fi) for each RNA in the cell. The output of the experiment is the

yield of each RNA over input (Xi):

Xi =
RNAenriched

RNAinput

where Xi can be related to fi:

Xi = fipi(Ni)

Longer RNAs generally have a higher number of uridines and are therefore more

likely to be captured. Specifically, the probability of capture, pi(Ni), is a function of

the number of uridine residues (Ni) in the transcript. In order for Xi ≈ fi, we need

pi(Ni) to be as close to unity as possible. We can model the length dependence of

pi(Ni) as follows:

pi(Ni) =
Ni∑
j=0

[1− (1− ybio)]p(Ui = j)

where ybio is the yield of s4U biotinylation, and Ui is the number of s4U residues

in the transcript.

If we assume that s4U residues are randomly incorporated into newly transcribed

RNA at sites of uridine, then Ui will display a binomial distribution with mean r, the

ratio of s4U to uridine ( s4U
Utot

) incorporated into the RNA according to the following

equation:
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p(Ui = j) =

(
Ni

j

)
rj(1− r)Ni−j

This model assumes that any RNA with one or more biotins will be retrieved

quantitatively, which agrees well with the high affinity of streptavidin for biotin, and

the observation that the flow through does not contain significant amounts of biotiny-

lated RNA (see Figure 3.4F). We have modeled the expected yields of biotinylation

at given level of s4U incorporation (r = 0.075) and the results agree well with the

experimental data from enrichment using an in vitro transcribed RNA ladder (Figure

3.4G), supporting the utility of this model.

Based on this model, there are two ways to decrease the length bias: (1) increase

ybio, the yield of conversion of s4U to bio-s4U, or (2) increase r, the number of s4U’s

in the transcript.

This manuscript describes MTS-chemistry that dramatically increases ybio, the

yield of biotinylation of each s4U residue. In agreement with our data and these

equations, this improvement leads to higher yields of s4U-RNA (Figure 3.2B, C) and

lower length bias (Figure 3.2D and Figure 3.4F). For (2), increasing the [s4U] fed to

cells can increase r. The extent to which r can be increased has practical constraints.

At very high [s4U], the nucleoside is toxic to the cells [Burger et al., 2013]. In one

case [Heyn et al., 2014], it was possible to further increase incorporation by directly

injecting s4UTP into cells, which provided high enrichment of even short transcripts.

However, direct injection of individual cells is not always feasible. We find that under

the highest commonly used concentrations of nucleoside ([s4U] = 700 µM), even the

longest spliced transcripts are enriched at lower levels with HPDP-biotin than with

MTS-biotin (Figure 3.2D). In other words, under standard incorporation rates, the

difference in ybio between MTS-biotin and HPDP-biotin has a significant impact on
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Xi. Irrespective of the incorporation rate, it is always preferable to increase the yield

of biotinylation (ybio) to make more efficient use of the s4U that has been incorporated

into the labeled RNA.

It is interesting to note that according to this model, low yields of biotinylation

(such as those achieved using HPDP-biotin) lead to comparative enrichment of very

long transcripts (such as those containing long, unspliced introns) over moderately

sized transcripts. While low sequencing coverage in the input samples prevented

accurate quantitation of Xi for these long, low-abundance, unspliced transcripts, this

enrichment is clearly evident in the mapped coverage, consistent with this prediction.

It is also worth noting that measurements of RNA half-lives using HPDP-biotin have

the potential to be accurate (provided sufficient signal-to-noise) because the length

bias is constant for any given RNA over time [Neymotin et al., 2014]. The relative

amounts of different transcripts and the analysis of splicing, however, may be strongly

influenced by the length bias of capture. The low ybio for HPDP-biotin is expected
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to influence these results. An example of this effect can be seen in Figure 3.2E.

Chapter 4

Modeling of overdispersion in

RNA chemical probing data and

application to secondary structure

prediction

4.1 Summary

This chapter describes analysis of statistical overdipsersion in RNA chemical probing

data read out with high throughput sequencing. This group of techniques enables

measurement of a variety of properties of RNA nucleotides and can be applied to aid

RNA secondary structure prediction. The core of this chapter is a draft of a research

article that is currently in preparation for submission. For that article, I conducted

all computational analysis, under the joint direction of Dr. Mark Gerstein and Dr.

Matthew D. Simon. Along with Dr. Simon and Dr. Alec N. Sexton, I designed a

set of 60 replicate experiments to help faciliate and benchmark statistical modeling

methods for RNA chemical probing data. These experiments were carried out by Dr.
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Alec Sexton. Peter Y. Wang contributed a then-unpublished script for quantification

of reverse transcription stops and mutations in probing data.

4.2 Modeling of overdispersion in RNA chemical

probing data and application to secondary struc-

ture prediction

4.2.1 Abstract

Chemical probing techniques can reveal biologically important properties of RNA

molecules—including structural context, chemical modification, and interaction with

proteins—at single nucleotide resolution. This set of techniques has recently been

adapted to readout with high throughput sequencing, enabling in vivo and transcriptome-

wide studies. Despite the expanding use of chemical probing technologies, data have

often been modeled using simplifying statistical assumptions that deemphasize the

value of conducting replicate experiments. Here, I investigate and model overdis-

persion in RNA chemical probing data, demonstrating the importance of replicate

experiments to biological and statistical interpretation. To facilitate this analysis,

we collect novel datasets with 60 replicates that enable us to observe overdispersion

more directly and to investigate the value of incremental data collection to statistical

modeling. I also investigate the effects of variability of RNA chemical probing data

on predictions of RNA secondary structure and apply our model to propose a quan-

titative metric of the contribution of uncertainty in chemical probing results to the

breadth of possible predicted RNA structures.
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4.2.2 Introduction

Chemical probing techniques can reveal biologically important properties of RNA

molecules at single nucleotide resolution []. The applications of this versatile set of

tools include studies of RNA structure, chemical modification, and interactions with

proteins, all of which aid mechanistic investigations of RNA function and regulation.

The utility of chemical probing experiments to study RNA biology has expanded in

scope, as probes have been developed that work in vivo and techniques have been

adapted to a sequencing platform for both transcriptome wide [Carlile et al., 2014,

Dai et al., 2017, Ding et al., 2014, Zubradt et al., 2017, Rouskin et al., 2014, Spitale et al., 2015a]

and targeted [Fang et al., 2015, Smola et al., 2015, Smola et al., 2016] analyses. The

most widely used probes–e.g. dimethyl sulfate (DMS) and selective 2’ hydroxyl acy-

lating (SHAPE) reagents–aid RNA secondary structure determination by selectively

modifying single-stranded and flexible nucleotides. Nucleotides modified by chemical

probes are then read out by reverse transcriptase (RT), which terminates cDNA syn-

thesis or inserts incorrect bases at chemical adducts (we refer to RT stops and muta-

tions more generally as RT events). Comparing results of probing experiments to con-

trols with no chemical treatment enables calculation of nucleotide reactivities, which

are then converted into probabilistic constraints for RNA secondary structure predic-

tion, or parallel inferences about other nucleotide properties [Deigan et al., 2009].

A key to the interpretation of chemical probing data is the evaluation of ex-

perimental reproducibility. We can separate this issue into two elements: mea-

surement variability for each replicate and experimental variability between repli-

cates. The importance of measurement variability has been acknowledged implic-

itly within the field. In the analysis of transcriptome-wide data, the necessity of

achieving sufficient sequencing depth to obtain robust results is juxtaposed against

the difficulty of collecting sufficient data for RNAs that are present in cells at low

concentrations [Choudhary et al., 2016, Li et al., 2017]. As a result, many of the
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initial conclusions from transcriptome-wide studies using chemical probing, or re-

lated techniques that also investigate RNA structure, relate to average properties

of many transcripts [Rouskin et al., 2014, Ding et al., 2014, Mortimer et al., 2014,

Zheng et al., 2010, Kertesz et al., 2010]. More recently, detailed structural model-

ing of a set of hundreds of mRNAs was enabled by particularly deep sequencing of

SHAPE probing with a mutational readout (SHAPE-MaP) in Escherechia coli, which

has a much smaller transcriptome than humans. In parallel, the traditional format of

targeted probing toward RNAs of interest has also been adapted to high throughput

sequencing, enabling, for example, targeted study of secondary structures across the

Xist RNA for the first time [Fang et al., 2015, Smola et al., 2016].

Statistical models of chemical probing data can be used to assess the robustness

of experimental observations, but existing statistical methods often make simplifying

assumptions about the degree of variability that would be expected between repli-

cate experiments [Choudhary et al., 2016, Aviran and Pachter, 2014, Li et al., 2017,

Siegfried et al., 2014, Smola et al., 2015]. Ideally, if all experimental and biological

conditions could be held constant between replicates, there would be a fixed prob-

ability of observing a reverse transcription stop or mutation across replicates. This

would mean that models such as the Binomial distribution and the Poisson distri-

bution, which make this assumption, would be useful for modeling probing data,

and that replicates would not be needed formally. Indeed, both of these distribu-

tions are commonly used to analyze chemical probing data [Choudhary et al., 2016,

Aviran and Pachter, 2014, Li et al., 2017, Siegfried et al., 2014, Smola et al., 2015].

Moreover, most analysis methods for chemical probing analysis address the results

of a single replicate, or the pooled results of multiple replicates [Mustoe et al., 2018,

Smola et al., 2015, Li et al., 2017]. However, there is reason to be concerned that as-

suming that chemical probing counts are generated from a uniform statistical process

is not an ideal approach. Many forms of biological data– ranging from gene expres-
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sion (RNA-Seq)[Robinson and Smyth, 2008, Robinson et al., 2010] to mutation rates

in cancer genomes [Lochovsky et al., 2015]–are overdispersed relative to the binomial

and Poisson distributions, precisely because the underlying probability of the event

being tracked changes between replicates. Supporting the possibility that this might

be the case with chemical probing data, we note that in some reports, up to eleven

replicates are used to make conclusions about probing results [Carlile et al., 2014].

Moreover, a recent study used a model of overdispersion to analyze chemical probing

data read out by gel electrophoresis [Vaziri et al., 2018]. However, attempts to model

variability between replicates of chemical probing experiments with readout by high

throughput DNA sequencing have been limited.

The question of variability in RNA chemical probing data becomes particularly

important when considering the interpretation and applications of these data. One

of the most common applications of chemical probing experiments is incorporation

as probabilistic constraints (expressed as pseudoenergies) in thermodynamic RNA

secondary structure prediction algorithms [Deigan et al., 2009, Eddy, 2014]. Recent

studies have investigated the effects on structure prediction of variability in RNA

melting experiments that were used to tune the nearest neighbor parameters that

form the core of thermodynamic RNA secondary structure prediction algorithms

[Zuber et al., 2017, Zuber et al., 2018]. This motivates parallel investigation of how

variability in chemical probing experiments can also affect structure predictions.

Here we investigate the formal question of whether separate analysis of replicates is

useful for analysis of chemical probing data. We then propose a modeling method for

count data in chemical probing experiments, adapting methodology from the RNA-

Seq field. To augment our conclusions from publicly available datasets (with small

numbers of replicates) and benchmark our modeling method, we collected datasets

with 60 replicates of DMS probing, using both targeted and random primers. Us-

ing this model, we then examine the effect of count variability on RNA secondary
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structure predictions.

4.2.3 Results

Investigation of overdispersion in publicly available chemical probing datasets

Count data from chemical probing experiments have frequently been modeled using

the binomial or Poisson distributions [Choudhary et al., 2016, Aviran and Pachter, 2014,

Li et al., 2017, Siegfried et al., 2014, Smola et al., 2015]. To motivate these models,

one can view the process of reverse transcription stopping (or insertion of a mutation)

as a Bernouli trial, in which the reverse transcriptase will stop (or mutate, depending

on the readout being used) at a given nucleotide i with some probability pi. For the

reads that reached the nucleotide of interest across an entire sequencing dataset, one

can then model counts of reverse transcription events using the binomial distribution.

RT events typically have very low probabilities, so when sequencing coverage is rel-

atively high, counts would then follow the Poisson distribution, which matches the

binomial distribution in the limits of a high number of trials and low probability of

success. Both the binomial and Poisson distributions make the simplifying assump-

tion that the mean probability of an RT event at each nucleotide i (pi is constant).

To evaluate the assumption that pi remains constant between replicates, we first

performed exploratory analysis of a set of targeted SHAPE-Seq dataset for the P4-P6

helix region of the Tetrahymena group I intron [Loughrey et al., 2014] and its fit to

the Poisson and binomial distributions. Transcription of the RNA sample and SHAPE

probing for this dataset are both performed in vitro, making it a good candidate to

meet simplifying assumptions made by the binomial and Poisson distributions.

To gain an intuitive feel for whether our sample probing dataset matches the

above simplifying assumptions, we focused on the region from nucleotides 1-50 of

the group I intron domain, and plotted normalized counts (see methods) for each

nucleotide in a treated sample along with 95% Poisson confidence intervals around
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the estimates. We then plotted normalized counts for the same nucleotides from

a second replicate. Of the 50 nucleotides we examined, 44 had counts outside the

range for a single replicate (2.5 outliers would be expected). To examine the level of

variability in probing data across the entire group I intron domain, we plotted the

normalized mean counts for two observed replicates (Figure 4.1b) and compared these

to simulated replicate datasets according to the Poisson distribution (Figure 4.1c).

Consistent with our initial observations, observed variability was much greater than

that assumed by the Poisson model, implying that the data are overdispersed.

To investigate the overdispersion of chemical probing data more formally, we con-

sidered the p-values from the Poisson or binomial tests for observations of replicates

of the group I intron SHAPE-Seq data. Since these are replicate experiments, we

expect that observations from both replicates at each nucleotide come from the same

distribution. If the model accurately describes the variability of the data, this would

lead p-values comparing replicate observations to follow the uniform distribution. To

test whether this is the case, we plot the ordered Poisson and binomial exact p-

values between replicates against the quantiles of the uniform distribution (quantile-

quantile plot, Figure 4.1f) and observe that the Poisson exact p-values are almost

all more extreme than any expected p-value. This observation is borne out by us-

ing the Kolmogorov-Smirnov test, a standard test for whether the goodness of fit of

two distributions, which shows that Poisson p-values differ greatly from the uniform

distribution (p < 2.2 ∗ 10−16). Together, these observations show that the Poisson

distribution greatly underestimates the variability in an in vitro SHAPE-Seq dataset

of the P4-P6 domain of the Tetrahymena group I intron, and that these data are

overdispersed.
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Figure 4.1: Analysis and modeling of overdispersion for in vitro SHAPE-Seq data for
the Tetrahymena group I intron P4-P6 domain
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Figure 4.1: Analysis and modeling of overdispersion for in vitro SHAPE-

Seq data for the Tetrahymena group I intron P4-P6 domain

A) Visualization of normalized SHAPE treated counts from two replicates of

SHAPE-Seq for the first 50 nucleotides of the P4-P6 domain of the Tetrahymena

group I intron. 95% confidence intervals are drawn based upon the first replicate,

and observations from the second replicate are colored based on whether they fall

within the 95% confidence interval (gray) or are outliers (red). B) Normalized

counts for two replicates of the P4-P6 domain of the Tetrahymena group I intron.

C) Poisson simulated replicates of the P4-P6 domain of the Tetrahymena group I

intron D) Trended fit for dispersion values for the P4-P6 domain of the Tetrahymena

group I intron E) Negative binomial simulated replicates of the P4-P6 domain of the

Tetrahymena group I intron, with parameters fit with DESeq2. F) Quantile-quantile

plot for SHAPE-treated RT stop counts the group I intron SHAPE-Seq experiment.

P-values of observed data against Poisson, binomial, and negative binomial models

are compared to the uniform distribution on log10 scale. Two of three replicates

were used to fit models and the final replicate was used for testing.
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Modeling of overdispersion in chemical probing data

Having established that chemical probing data are overdispersed, we next sought

to develop a more accurate way to model count data produced by chemical probing

experiments that would take advantage of replicate observations. The natural choices

for distributions to fit overdispersed Binomial or Poisson count data are the beta-

binomial and negative binomial distributions, repsectively. In these distributions,

the Binomial probability, pi, or the Poisson mean, µi, are allowed to vary between

observations, according to a Beta or Gamma distribution, respectively. The character

of the underlying Beta or Gamma distributions enables modeling of inter-replicate

variability, where no inter-replicate variability can be expressed by choosing a fixed

value for these underlying distributions.

Fitting the above, more flexible distributions poses a challenge in many biological

contexts, as relatively few replicates are typically conducted because of cost con-

straints, making it hard to make accurate variance estimates for each data point (nu-

cleotide) individually. As we considered this problem, we noted that chemical prob-

ing techniques can be viewed largely as an extension of RNA-Seq experiments, where

instead of counting reads at genes, RT events are counted at nucleotides. With the

exception of chemical treatment, the key steps of the two techniques–reverse transcrip-

tion, library preparation, and sequencing–are highly similar. Moreover, cost also lim-

its the number of replicates produced for RNA-Seq experiments, and RNA-Seq data

are well known to be overdispersed [Robinson and Smyth, 2007, Anders and Huber, 2010,

Love et al., 2014]. We therefore considered whether we could adapt methods used for

RNA-Seq analysis to model the overdispersion of chemical probing data.

To model overdispersion in chemical probing data, we chose to adapt the RNA-Seq

analysis tool, DESeq2, which takes advantage of common information among many

measurements (of gene expression) made in parallel to aid inference of count distribu-

tions [Love et al., 2014]. DESeq2 employs the negative binomial distribution, which
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is closely relative to the Poisson distribution but contains a dispersion parameter, α,

which is zero when there is no overdispersion (Poisson) but takes higher values when

data are overdispersed (see Methods). DESeq2 estimates the dispersion parameter

by first making estimates for each gene (or nucleotide for chemical probing), then

observing a trend between mean counts and dispersion values, and finally adjusting

dispersion values toward the trend (Fig 4.1d). Though DESeq2 can analyze normal-

ized counts of any type, standard normalization for RNA-Seq is based upon the total

number of reads in the experiment. In contrast, as above, we normalize input counts

to the number of reads that reach the nucleotide of interest (for RT stops) or that

cover the nucleotide of interest (for mutations).

We used DESeq2 to model normalized counts for our sample dataset: RT stop

counts for in vitro SHAPE-Seq of the group I intron P4-P6 domain. We observe that

as for RNA-Seq data, the dispersion parameters fit for each nucleotide trend with the

mean counts (Fig 4.1d). To gain the same intuitive feel for the fit of the negative

binomial models to the data, we compared simulated negative binomial replicates (Fig

4.1e) to observed replicates (Fig 4.1b) and Poisson replicates (Fig 4.1c), finding that

the negative binomial replicates are much more similar to the real replciates than the

Poisson replicates. To evaluate the negative binomial models produced by DESeq2

more formally, we fit a model using two replicates of the group I intron SHAPE-Seq

data and computed negative binomial p-values given the model for the observations of

a third replicate. As in our analysis of fit to the Binomial and Poisson distributions, if

the negative binomial model matches the variability of the data, then the p-values for

the third replicate relative to the model should follow the uniform distribution. We

observe that our negative binomial p-values are much closer to following the uniform

distribution than Poisson or Binomial p-values (Fig 4.1f), with no significant evidence

that the negative-binomial p-values differ from expected uniform quantiles, in contrast

to strong evidence for the binomial and Poisson distributions (Kolmogorov-Smirnov
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test, Poisson and binomial: p < 2.2 ∗ 10−16; negative binomial: p = 0.22).

Comparing models of overdispersion across the range of publicly available

chemical probing data

We next modeled the variety of chemical probing datasets of different types that we

had found to be overdispersed relative to the Poisson and Binomial distributions. For

each dataset, we fit binomial, Poisson, and negative binomial models. We used two

metrics to compare the model fits: comparison of the Kolmogorov-Smirnov statistic

for p-values of an outside dataset (as above) and the corrected Akaike Information

Criterion (AICc) for a fit of each entire dataset. The Akaike Information Criterion

(AIC) is a negative log likelihood-based metric penalized based on the number of

parameters in the model. AIC is commonly used for evaluation of model fitting

when separation of data into training and testing sets is difficult (e.g. when there

are small numbers of replicates), and the corrected version of this metric adds an

additional penalty when the total number of datapoints is small.

We applied these metrics to evaluate model fits across a set of publicly available

chemical probing datasets conducted under different experimental conditions (in vitro,

in vivo, and ex vivo), with different chemicals (SHAPE, DMS, and CMC (cyclohexyl-

N’-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate)), and with different

readouts (RT stops and mutations). We also compared fits to chemical-treated sam-

ples to those for untreated controls. We observe by both metrics that the negative

binomial model fits better than binomial and Poisson, even for untreated samples

(Figure 4.3 and 4.2). With the corrected AIC metric, we also investigated different

types of negative binomial model fits to determine the value of using DESeq2, in com-

parison to standard fitting methods, and comparing models fitting a single dispersion

parameter to those using one per condition (treatment and control). We find that

fitting with DESeq2 often leads to better results than other negative binomial models
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Figure 4.2: Investigation of overdispersion across datasets using corrected AIC

Analysis of model fitting to a variety of chemical probing datasets using
corrected AIC.
Datasets: in vivo, targeted mouse 18S DMS-Seq [Sexton et al., 2017], in vitro
SHAPE-Seq for 5S rRNA, Tetrahymena group I intron, TPP riboswitch (TPPSC),
and Adenine riboswitch (ADDSC) [Loughrey et al., 2014], ex-vivo PSI-Seq in yeast
[Schwartz et al., 2014]
Models:
Poisson: Poisson distribution fit to data from one condition
binomial: Binomial distribution fit to data from one condition
nbinom deseq: Negative Binomial distribution fit using DESeq2 using treatment and
control data (separate means for treatment and control, one dispersion parameter)
nbinom noshrink: Negative Binomial distribution fit without DESeq2 shrinkage
estimation, using treatment and control data.
nbinom deseq 1group: Negative Binomial distribution fit with DESeq2, using only
treatment OR control data.
nbinom 1group noshrink: Negative Binomial distribution fit without DESeq2
shrinkage, using only treatment OR control data.
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Figure 4.3: Investigation of overdispersion across datasets using Komogorov-Smirnov
statistic

Analysis of model fitting to a variety of chemical probing datasets using the
Kolmogorov-Smirnov statistics, when comparing p-values for a test dataset.
Datasets: in vivo, targeted mouse 18S DMS-Seq [Sexton et al., 2017], in vitro
SHAPE-Seq for 5S rRNA, Tetrahymena group I intron, TPP riboswitch (TPPSC),
and Adenine riboswitch (ADDSC) [Loughrey et al., 2014], ex-vivo PSI-Seq in yeast
[Schwartz et al., 2014]
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using the AICc metric 4.2.

Modeling of overdispersion with 60 replicate reference datasets

To examine the overdispersion of chemical probing data in more detail and to assess

our model more fully, we collected reference datasets with 60 biological replicates

of in vivo DMS probing in mouse embryonic fibroblasts. All samples came from

independently growing MEF cells. Reverse transcription with barcoded primers (see

methods) enabled combination of groups of 20 replicates into single library preps. We

collected two targeted datasets with primers specific to the mouse 7SK and GapDH

RNAs, as well as an undirected experiment (random octamer primers).

We analyzed both RT stop and mutation readouts for our 60 replicate experi-

ments in parallel, and we present results for RT stops in the mouse 7SK RNA dataset

in Figure 4.4, along with corresponding analyses on other datasets in supplemental

figures. To characterize the quality of our data, we plotted the correlations between

RT event probability rates across the entire dataset, for both treatment and control

(Figure 4.4a,b). For a sample set of nucleotides, we then visualized the Poisson and

Negative Binomial distribution fits, in comparison to histograms of the real observed

counts. These plots provide even clearer support for the conclusion that the neg-

ative binomial distribution fit with DESeq2 provides a better fit than the Poisson

distribution (Figure 4.4c).

In addition to visualizing the overdispersion of chemical probing data more clearly

and intuitively, our reference datasets enable us to evaluate our models in more detail

and to investigate performance with different numbers of replicates. To do this, we

chose anywhere between 2 and 30 of the 60 replicates to fit a variety of models and

tested with 30 other replicates. We measured the quality of model fits using the total

and median log likelihoods of our models against the test replicates (Figure 4.4c).

These analyses confirm the improvement of the negative binomial model over Bino-
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Figure 4.4: Observing and modeling overdispersion with 60 replicate datasets

Analysis of 60 biological replicate experiments of targeted in vivo DMS probing of
the 7SK RNA in mouse embryonic fibroblasts. A) Correlations of probability of
stopping at each nucleotide across the 60 replicate experiment, including treatment
and control. B) Inset showing the relationship between stop rates in a sample pair
of DMS-treated replicates. C) Ridgeline plots showing the distributions of real
observed data, the Poisson model, and the negative binomial model, each
represented using kernel density. D) Evaluation of binomial, Poisson, and negative
binomial model fits, using anywhere from 2-30 replicates to fit the model and 30
different replicates to test. Model fitting to the test data is quantified as the total
negative log likelihood of the test data. For the negative binomial models,
estimation of one dispersion parameter per condition (treatment vs. control) is
compared to fitting a single dispersion parameter across the entire experiment.
Negative binomial fits with and without DESeq2 are also shown. E) Violin plots
showing the inferred distributions of the chemical induced RT stop rate, gammai for
nucleotides 95-105 in the mouse 7SK RNA. Large violins represent the distribution
of estimates, gammaij, of the chemical induced stop rate for individual replicates,
while darker inset violins show the inferred distribution of gammai with 60 observed
replicates.
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mial and Poisson. Moreover, when using the small numbers of replicates that are typ-

ically collected in typical experiments (e.g. [Mustoe et al., 2018, Rouskin et al., 2014,

Ding et al., 2014] for fitting, the DESeq2 method models test data significantly bet-

ter than negative binomial models with standard parameter fitting (this is true when

modeling a single dispersion parameter αi, or when fitting one parameter each for

treatment and control: αt
i and αnt

i ). Fits reach near maximum performance around

7-10 replicates (Figure 4.4c). We observe similar results for our other 60 replicate

data (Figure 4.7).

To apply the inferences of our negative binomial count model to the interpretation

of chemical probing experiments, it is desirable to consider not only the distributions

of counts in treatment and control for a given nucleotide, but to quantify the influence

of the chemical probe on the RT event rate. Others have shown that the chemical

induced RT event rate, γi, for nucleotide i can be quantified as [Li et al., 2017]:

γi =
pti − pnti
1− pnti

A key goal in modeling the data observed in chemical probing experiments is

to determine the confidence of estimates of γi. To do this, we used our fit count

distributions to infer the distribution, p(γi | µnt
i , µ

t
i, αi, k), where k is the number

of replicates collected. To do this, we repeatedly sampled the chosen number of

replicates, k, (in this case, 60 - the number of replicates collected in the experiment)

as below and then computed the chemical induced RT event rate for each sampled

dataset.

X t
i ∼ NB(µt

i, αi)

Xnt
i ∼ NB(µnt

i , αi)
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We visualize our inferred distributions of, γi, of chemical induced RT stop rates for

nucleotides 75-85 of the the mouse 7SK RNA using violin plots (Figure 4.4). We plot

the inferred distributions both of individual estimates γij from different replicates

(open violins, p(γi | µnt
i , µ

t
i, αi, k = 1)) and the inferred distribution of γi from 60

replicates (p(γi | µnt
i , µ

t
i, αi, k = 60)). To complement, we also plot the 60 individual

estimates from our observed replicate experiments. This visualization illustrates the

value of collecting replicates to improve estimates of the most biochemically mean-

ingful parameters from chemical probing experiments, particularly when data are

overdispersed (Figure 4.4e).

Effects of variability in RNA chemical probing data on RNA secondary

structure predictions

Having established that RNA chemical probing data are overdispersed and developed

a way to model the distributions in these data, we became interested in the effect of the

variability in these data on one of the most common applications of RNA chemical

probing: secondary structure prediction [Eddy, 2014, Deigan et al., 2009]. Results

from chemical probing data are typically incorporated into RNA secondary struc-

ture predictions as pseudoenergy constraints that are added to the existing nearest

neighbor constraints, referred to as Turner rules, trained on thermodynamic melting

experiments on small RNAs [Turner et al., 1988, Mathews et al., 1999, Eddy, 2014].

The incorporation of constraints from chemical probing experiments, especially those

using SHAPE reagents, has enabled significantly improved predictions of the sec-

ondary structures of a variety of RNAs with known structures, including rRNAs, tR-

NAs, and riboswitches [Deigan et al., 2009, Watters et al., 2018, Lucks et al., 2011,

Watters et al., 2018]. Because commonly used structure algorithms employ a fixed set

of energy parameters to guide structure predictions [Zuker et al., 1999, Zuber et al., 2017],

it is particularly important to understand how variability in these parameters may
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influence prediction results. Indeed, a variety of efforts have been made to investigate

how different sets of nearest-neighbor energy parameters affect RNA secondary struc-

ture predictions [Zuber et al., 2018, Zuber et al., 2017]. Similar efforts seem war-

ranted for pseudoenergy values derived from chemical probing experiments, partic-

ularly given that in transcriptome-wide experiments, one is virtually guaranteed to

collect high noise data for transcripts with low expression (due to lack of sequencing

coverage, even if there is no overdispersion), in addition to more confident data for

highly expressed transcripts.

To investigate the effect of the variability in RNA chemical probing data on sec-

ondary structure predictions, we followed standard methods to normalize chemical

induced stop or mutation rates for each nucleotide, γi into reactivity values Ri (see

Methods). We then incorporated these reactivity values into predictions as pseudoen-

ergy terms using the function developed by Deigan and colleagues [Deigan et al., 2009].

E(Ri) = a ∗ log(Ri + 1) + b

Where a and b are parameters that were set based upon empirical performance

in previous studies on RNAs of known structure. We use this approach to perform

both predictions of single RNA secondary structures, and we focus particularly on

base pair probability matrices (BPPM) that can be predicted over the thermody-

namic ensemble of structures the RNA takes on according to the model (using the

McCaskill algorithm) [Mathews, 2004, McCaskill, 1990]. Base pair probability ma-

trices complement individual structures by providing information about the overall

structural landscape, which can be particularly important if there are multiple ener-

getically accessible structures or if errors in the structure prediction parameters lead

to an incorrect single predicted structure. The uniformity of the predicted structural

landscape, i.e. whether the RNA is predicted to favor one structure dominantly or
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samples multiple competing structures with similar energies, can be quantified by

calculating the Shannon entropy of the base pair probability distributions, defined

as:

S =
∑
ij

−qijlog(qij)

Where qij is the predicted pairing probability for bases i and j in the pairing

probability matrix and qii is the probability that a given base is unpaired. It has

been established that RNA regions with low Shannon entropy are more likely to have

correct predicted minimum free energy structures [Huynen et al., 1997]. Further em-

phasizing the importance of the base pair probability matrix, base pairs predicted

to have high probabilities within the structural ensemble are more likely to be pre-

dicted correctly [Mathews, 2004]. Base pair probability matrices have also been used

to help gain biochemical insights, as many RNAs of known function display a com-

bination of low SHAPE reactivity and low Shannon entropy and RNA elements with

this combination of features have been suggested to be candidate functional elements

[Siegfried et al., 2014]. The above modes of interpretation of RNA base pair proba-

bility matrices rely on the assumption that the BPPM is predicted with some level

of confidence, adding to our motivation to assess the influence of variability in RNA

chemical probing data on these structure predictions.

As a case study for our analysis of variability in RNA chemical probing data on

secondary structure predictions, we used a transcriptome-wide SHAPE-MaP dataset

collected in E. coli [Mustoe et al., 2018]. We started by predicting BPPMs using

either the SHAPE reactivities from each of two different replicate experiments, as

well as using the pooled results of those experiments (Figure 4.5).

We would expect that in cases where transcripts have highly reproducible re-

activity values, they would have very similar predicted BPPMs. In contrast, we
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might expect more differences between predicted BPPMs when the reactivities for

a given RNA are less reproducible. As a first test of this hypothesis, we plotted

the reactivities and predicted BPPMs for each replicate of the SHAPE-MaP exper-

iment for ncRNA rnpB-the RNA component of E. coli RNAse P-which has very

high expression (> 106 mean reads per nucleotide), and the panD mRNA, which

has lower expression (∼ 103 mean reads per nucleotide), but still qualified for the

filtering requirements to be included in the folding analysis originally conducted on

the dataset [Mustoe et al., 2018]. We plotted the BPPM using arcs that represent

pairing probabilities between nucleotides, qij, colored by the value of qij. The reactiv-

ities for rnpB are highly correlated and correspondingly we see high visual similarity

between BPPMs predicted from the replicate datasets (Figure 4.5). In contrast, the

panD mRNA has less correlated reactivities and more differences between predicted

BPPMs. Strikingly, when comparing the predicted BPPMs for panD, we see mutliple

base pairs for which the pairing probability, q1ij is very high in one replicate and the

value, q2ij, is barely above zero in the other. This establishes clearly that there can be

cases in which the BPPMs predicted using pseudoenergy constraints from chemical

probing data cannot be interpreted with the same assumptions that are often used for

constraint-free predictions or predictions made with high-confidence SHAPE data.

To quantify differences between BPPMs,we computed the root mean square de-

viation across all elements of the matrices (see methods), a metric previously used

by Zuber and colleagues to compare predicted structures with different sets of near-

est neighbor constraints [Zuber et al., 2017]. Consistent with our visual observations,

we see that the rnpB matrices have a much lower RMSD between replicates than

the panD matrices. We then computed the RMSD between BPPMs predicted based

on data from each replicate for all 186 transcripts that were included in the origi-

nal publication of the dataset. We observe strong relationships between the mean

read coverage across a given transcript and the RMSD between predicted BPPMs
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Figure 4.5: Comparison of predicted base pair probability matrices with different sets
of chemical probing constraints

Predicted base pair probability matrices for the panD mRNA and ncRNA rnpB are
plotted with arcs representing pairs between bases and colored by probability.
Different predictions are made with the following sets of constraints, all derived from
a transcriptome-wide SHAPE-MaP experiment in E. coli, or subsequent modeling of
observed data. Row 1: Predictions made with constraints derived from replicate 1.
Row 2: Predictions made with constraints derived from replicate 2. Row 3:
Predictions made with constraints derived from the pooled results of both replicates.
Row 4: Averaged of 100 predicted base pair probability matrices, each using a set of
constraints simulated using our negative binomial model, fit with DESeq2.
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(Figure 4.6a). We observed a similarly strong relationship between RMSD and the

mean signal-to-noise ratio of the reactivity values across replicates, a metric suggested

for use in analysis of chemical probing by Choudhary and colleagues (Figure 4.6b)

[Choudhary et al., 2016].

4.2.4 Investigating the contribution of variability in chemical

probing reactivity to the uncertainty in the predicted

RNA thermodynamic landscapes

Having observed that variability in chemical probing data can strongly affect pre-

dictions of BPPMs, we sought to use our count models to help investigate this phe-

nomenon. Although the sturcture prediction algorithms we use here employ a single

set of thermodynamic (and pseudoenergy) parameters at a time, it is feasible to make

mutliple predictions with different sets of reactivity values. Based on the negative

binomial parameters we fit to the count distributions, we sampled reactivity values Ri

similarly to the above sampling of γi (using our fit count distributions), but adding

an additional normalization step (see methods). For each sample reactivity vector

Rm, representing reactivity values across the RNA, we computed the base pair prob-

ability matrix, Qm. We then averaged the individual estimates, ~Rm, to obtain a final

estimate of the BPPM, Qsamp.

Qsamp =
∑

Qm(~Rm)M

WhereM is the total number of sampled sets of reactivities. Under the assumption

that averaging is an effective way to summarize the predicted BPPMs with different

sampled reactivity vectors, Qsamp represents an estimate of the BPPM for the RNA,

incorporating the range of possible SHAPE reactivities for the RNA according to our

negative binomial model. We computed Qsamp for the rnpB and panD RNAs, sam-
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Figure 4.6: Comparing characteristics of chemical probing data to consistency of
resulting predictions

A) Relationship between RMSD between predicted base pair probability matrices
for different replicates and mean transcript coverage. B) Relationship between
RMSD between predicted base pair probability matrices and signal-to-noise ratio of
reactivity values. C) Relationship between ∆S metric of contribution of chemical
probing uncertainty to breadth of predicted structural landscape and mean
transcript coverage. D) Relationship between ∆S metric and signal-to-noise ratio of
reactivity values.
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pling over 100 reactivity sets, and compared these predicted BPPMs to the estimates

of Q1 and Q2 from individual replicates. We see that Qsamp for panD has many more

base pairs with intermediate predicted probabilities in the thermodynamic ensemble

and many fewer base pairs with very high or very low probabilities, relative to the in-

dividual estimates Q1 and Q2. Correspondingly, the entropy of Qsamp is much greater

than that of Q1 and Q2 for panD (191 vs. 75 bits), while the difference is much smaller

for rnpB (41 vs. 40 bits). Making a prediction with a single set of reactivities leads to

a clear underestimate of the predicted heterogeneity of the structural ensemble, and

this effect is particularly seen when the reactivities estimates have high uncertainty.

We reasoned that the difference between the entropy of Qsamp and Qmean, referred

to as ∆S, would help to quantify the increase in diversity of structure predictions

that arises from uncertainty in estimation of chemical probing reactivities.

∆S = S(Qsamp)−
∑
m

S(Qm)

M

We computed ∆S for all E. coli transcripts with greater than 1000 reads per nu-

cleotide and with lengths below 1000 nucleotides (to aid computational efficiency),

and as observed with RMSD between replicate BPPMs (Q1 and Q2), there is a re-

lationship between ∆S and both read coverage and reactivity signal-to-noise ratio

(Figure 4.6c,d).

4.2.5 Discussion

Here, we have investigated the overdispersion of RNA chemical probing data and the

effects of this increased statistical variability on RNA secondary structure prediction.

We have leveraged machinery developed for RNA-Seq analysis to fit negative binomial

models to chemical probing data, despite the small number of replicates that are

often collected in these experiments. Our negative binomial models fit with DESeq2
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demonstrate better fits to a wide variety of chemical probing data and also to no

treatment controls. We further collected reference datasets with 60 replicates, which

enabled clearer demonstration of overdispersion and careful comparison of different

methods of fitting the negative binomial distribution and their relative performance

with small numbers of replicates.

Beyond modeling of chemical probing count data, we were interested in the effects

of variability in these experiments on RNA secondary structure prediction. We first

show that when chemical probing data are noisy, one can get conflicting predicted

BPPM with results from different replicate experiments, even though individual pre-

dicted matrices may have low Shannon entropy and represent fairly homogeneous

structural landscapes. We propose to incorporate variability in chemical probing

data into BPPM predictions by averaging together individual BPPMs based on re-

activities sampled based on our count distributions. These averaged BPPMs would,

in principle, be compatible with structure prediction alorithms, e.g. MaxExpect, al-

though we do not yet have any evidence to indicate whether this would be a successful

approach. Based on our averaged BPPMs, we also propose that measuring the dif-

ference in Shannon entropy between the averaged BPPM and BPPMs predicted from

individual reactivity sets can help indicate how much variability in chemical probing

data contributes to the breadth of the predicted structural landscape.

The above approach to RNA secondary structure prediction would be compati-

ble with other methods to model raw data from chemical probing experiments, and

we believe that several improvements to our method may be possible. First, though

our model captures interreplicate variability in RT event counts in chemical prob-

ing experiments, it does not adjust extreme estimates of the chemical induced RT

event rate (γi) based on the level of count uncertainty. Other groups have pro-

posed a variety of Bayesian approaches that address this problem in some way, but

do not model overdispersion [Selega and Sanguinetti, 2016, Ledda and Aviran, 2018,
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Radecki et al., 2018]. Aiding these efforts has been the use of hidden Markov models

that take advantage of the fact that adjacent nucleotides often have similar structural

(or other) properties. Second, in our inference of chemical induced stop rate and reac-

tivity distributions, we make the assumption that the negative binomial parameters

fit with DESeq2 are correct, rather than having their own posterior distributions

with respect to the observed data. Third, our model does not account for specific

experimental factors that may change between replicates. For example, it would

be easy to imagine that certain samples have more total chemical treatment than

others. A parameter modeling this kind of effect might be replicate specific but com-

mon to all nucleotides. Finally, we have modeled counts of RT stops and mutations

separately. While this approach is common, it would be ideal to develop a way to

integrate aspects of chemical probing experiments together to make inferences about

RNA properties, especially because RT stops and mutations can sometimes contain

orthogonal information. In addition to better modeling of probing data, we have

investigated the effects of variability in chemical probing data on one approach to

incorporating these data into secondary structure prediction, but many approaches

exist [Eddy, 2014] and improved prediction performance might be obtained by con-

sidering the best pairing of modeling raw data and combination with existing RNA

structure prediction frameworks.

Though this study highlights unrecognized variability in RNA chemical prob-

ing data, it is notable that many studies have produced important biochemical in-

sights while making some simplifying assumptions in anlayzing probing data (e.g.

[Siegfried et al., 2014]). Our analysis of RNA secondary structure prediction indi-

cates that even though the SHAPE-Seq data are overdispersed, structure predictions

can be robust to the choice of analysis method (or which replicate dataset is used for

modeling) if the data collected are generally confident (e.g. due to a combination of

high read coverage and high overall reproducibility between experiments). Further
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improved modeling of chemical probing data, in addition to improved experimental

methods, has the potential to extend the power of this technology to more different

RNAs and RNA properties.

4.2.6 Supplemental Figures

4.3 Methods

4.3.1 Experimental methods

For our 60 replicate reference datasets, we included 6 nucleotide barcodes on our re-

verse transcription primers, between the 3’ Illumina adapter and the primer sequence

itself. Below is an example primer targeting the mouse GapDH gene:

CAGACGTGTGCTCTTCCGATCT TTGACT CATCGAAGGTGGAAGAGTGGG

We designed sets of 20 barcodes for each RT primer (N8, targeted to mouse 7SK,

and targeted to mouse GapDH).

This enabled pooling of groups of 20 samples after reverse transcription. Growth of

mouse embryonic fibroblasts, DMS probing, and library preparation were conducted

as in [Sexton et al., 2017].

4.3.2 Sample demultiplexing, read alignment, and quantifi-

cation

Demultiplexing of barcodes

Since barcodes in the 60 replicate experiment were sequenced within the core

portion of the Illumina reads, we performed demultiplexing using an in-house script

that required no more than 1 mismatch (all barcodes had at least 2 mismatches

relative to one another).
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Figure 4.7: Evaluating fit of models using 60 replicate datasets

Evaluation of binomial, Poisson, and negative binomial model fits, using anywhere
from 2-30 replicates to fit the model and 30 different replicates to test. Model fitting
to the test data is quantified as the total negative log likelihood of the test data.
For the negative binomial models, estimation of one dispersion parameter per
condition (treatment vs. control) is compared to fitting a single dispersion
parameter across the entire experiment. Negative binomial fits with and without
DESeq2 are also shown. A) Mouse 7SK mutations B) Mouse GapDH stops C)
Mouse GapDH mutations D) Mouse 18S rRNA stops (from a transcriptome-wide
dataset) E) Mouse 18S rRNA mutations (from a transcriptome-wide dataset)
Models:
Poisson: Poisson distribution fit to data from one condition
binomial: Binomial distribution fit to data from one condition
nbinom deseq: Negative Binomial distribution fit using DESeq2 using treatment and
control data (separate means for treatment and control, one dispersion parameter)
nbinom noshrink: Negative Binomial distribution fit without DESeq2 shrinkage
estimation, using treatment and control data.
nbinom deseq 1group: Negative Binomial distribution fit with DESeq2, using only
treatment OR control data.
nbinom 1group noshrink: Negative Binomial distribution fit without DESeq2
shrinkage, using only treatment OR control data.
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Alignment Reads were aligned to the transcript of interest for targeted experi-

ments and to transcriptome references for undirected experiments, and directly to de-

sired transcripts for targeted experiemnts, using Bowtie2 [Langmead and Salzberg, 2012].

Quantification and filtering Reverse transcription events - both stops and

mutations, along with normalizing read coverages - were quantified with an updated

version of our previously published RTEventsCounter script [Sexton et al., 2017].

After intial quantification, for our in-house datasets and other targeted-structure-

seq data, we filtered out all RT stops (but not mutations) less than 100 nt from the

RT primer, because previous work in our lab had shown that many short fragments

are lost, likely in the process of biochemical purification during library preparation.

4.3.3 Public datasets

We used the following public datasets in this study:

1. Transcriptome-wide SHAPE-MaP data in E. coli : Data were downloaded from

. Reads were aligned to the reference provided by the Kevin Weeks group in

their publication [Mustoe et al., 2018].

2. Mouse 18S rRNA DMS-Seq data were obtained from [Sexton et al., 2017].

3. SHAPE-Seq data: Data for four of the RNAs published by Loughrey et al. (5S

rRNA, adenine riboswitch, TPP riboswitch, and group I intron) were down-

loaded from the RNA Mapping Database (RMDB) [Cordero et al., 2012].

4. Ψ-Seq data in yeast were downloaded from the Gene Expression Omnibus

(GSE60047) [Schwartz et al., 2014].
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4.3.4 Definitions of count data in RNA chemical probing

In chemical probing experiments, we count so-called events that can occur during

reverse transcription, specifically either reverse transcription stops (termination of

cDNA synthesis), or mutations in the resulting cDNA.

For each type of event (stops or mutations), we can view the processing of each

nucleotide as a Bernouli trial, with some probability, pi of producing the reverse

transcription event of interest. Depending on the model being considered, pi may be

constant or vary within or between replicates.

Let Yij represent the reverse transcription event counts for nucleotide i in sample

j, with N total nucleotides and M total samples. Each sample j can come from either

chemical-treated or control RNA.

For mutations, the coverage, Cij is simply the number of reads directly covering

the nucleotide of interest.

For stops, the coverage is the number of reads that reads the nulceotide of interest

(and therefore could have stopped at the position of interest):

Cij =
N∑
k=i

Ykj

4.3.5 Count normalization for modeling with Poisson-family

distributions

The combination of RT event counts, Yij and normalizing coverage, Cij, representing

the number of reads Bernouli trials for the event type of interest, can be modeled

using the Binomial and related distributions.

To enable modeling with Poisson-family distirbutions, including both Poisson and

Negative Binomial, we normalized counts relative to coverage. To do this, we define

pseudocounts Kij that are scaled by coverage, such that every nucleotide as the same
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final effective coverage Di.

Pseudocounts:

Kij =
Yij
Cij

∑M
k=1Cik

M

Effective coverage:

Di =

∑M
k=1Cik

M

4.3.6 Count models

We can model our count data in the following ways:

1. Binomial: Reads are pooled between replicates for treatment and control and

pti and pnti are computed from counts as below.

Y t
i ∼ Binomial(pti, C

t
i )

Y nt
i ∼ Binomial(pnti , C

nt
i )

2. Poisson: Pseudocounts are for treatment and control are fit to separate Poisson

models.

Kt
i ∼ Poisson(µt

i)

Knt
i ∼ Poisson(µnt

i )

Parameters are estimated for the Binomial and Poisson distributions using the R

glm function.

3. Negative Binomial:
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Kt
i ∼ NB(µt

i, αi)

Knt
i ∼ NB(µnt

i , αi)

Parameters are estimated using DESeq2 [Love et al., 2014], which first fits param-

eters µt
i, µ

t
i, α

init
i , for each nucleotide independently by maximing the Cox-Reid like-

lihood of the data under the above negative binomial model (see [Love et al., 2014]).

Subsequently, all dispersion parameters αinit are fit to a trend of the form:

αtr(µ) =
a1
µ

+ a0

Where µi is the mean of all counts, independent of treatment condition.

Finally, αMAP
i is obtained by maximizing the sum of the Cox-Reid likelihood and

a log-normal prior of the form:

αi ∼ Normal(log(αtr(µ), σ2
d))

Where σ2
d is determined based upon the number of degrees of freedom in the

dataset (see [Love et al., 2014] for more detail).

For comparison, in some analyses we also compare the results of the DESeq2

model fit described above with negative binomial models fit with only the results

of one condition and/or without the DESeq2 shrinkage estimation procedure for the

dispersion parameter.
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4.3.7 Event probabilities and inference of the chemical-induced

RT event rate

We can infer RT event probabilities both in individual samples and across replicates,

using either counts and coverage or pseudocounts and pseudocoverage.

The event rate for each individual sample and condition is:

p̂ij =
Yij
Cij

=
Kij

Di

We can further compute the mean event probability in each condition (nt or t,

referring to no treatment and treatment, respectively):

p̂nti =
∑
j

Y nt
ij

CNT
ij

p̂ti =
∑
j

Y t
ij

Ct
ij

=

p̂nti is the natural RT event rate, independent of the chemical. We can further

compute an estimate of the chemical-induced RT event rate, which is the probability

that an RT event occurs due to the chemical, as:

γ̂i =
p̂ti − p̂nti
1− p̂nti

4.3.8 Model comparisons

We compared the fits of various count models with a variety of metrics.

1. Corrected Akaike Information Criterion (AICc) - This metric is meant to

estimate the relative quality of fits to data without separating data into training and
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testing sets. AICc is based on the more widely used AIC metric which is based on

the likelihood of the data, penalized for the the number of parameters, k.

AIC = 2k − 2ln(L̂)

Where L̂ is maximum value of the log likelihood function. To avoid undue influence

of outliers, we set the minimum value of L̂ for any individual data point to 10−100.

AICc is an modified version of AIC intended for when the number of data points

available for fitting:

AICc = 2k − 2ln(L̂) +
2k2 + 2k

n− k − 1

Where n is the number of data points used to fit the model. In our case, n would

be the number of data points for a given nucleotide i. AICc converges to AIC when

n is large.

2. Comparison of p-values for data held out in a test set – If one simulates data

from a given distribution, the p-values of those data relative to the source distribution

should themselves follow a uniform distribution. We test this assumption visually

by making quantile-quantile plots and compare the assumption quantitatively by

comparing Kolmogorov-Smirnov test results between each set of p-values computed

from a given model and the uniform distribution.

3. Log-likelihood of test data – To complement the AIC metric, which does not

incorporate separation of training and testing data and the KS-test, which considers

the rank order of p-values, we compare the total log-likelihoods of different models

on test datasets not used for fitting.
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4.3.9 Using count models to infer the distribution of the

chemical-induced RT event rate

Once we fit a model to observed counts (or pseudocounts) of our data, we can simulate

data from the model to infer the distributions of quantities of interest under different

data collection circumstances. We did this with the negative binomial model as fit

with DESeq2. To sample chemical induced RT event rate values γi from a based on

the fits to a given set of data, we repeatedly sample an identical number of replicates,

k, as had been collected from the distribution of interest and then compute γi for

each set of sampled replicates.

Sample k replicates from fit distributions:

Ktm

i ∼ NB(µ̂t
i, α̂i)

Kntm

i ∼ NB(µ̂nt
i , α̂i)

γmi =
k∑

j=1

ptij − pntij
1− pntij

4.3.10 Normalization of chemical induced RT event rate to

generate reactivity values for RNA secondary struc-

ture prediction

The chemical induced RT event rate values gammai for chemical probing data are

often normalized to a common scale before being used to provide constraints to sec-

ondary structure prediction. This both controls for differences in overall degree of

modification, and provides a consistent value to relate to structural properties.

Here we define reactivity as:

Ri =
γi
c
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Where c is a normalization factor, equal to the average of the top 10% of dat-

apoints, after excluding any datapoints greater than the 1.5 times the interquartile

range. A maximum of 10% of datapoints are allowed to be designated as outliers

in normal datasets, and a maximum of 5% may be designated outliers in datasets

with fewer than 100 nucleotides. This has been referred to as the ”Boxplot method”

[Deigan et al., 2009, Sloma and Mathews, 2015].

4.3.11 RNA secondary structure prediction

Constraints from chemical probing experiments have been incorporated into RNA sec-

ondary sturcture predictions by relating normalized reactivity values Ri at each nu-

cleotide to energetic penalties for being paired or unpaired. These p̈seudoenergyẗerms

can also be interpreted as probabilities of being paired or unpaired using the Boltz-

mann distribution. A common function used to relate reactivities and pseudoenergies

is:

Ei(Ri) = a ∗ log(Ri + 1) + b

Pseudoenergy terms can be added to the nearest neighbor parameters used to score

structures in most thermodynamic RNA secondary structure prediction algorithms.

We use the parameter values a = 1.8 and b = −0.6 that are the defaults in the

RNAstructure package [?].

Here, we particularly focus on the results of the McCaskill algorithm, which en-

ables calculation of the base pair probability matrix of the entire thermodynamic

ensemble of an RNA of interest, under the assumptions of the thermodynamic pa-

rameters. Without describing the full details of the model, we note that we can

produce an output prediction of the pairing probability matrix Q, where Qij is the

probability of pairing of bases i and j in an RNA of interest as a function of the
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McCaskill algorithm, additional parameters (a, b).

Q = F (~R, a, b, etc)

Where ~R is the vector of all reactivity values Ri across the RNA. For convenience

below, we say that Fij produces just the ijth element of Q.

Qij = Fij(~R, a, b, etc)

4.3.12 Estimation of RNA base pair probability matrices based

upon posterior reactivity distributions

Though individual runs of the structure prediction algorithms that we use employ

a single set of energetic parameters, the parameters themselves may be uncertain.

The effects of variability in the experiments used to calculate nearest neighbor pa-

rameters on RNA secondary structure prediction have been investigated recently

[Zuber et al., 2018, Zuber et al., 2017], and here we describe signifcant differences in

structure predictions that can occur with different collected sets of chemical probing

reactivities (see main text).

If we have a posterior distributions of all Ri, then we can sample M estimates,

~Rm, each of which will produce a base pair probability matrix Qm. If the poste-

rior distributions of Ri have high variance, we may get a better estimate Qsamp by

averaging all M predicted matrices as follows:

Qsamp
ij =

∑M
m=1 Fij( ~Rm, a, b, etc)

M
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4.3.13 Metrics for comparison of base pair probability ma-

trices

1. RMSD - Root mean squared deviation of all base pair probabilities

RMSD =

√∑
ij (Q1

ij −Q2
ij)

2

N

Where Q1 and Q2 are two preicted base pair probability matrices for the same

RNA of length N .

2. ∆S - Difference in entropy between the mean matrix of sampled reactivities,

Qsamp, and the mean of the entropy of pairing probability matrices Qm, predicted

from individual sampled reactivities.

∆S = S(Qsamp)−
∑
m

S(Qm)

M
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Chapter 5

Conclusion

In this thesis, I have presented an overview of the field of long noncoding RNA biology

and three vignettes showing analysis of experimental technologies that seek to uncover

noncoding properties of RNA, ranging from chromatin occupancy to turnover rate to

molecular structure and modifications. The proliferation of technologies that consist

of a combination of biochemical manipulation and readout with high throughput

sequecing promises to increase the range of properties that we can measure, both

to aid understanding of how known functional RNAs perform their cellular roles

and to profile an increasing number of candidate RNAs whose functions may be

revealed in part through integrative analysis. Beyond finding function in genuinely

noncoding RNAs, noncoding properties of mRNAs can have important regulatory

roles. Recent work in the Gerstein lab (to which I contributed slightly) sought to

integrate a variety of transcriptome-wide assays, with a focus on CLIP-Seq assays

to help identify mutations in RNA that disrupt RNA-protein interactions, or other

RNA functions [Zhang et al., 2018].

An interesting question to consider in this context is: how many more functional

RNAs might we expect to discover in the human (or any other eukaryotic) genome?

A variety of highly conserved RNA classes that exist in eukaryotes (and throughout
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life) are well known, e.g. rRNA, tRNA, snRNA, and snoRNA [Cech and Steitz, 2014].

Though these are some of the most common genes throughout the evolutionary

tree, functional classes of RNA have been shown to follow a power law distribu-

tion, implying that there may be many undiscovered, but rare, functional RNAs

[McCown et al., 2017]. This thinking implies that evolutionary analysis may have

limits when looking for rare functional RNAs that may exist within the so-called

lncRNA class. However, it is promising to consider that evolutionary analysis has

been limited in its ability to help us understand the role of the Xist RNA, which

appears relatively poorly conserved on a sequence level. This implies that continued

biochemical and genetic study may be critical to the discovery of more functional

human (and eukaryotic) RNAs.
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