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 The transcriptome continuously changes through the processes of RNA synthesis 

and decay, but standard RNA-sequencing techniques provide only a snapshot of RNAs at 

a given time point. Metabolic labeling with 4-thiouridine (s4U) with biochemical 

enrichment is a powerful approach to identify new populations of RNA through 

sequencing. The need for careful normalization and large amounts of RNA input, 

however, limit the utility of biochemical enrichment. Here I describe the development of 

TimeLapse-seq, a method to chemically recode s4U to analogs of cytosine (C*) to 

identify newly transcribed RNAs through sequencing. I developed RNA-friendly 

oxidative nucleophilic aromatic substitution chemistry to efficiently convert s4U to C*. 

TimeLapse-seq reveals RNA dynamics transcriptome-wide using orders of magnitude 

less input material than biochemical enrichment. I further demonstrate the use of 

TimeLapse-seq to reveal acute changes in RNA populations due to cellular stress, 

differential RNA isoform stability, and as a specificity filter for transient RNA analysis.  

 The development of TimeLapse-seq opened a variety of collaborative projects at 

Yale University to study the dynamics of RNAs. We apply TimeLapse-seq to study the 

stability of mRNAs with DCP2 KO to identify the substrates of the decapping complex. 

We adapt small RNA sequencing methods to interrogate miRNA turnover in the presence 

of the HSUR1 viral ncRNA. We perform TimeLapse-seq on RNAs from X-linked 

dystonia parkinsonism patient-derived primary cells to study the dynamics of RNAs in 
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the TAF1 disease locus. We also demonstrate through TimeLapse-seq applications bias 

general to the field s4U-based approaches and develop best practices to reduce this bias. 

 Finally, I report preliminary data investigating the acute transcriptional responses 

to chromatin perturbation by histone deacetylase (HDAC) inhibition. I found that 

treatment of cells with HDAC inhibitor trichostatin-A (TSA) results in widespread 

changes in the transcriptome, including changes in the transcription start site (TSS) of 

hundreds of transcripts. I profile the dynamics of changing TSSs usage, revealing 

changes in chromatin within minutes of TSA treatment.  

 The dynamics of the transcriptome continues to be an active study, and the 

development of methods to profile new biological systems will open new avenues for 

discovery. TimeLapse-seq provides a flexible platform to study the temporal aspects of 

RNA sequencing over a wide range of timescales.  
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Chapter 1 

Introduction 

1.1 Cellular RNA turnover 

The balance of RNAs present in a given cell provides information about the state 

of the cell, and RNA sequencing is a powerful tool to determine the identity and 

abundance of RNAs in a sample. RNA sequencing provides a static view of the 

transcriptome at the time of sample collection, but the transcriptome is in continuous flux 

to maintain proper cellular homeostasis. Steady state levels of RNAs are maintained 

through processes of synthesis and decay, and defects in the core components of these 

processes are associated with a number of pathologies [1,  2]. Different classes of RNA 

exhibit different dynamics of transcription and decay in a manner consistent with RNA 

function. Enhancer RNAs (eRNAs) are highly unstable, and although the exact function 

of eRNAs is debated, they are known to play a role in promoting transcription through 

interaction with the promoter in a temporally coordinated manner [3]. Ribosomal RNAs 

are highly stable, as they are required for the constant output of protein to maintain 

cellular homeostasis[4]. mRNAs exhibit moderate stability, but vary in half-life 

depending on their coding function [5]: genes coding for tightly regulated transcription 

factors produce relatively unstable mRNAs in mammals, whereas genes coding for 

components of biosynthetic pathways produce relatively stable mRNAs that often persist 

for longer than one cell cycle [6]. 
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The processes of transcription and decay contribute to the abundance of RNAs at 

steady state, and changing RNA populations due to cellular perturbations can be achieved 

through modulation of either process. For example, in the cellular response to heat shock 

stress, transcription is globally shut down with the exception of a subset of rapidly 

induced genes specifically transcribed as a response to the stress [7]. Cellular contexts 

involving changes in RNA decay include the clearance of maternal transcripts during the 

maternal to zygotic transition [8] and the stimulation of nonsense mediated decay (NMD) 

pathway in response to mRNAs containing premature termination codons [9]. There is 

much active research to understand the interplay between transcription, decay, and 

chromatin environment, as well as the development of tools to study each of these 

processes.  

 

1.2 Dynamics of transcription 

 RNA polymerase II (RNAPII) transcription occurs through several stages 

including initiation, elongation, and termination. Each stage of transcription requires the 

orchestration of the core transcriptional machinery as well as many regulatory factors. 

Transcription of mRNAs begins with initiation, which brings together RNAPII and the 

general transcription factors (GTFs) [10, 11]. The TATA-binding protein (TBP) is 

required for binding to the promoter, and is associated with a number of TATA-

associated factors (TAFs) to form a scaffold referred to as TFIID for the pre-initiation 

complex (PIC). Other GTFs assemble with the PIC including TFIIH, which contains a 

kinase domain able to phosphorylate the C-terminal domain of RNAPII [12], and an 

ATPase domain that functions to open DNA and allow for templating of the growing 
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RNA polymer [13]. A large body of work has described these biochemical activities 

necessary for the process of initiation, but variability in gene context and the regulation 

of initiation is still an active area of research. For example, biochemical reconstitution of 

the transcriptional machinery is typically performed using a TATA promoter, but only 

about 20% of all promoters in eukaryotes are TATA-containing [14]. In addition, 

eukaryotes can utilize the SAGA complex in place of TFIID for initiation. SAGA 

contains many of the same protein components as TFIID, and it has been demonstrated in 

yeast that genes that predominantly use SAGA over TFIID tend to be stress responsive 

and tightly regulated [15]. More recent work has demonstrated a more general role for 

SAGA at all genes, including those that were previously shown to be TFIID-dominated 

[16]. Once the components of the PIC are assembled onto DNA, RNAPII transcribes the 

first 20-60 nt of nascent RNA, and for a large subset of genes, RNAPII pauses after this 

initial transcription [17].The paused state is maintained in part through the association the 

factors DSIF and NELF. At this stage, the paused RNA can be “released” into elongation 

through phosphorylation of NELF by the kinase PTEF-b [18], which itself can be 

recruited by factors including the bromodomain protein BRD4 [19]. The role of pausing 

is an active topic of research, but it is thought that pausing could be a quality control 

checkpoint to ensure proper assembly of the transcriptional and co-transcriptional 

components [20]. Several processes occur co-transcriptionally, and components of these 

processes are found to interact with RNAPII during transcription, including 5’-end 

capping components [21, 22] and splicing components [23]. Pausing may also be a 

strategy for cells to produce a poised state for a rapid transcriptional response to the 

changing cellular environment. For example, genes responsive to heat shock stress were 
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found to exhibit a high degree of pausing [24], which can be released through binding of 

specific transcription factors [7]. Pausing also occurs and appears to be regulated in a 

similar fashion at enhancers, but the proportion of enhancer RNAs that proceed into 

productive elongation is much lower than that of mRNAs [25]. 

 Once nascent RNAs are released from pause, RNAPII proceeds through the gene 

body to generate pre-mRNA in a process called elongation. The use of the reversible 

small molecule inhibitor DRB has been used to block entry into elongation [26], and 

removal of DRB produces a wave of transcription that can provide rates of elongation 

using metabolic labeling [27]. Elongation rates have been estimated in cell culture and for 

a selection of genes in vivo, with median elongation rates of 3.7 and 2.7 Kb/min, 

respectively [27, 28]. Mutants of RNAPII that change the rate of elongation have been 

demonstrated to alter the frequency of splicing [29, 30] and the preferred site of 

polyadenylation [31, 32], suggesting that elongation rate is finely tuned to integrate 

cotranscriptional processes. The quantity of mature RNA produced by any given gene 

correlates with the rate of elongation as well, further highlighting the ability of cells to 

regulate gene expression through multiple layers of the RNA life cycle [33]. 

The rate of elongation also plays a vital role in the later stages of transcription in 

the stage of termination. After mRNA cleavage and polyadenylation, RNAPII continues 

to travel downstream through the gene body and must be removed from the DNA 

template. 5’-3’-exonuclease activity was proposed to interfere with the elongating 

RNAPII resulting in termination of transcription [34], and it was later discovered that the 

Xrn2 exonuclease is required for precise termination [35, 36]. Additionally, it was found 

that disruption of Xrn2 function or the rate of RNAPII elongation shifts the location of 
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termination [37]. These observations lend evidence to the proposed “torpedo” model of 

kinetic competition whereby Xrn2 progresses through nascent RNA to knock RNAPII off 

of chromatin. Further support for this model comes from the observation that elongation 

slows at the 3’ end of genes, which decreases the amount of time needed for Xrn2 to 

catch the elongating RNAPII [38].   

 

1.3 RNA decay 

 Cellular control of the generation of RNA messages through transcriptional 

regulation is one strategy to maintain homeostasis, but cells also modulate gene 

expression post-transcriptionally. The translational output of mRNAs varies, and 

ribosome profiling has demonstrated that the translational efficiency of specific genes can 

change under stress conditions [39]. The miRNA associated RISC complex can interfere 

with components of translational initiation, allowing for temporal regulation of gene 

expression through translational repression [40]. RISC and translationally repressed 

RNAs can then be localized to P-bodies in the cytoplasm, where they are sequestered to 

reduce the expression of the gene [41]. The RISC complex is also able to coordinate the 

degradation of mRNAs as a means of reducing the concentration of coding transcripts in 

the cell [40].  

miRNA-independent RNA decay requires a separate repertoire of biochemical 

factors that coordinate to determine the half-life of an RNA, and to ultimately degrade the 

RNA. Several features of the RNA itself dictate its rate of decay, including: secondary 

structure [42, 43]; protein binding and primary sequence in untranslated regions [44, 45]; 

m6A modifications [46]; defects recognized by RNA surveillance pathways [9, 47]; and 
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codon optimality [48]. Depending on the cellular context, different decay pathways may 

be engaged to degrade an RNA [2]. These decay pathways utilize a range of molecular 

complexes with different biochemical activities, including deadenylation, 5’-decapping, 

exonuclease, and endonuclease action. The specificity of regulation by different decay 

pathways provides the cell with an extra layer of regulation to adapt to changing cellular 

conditions with subsets of different genes [5]. 

 

1.4 Regulation of transcription and chromatin 

 The specific RNAs transcribed and rates of their synthesis depend on the context 

of the cell, and can vary by cell type, cell cycle, and in response to acute changes in 

environment. It was observed in the early 20th century that different regions of 

chromosomal DNA display different staining densities, indicative of the open and 

repressed regions of the genome referred to as euchromatin and heterochromatin [49]. 

More recently, ChIP-seq analysis of a number of histone modifications has revealed 

patterns of modifications associated with active chromatin or repressed chromatin. The 

promoters of active genes tend to be enriched for H3K4me3, H3K9ac, and H3K14ac 

modifications, while inactive promoters tend to be depleted in acetylation and enriched 

for H3K9me3 and H3K27me3 [50]. H4ac is also enriched at the promoters of active 

genes, though its abundance shows a weaker correlation to transcriptional activity than 

other acetylated histones [51]. Histone modification is a dynamic process, and histone 

modifications display a range of timescales over which they change. Gene bodies are 

typically enriched for H3K36me3, a modification that is deposited co-transcriptionally to 

promote RNAPII elongation and to reduce cryptic initiation downstream of the promoter 



7 
 

region [52, 53, 54]. Metabolic labeling has demonstrated that nucleosomes at the 

promoter undergo turnover in about an hour [55]. In addition, quantitative mass 

spectrometry shows the half-lives of histones bearing acetyl marks is relatively short, 

typically 1-2 hours [56], whereas methylated histones tend to be more stable, with half-

lives in the range of a few hours to several days [57]. Changes in histone acetylation are 

therefore relevant on the timescale of cellular perturbation, while changes in a broad 

range of epigenetic modifications are relevant on timescale of development. Enhancers 

and their associated chromatin environment provide a good example for the dynamic 

regulation of gene expression. Enhancers are regions of DNA promoting the activity of 

an associated promoter region, and are often required for efficient gene expression for 

associated genes in vivo [58]. Active enhancers are marked with H3K4me1 and 

H3K27ac, whereas poised enhancers contain H3K4me1 but are deacetylated [59]. 

Furthermore, cells undergoing changes in cell state display profound changes in enhancer 

activity through the regulation of histone modifications [60, 61]. Changes in chromatin 

signatures over shorter time scales therefore provide the ability for enhancers to fine tune 

the expression of genes through changing cellular contexts [62].  

Histone post-translational modifications function in part to help recruit factors to 

physically decompact chromatin, allowing RNAPII access to genomic DNA. Recent 

work has allowed for finer resolution in defining active regions of chromatin through 

differential chromatin accessibility, using methods including MNase-seq and ATAC-seq 

[63, 64]. These active chromatin regions, referred to as nucleosome depleted regions 

(NDRs), tend to correlate with increased transcriptional initiation [65]. Nucleosomes 

present a boundary to efficient transcription, and nucleosome remodeler enzymes act to 
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loosen chromosomal DNA-histone contacts allowing for access of DNA to RNAPII [66]. 

The exact positioning of nucleosomes at active promoters, especially the +1 nucleosome 

directly following the TSS, tunes the rate of RNA polymerase pausing [67], a process 

known to be important in regulating the output and process of transcription. It has been 

demonstrated that changes in nucleosome positioning associated with H4 acetylation and 

Snf2 chromatin remodeling is a vital process in the establishment of cellular quiescence 

after glucose starvation in yeast [68]. Furthermore, changes in nucleosome occupancy 

over regulatory regions has been shown to occur through the process of differentiation in 

iPSCs, underscoring the importance of regulating the nucleosomal landscape to maintain 

specific patterns of gene expression [69]. 

 

1.5 Methods to study RNA synthesis and decay 

 A variety of methods have been used to measure the transcriptional output of 

cells. Transcription can be blocked through inhibition of polymerase with drugs including 

alpha-amanitin and actinomycin D [70, 71], and the decay of transcripts can be measured 

through qPCR or sequencing. Inhibiting general transcription, however, has been shown 

to perturb cellular physiology [72], prompting the development of strategies to purify 

nascent transcripts from total RNA. These purification methods to study transcription rely 

on biochemical enrichment to specifically isolate nascent transcripts or the transcription 

machinery. NET-seq utilizes an antibody against RNA polymerase to determine the 

position of the transcriptional machinery at the time of sample preparation, and can be 

used to enrich for different CTD variants to study different stages of transcription [73, 

74]. Nascent transcripts can be metabolically labeled with orthogonal nucleosides and 
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specifically enriched using antibodies or orthogonal chemistry. GRO-seq relies on 

metabolic labeling of nascent RNAs with 5-bromouridine 5’-triphosphate followed by 

enrichment of 5-bromouridine-containing RNA with an antibody [75]. 5-ethynyl uridine 

can also be incorporated into newly transcribed RNAs and enriched using click chemistry 

[76]. 4-thiouridine is commonly used to metabolically label nascent RNAs and enriched 

using a variety of methodologies, including organomercury affinity chromatography and 

disulfide capture using HPDP-biotin and more recently MTS-biotin [77, 78, 79, 80]. 

Biochemical enrichment methods have provided insights into promoter-proximal pausing 

[75], transcriptional responses in dendritic cells from LPS stimulation [81], and 

transcriptome-wide RNA half-lives [79]. 

 Although biochemical enrichment has been the standard for studying the 

dynamics of RNA, some biological systems remain underexplored due to a number of 

limitations inherent to the methods. Biochemical enrichment requires tens to hundreds of 

micrograms of RNA, limiting the approach to large scale cell culture or the equivalent 

number of cells from model organisms. The need to study small cell populations is 

exemplified by research on cellular heterogeneity, which contributes to the difficulty in 

combating drug resistance in cancerous tumors [82]. Other processes, including cellular 

differentiation, are also marked by a variety of cell types undergoing different 

transcriptional programs. In addition, many biological processes are not recapitulated in 

stable cell culture and require the use of primary cells, limiting the amount of material 

available for study. Recent advances in transcriptome sequencing technology have 

allowed for the study of rare cell populations and single cells at the level of total RNA 
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[83, 84], but studying RNA dynamics using these platforms requires inference based on 

observed intronic reads rather than direct measurement of nascent transcripts [85]. 

The analysis of biochemically enriched RNAs is similar to standard analysis of 

RNA-seq data, though extra considerations must be followed to properly interpret the 

data. I use s4U-based disulfide enrichment is an example, but these considerations are 

general to all biochemical enrichment strategies. First, enriched RNA libraries need to be 

carefully normalized to an exogenous spike-in as total RNA levels are not measurable 

within the same sample. Second, all biochemical enrichment strategies are associated 

with some level of contamination from non-specific binding interactions, which needs to 

be accurately estimated and corrected for. It has been estimated that in s4U crosslinking 

experiments, this background is as high as 30% [86], and the background in transient 

transcriptome sequencing (TT-seq [87]) with optimized MTS-biotin chemistry is 

estimated between 15-20% [88]. Third, inefficient enrichment can lead to biases in the 

enriched product; for example, HPDP-biotin is inefficient at disulfide formation with s4U, 

resulting in a higher likelihood of enriching transcripts with higher relative s4U content 

and leading to a length bias in sequencing [89, 80]. For all reasons outlined above, there 

is a need to develop tools to study RNA dynamics using small quantities of total RNA 

input. 

 

1.6 Chemical biology of nucleoside recoding 

Nucleoside recoding and mutation mapping have been used to study the 

properties of nucleic acids in a number of biological contexts. These approaches use 

either sequencing or gel electrophoresis as a readout of reverse transcriptase interacting 
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with a non-standard nucleoside to produce a mutation or a pre-mature stop. Stops and 

mutations are caused by either the propensity for endogenously modified nucleosides to 

affect the RT, or through chemical modification of bases to induce RT arrest or 

misincorporation [90]. For example, m1A is found endogenously in several classes of 

cellular RNAs and is known to play a role in tRNA structure [91, 92], and m1A can be 

generated in single stranded regions of RNA through DMS chemical modification to 

determine RNA secondary structure [93]. Cytosine methylation is an epigenetic 

modification that plays an important role in development and gene regulation [94]. 

Bisulfite sequencing recodes cytosine to uracil via deamination, but is unable to 

deaminate methylated cytosine, revealing the locations of 5-mC by resistance to 

conversion [95]. Adenine deamination is catalyzed by ADAR enzymes to produce 

inosine in RNAs, often resulting in changes in protein translation and splicing [96, 97]. 

Reverse transcription of inosine leads to the incorporation of cytosine, resulting in an A-

to-G mutation that can be identified through transcriptome sequencing [98]. tRNA 

molecules contain a variety of RNA modifications vital to their structure and function, 

including s4U found in bacterial tRNA. Early work from Ziff and Fresco mapped the 

location of s4U in tRNA through oxidative nucleophilic aromatic substitution to create a 

radioactive cytidine derivative [99]. These studies demonstrate the ability for nature to 

utilize chemical diversity to regulate a wide number of biological systems. 

Chemical biologists have also expanded the chemical diversity of nucleic acids 

through synthetic means. Convertible nucleosides containing functional leaving groups 

can be incorporated site-specifically into oligonucleotides through solid phase nucleic 

acid synthesis [100]. These leaving groups on convertible nucleosides are displaced by 
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nucleophiles, generating substituted nucleoside derivatives. The convertible nucleoside 

approach has been used to physically tether nucleic acids to study their physical 

properties and to probe the role of specific contacts between DNA and proteins [101].   

 

1.7 Overview 

Current work in the field of molecular biology focuses on the mechanistic details 

of a variety of dynamics processes in RNA and chromatin. The study of molecular 

biology is complemented by chemical biology methods able to probe features of 

macromolecules with specificity. I describe in this thesis the development of TimeLapse-

seq, an approach to identify newly transcribed RNAs through s4U metabolic labeling and 

nucleoside recoding [88]. TimeLapse-seq has allowed us to profile RNAs on a number of 

timescales, using orders of magnitude less material than is typically used in biochemical 

enrichment methods. I will describe the use of TimeLapse-seq to examine steady-state 

RNA turnover, acute changes in RNA transcription, differences in mRNA and miRNA 

stability, and transient transcription. Next, I will report work to reduce bias associated 

with sample preparation in s4U-based methods. Finally, I will show preliminary work 

using TimeLapse-seq and chromatin profiling to examine the transcriptional 

consequences of histone deacetylase inhibition.  
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Chapter 2 

TimeLapse-seq: adding a temporal dimension to 

RNA sequencing through nucleoside recoding 

 

This chapter contains excerpts from: 

Schofield, J.A., Duffy, E.E., Kiefer, L., Sullivan, M.C., Simon, M.D. (2018) TimeLapse-

seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. 

Meth. 15:221–225. doi: https://doi.org/10.1038/nmeth.4582 

 

2.1 Author Contributions 

I performed all experiments with assistance on TT-TimeLapse-seq experiments 

from Erin Duffy, and with assistance on NMR characterization from Lea Kiefer. Matthew 

Simon performed bioinformatic analyses with assistance from myself and Meaghan 

Sullivan.  

 

2.2 Summary 

I describe a method (TimeLapse-seq) to chemically recode 4-thiouridine (s4U) 

metabolic labels to cytosine analogs in newly transcribed RNA. Recoded metabolic labels 

are identified through whole transcriptome sequencing, and bioinformatic analyses model 

the fraction of new RNA on a gene-by-gene basis. TimeLapse-seq allows for the study of 

https://doi.org/10.1038/nmeth.4582
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RNA dynamics without the need for biochemical enrichment, greatly reducing the 

amount of RNA input necessary for analysis. TimeLapse-seq allows for the estimation of 

transcript half-lives, acute changes in transcription from cellular stresses, and can be used 

together with biochemical enrichment (TT-seq) to identify high confidence new RNAs. 

 

2.3 Introduction 

Global changes in transcription can occur on the timescale of minutes to hours in 

many mammalian systems, including circadian rhythms and the immune response. One 

can identify such changes by monitoring new transcripts that cofractionate with 

chromatin [102, 103] or that have not yet been spliced [104, 105]. New RNA populations 

can also be identified by examining sites of active RNA polymerase II through 

biochemical enrichment of transcripts that are being synthesized (e.g., PRO-seq [106] and 

NET-seq [73]) or metabolic labeling and enrichment of new transcripts (e.g., TT-seq [87] 

and s4U-seq [81, 80]). These techniques require large amounts of input sample and 

extensive handling, and they present challenges when normalizing enrichment and 

estimating contamination. To capture temporal information about RNA directly in a 

sequencing experiment without biochemical enrichment, we developed TimeLapse-seq 

(Fig. 1a), a method in which cells are exposed to a noncanonical nucleoside that becomes 

incorporated into only new transcripts. Rather than enriching the metabolically labeled 

RNAs, we developed chemistry that recodes the hydrogen-bonding pattern of the uridine 

analog 4-thiouridine (s4U) to match the hydrogen-bonding pattern of cytosine, thereby 

causing mutations in a sequencing experiment. 
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2.4 Design 

The main considerations of chemically recoding s4U are the efficiency of 

chemical conversion and the integrity of the RNA. As the incorporation rate of s4U into 

new RNA has been demonstrated to be less than 10% [107, 108], highly efficient 

recoding is necessary to observe enough mutations in new RNAs above background. 

Based on literature precedent, I focused on developing a strategy of oxidative 

nucleophilic aromatic substitution to convert thiolated nucleosides to their amine-bearing 

derivatives [99, 109]. The chosen oxidant should efficiently form an oxidized 

intermediate with a convertible leaving group, but should not be so strong as to oxidize 

non-s4U bases. The chosen amine should be nucleophilic to displace the convertible 

leaving group, but should have a low pKa as to be nucleophilically active at low pH to 

prevent RNA hydrolysis. I screened oxidant and amine combinations on a nucleoside 

substrate using reverse phase liquid chromatography and mass spectrometry. I then 

developed a restriction enzyme assay to optimize the nucleotide conversion conditions, 

referred to as TimeLapse conditions, in an oligonucleotide substrate. I next performed 

nucleoside recoding on cellular total RNA from s4U metabolically labeled cells and 

analyzed transcriptome wide RNA dynamics (TimeLapse-seq) at steady state and in 

response to a heat shock stress. I performed nucleoside recoding after MTS-biotin 

enrichment of cellular RNAs treated for 5 minutes with s4U in collaboration with Erin 

Duffy, and used the induced mutations as a specificity filter for bona fide new RNAs 

(TT-TimeLapse-seq). Finally, the development of thiol-specific nucleoside recoding 



16 
 

allows for the use of a second orthogonal metabolic label, which Lea Kiefer demonstrated 

by developing s6G TimeLapse-seq. 

 

2.5 Results 

2.5.1 Assessment of oxidative nucleophilic aromatic substitution on the s4U nucleoside 

I first explored chemistry to convert the free nucleoside (s4U) to cytidine 

derivatives (Fig 2.1) while minimizing oxidation of guanosine and using amines with low 

pKa values that remain deprotonated under neutral reaction conditions. I found using 

reverse phase liquid chromatography and mass spectrometry that treating s4U with a 

number of oxidants and amines led to conversion to cytidine derivatives. In particular, 

treating s4U with 2,2,2-trifluoroethylamine (TFEA) and meta-chloroperoxybenzoic acid 

(mCPBA) results in near-complete consumption of s4U, producing only small amounts of 

Fig 2.1. LC-MS analysis of oxidative nucleophilic aromatic substitution reaction to 

recode s4U to C*. Extracted ion chromatograms for s4U starting material (blue) and 

trifluoroethylated cytosine (red) demonstrate complete consumption of s4U and 

appearance of product of expected mass 
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the hydrolysis product uridine, and mostly the desired trifluoroethylated cytidine (C*, Fig 

2.1). 

 

2.5.2 Optimization of nucleoside recoding chemistry on s4U-containing RNA 

To optimize the efficiency of s4U nucleoside recoding in the context of an RNA 

macromolecule, I developed a restriction enzyme digestion assay. First, I in-vitro 

transcribed an RNA oligonucleotide containing a single s4U incorporation site located 

within a NotI restriction enzyme cut site (Fig 2.2a). Only upon successful conversion of 

s4U to a C analog, NotI will be able to digest the product resulting from reverse 

transcription and PCR amplification of the RNA substrate. Using this assay, I screened 

oxidant, amine, reagent concentration, time, and temperature to increase the efficiency of 

chemical recoding. I found that 10 mM sodium periodate (NaIO4) and 600 mM TFEA at 

45oC for 1 h results in efficient (~80%) conversion (Fig 2.2b).  

 

 

Figure 2.2. a) Scheme of restriction enzyme assay to assess conversion of s4U to C* in RNA. 

b) Gel pictured demonstrates efficient digestion (~80%) of s4U to C* in s4U and chemistry-

specific manner. X = U RNA target is not digested, independent of chemistry, and X = C 

RNA target is completely digested, independent of chemistry. Densitometry quantification is 

shown in barplot.  
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2.5.3 Targeted TimeLapse-seq of cellular RNAs 

To test optimized TimeLapse chemistry conditions (NaIO4 and TFEA) with 

cellular s4U-RNA, I exposed mouse and human cells to a range of concentrations of s4U. 

After RNA isolation and chemical treatment, I examined the apparent U-to-C conversion 

rates (inferred from T-to-C mutations in the cDNA, hereafter referred to as T-to-C) by 

targeted RT-PCR coupled to paired-end sequencing (see Table 1). I observed a notable 

and specific increase in T-to-C transitions in chemically treated samples (Fig 2.3), 

demonstrating that TimeLapse recoding is able to identify newly transcribed RNAs on a 

sequencing platform.  

 

2.5.4 Transcriptome-wide TimeLapse-seq monitors steady state RNA dynamics 

To examine the dynamics of cellular RNAs, I treated MEF cells with s4U for 1 h 

and performed TimeLapse chemistry before sequencing. The total transcript counts from 

Figure 2.3: Mutation rates for each N-to-N combination for targeted TimeLapse-seq 

of Actb and Gapdh (700 uM s4U for 2 h). T-to-C mutations are increased in a s4U 

concentration-specific manner, while other mutation rates remain relatively low. 
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each sample were highly correlated irrespective of s4U exposure or chemical treatment 

(Pearson's r ≥ 0.97), demonstrating that TimeLapse-seq retains information from a 

traditional RNA-seq experiment. By counting the mutations in each aligned read pair, we 

found a specific and reproducible increase in T-to-C mutations dependent on both 

metabolic labeling with s4U and chemical treatment (Fig 2.4). Other mutation rates 

remained below background levels of T-to-C mutations in untreated samples (e.g., the 

small increase in G-to-T mutations). Additionally, the reaction was efficient even in 

regions of RNA secondary structure. The T-to-C mutation counts were dramatically 

higher in fast-turnover transcripts (e.g., Myc and Fosl2), compared to more stable 

transcripts (e.g., Dhx9 and Ybx1) (Fig. 2.5a). We observed an enrichment of T-to-C 

mutations in intronic reads (Fig. 2.5c) consistent with the fast turnover of intronic RNA. 
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To quantify these results, we modeled reads as arising from two populations: pre-existing 

RNAs (background mutation rate) and new RNAs (high T-to-C mutation rate; Fig. 2.5b; 

see methods). Reads from newly synthesized RNAs had an average of 2.2 mutations per 

read, corresponding to an ∼3% mutation rate per uridine (compared to ∼0.1% T-to-C 

mutation rates in controls and for pre-existing RNAs). From each gene, we determined 

the fraction of newly made transcripts (r ≥ 0.94; 2,992 genes) and estimated transcript 

half-lives, which correlated with those reported previously [6]. As expected, the fast-

turnover RNAs (top 10%, n = 360) were enriched for transcripts such as transcription 

Figure 2.4: s4U treatment and 

TimeLapse chemical conversion 

result in an increase in T-to-C 

mutations not apparent with s4U 

alone. Read counts were 

normalized to the total RNA-seq 

analysis (top) and log transformed 

after adding a pseudocount of one 

to each transcript. Data for 

individual transcripts are overlaid 

with box and whiskers plots using 

default parameters from ggplot2. 

Transcripts were only included if at 

least two samples had more than 20 

counts. The number of transcripts 

in each analysis are indicated next 

to each graph. 
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factors  (Results from PANTHER analysis: DNA-templated transcription, P < 10−20), 

while the slow-turnover RNAs (top 10%, n = 361) were enriched for those that are 

involved in translation (Results from PANTHER analysis: ribosomal biogenesis, P < 

10−6; translation, P < 10−27).  
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Figure 2.5. Global analysis of steady-state and transient RNA dynamics using TimeLapse-seq. (a) 

Left, tracks depicting coverage from all reads (gray) for transcripts with slow (Ybx1), moderate 

(Dhx9), or fast (Fosl2) rates of turnover. Right, tracks from reads with increasing numbers of T-to-

C mutations (see scale) displaying mutational content provided by TimeLapse chemistry (right, y-

axis zoom 3×). (b) Distribution of reads with each number of T-to-C mutations (points) overlaid on 

a model of the estimated distribution of reads from new transcripts (red) and pre-existing transcripts 

(gray) for Ybx1, Dhx9, and Fosl2. The estimated fraction of new reads is indicated for each plot. 

Light gray, 95% confidence interval. (c) Distribution of T-to-C mutations found in reads mapping 

to Ybx1, Dhx9, and Fosl2, separated by total, exonic, or intronic reads. (d) TT-TimeLapse-seq and 

RNA-seq tracks of DHX9. (e) Cumulative distribution plot of reads containing splice-junctions in 

RNA-seq, and TT-TimeLapse-seq. (f) Cumulative distribution plot of intron only reads in RNA-seq 

and TT-TimeLapse-seq with the same scale as in e. (g) Using TimeLapse-seq to distinguish new 

RNAs after heat shock. Log2-fold changes after heat shock in total RNA-seq counts and new RNA 

counts for the top RNAs identified in b as significantly changed upon heat shock (Padj < 0.01). (h) 

RNA-seq and TimeLapse-seq tracks of Hsph1 (top) and Hsp90aa1 (bottom) upon heat shock. 
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2.5.5 TimeLapse-seq identifies acute changes in RNA with heat shock stress 

To test whether TimeLapse-seq could reveal induced changes in RNA 

populations, I subjected MEF cells to a mild heat shock (42°C, 1 h), where only modest 

changes in total RNA levels were apparent [110, 7, 111]. I observed induction of a few 

transcripts such as Hspa1b by RNA-seq, but TimeLapse-seq revealed the induction of 

many transcripts encoding heat shock proteins in the new transcript pool that are not 

apparent by RNA-seq alone (Fig. 2.5g). For example, whereas RNA-seq is less sensitive 

to the small absolute changes in Hsph1 and Hsp90aa1 (as they are already abundant 

before heat shock; RNA-seq fold-change, Hsph1 = 1.8-fold, Hsp90aa1 = 1.1-fold, 

DEseq2), TimeLapse-seq reveals substantial induction of both transcripts in the new 

transcript pool (TimeLapse-seq fold change, Hsph1 = 12.7-fold; Hsp90aa1 = 3.1-fold, 

DEseq2) (Fig. 2.5h). Unlike PRO-seq and NET-seq, however, which are not sensitive to 

changes in RNA populations after transcription has completed, TimeLapse-seq captures 

changes in RNA processing—I observed the induction of a new terminal exon in Rsrp1 

upon heat shock as w ell as post-transcriptional down-regulation of histone mRNAs upon 

heat shock, neither of which would be apparent from analysis of nascent RNA (Fig. 2.6).  
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2.5.6 TT-TimeLapse-seq distinguishes transient RNAs from background 

Very transient RNA species, such as reads beyond the poly-A termination signal 

in a gene body, provide insight into transcriptome dynamics but are generally too rare to 

be observed at high levels by RNA-seq. While these dynamics can be studied through 

biochemical enrichment of very recently made RNAs after short (5 min) s4U treatments 

through transient transcriptome sequencing (TT-seq [87]), biochemically enriched s4U-

Figure 2.6. Changes in mRNA processing with heat shock stress. (a) The Rsrp1 transcript 

appears to be stabilized upon heat shock, with the terminal exon displaying the highest degree 

of stabilization. (b) qPCR quantification of varying Rsrp1 transcript features. (c) Browser shot 

and T-to-C mutation distribution of Hist1h1d mRNA. Total RNA levels of Hist1h1d mRNAs 

decrease, though the fraction of new RNAs during the 1h heat shock remain consistent, 

suggesting a post-transcriptional degradation mechanism observed previously in replicative 

histone mRNAs during select stages of the cell cycle. (d) qPCR analysis of Hist1h1d. 
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RNA always contains contaminating reads from unlabeled RNAs (estimated to be up to 

30% in some experiments [86]). This contaminating background can limit analyses; for 

example, abundant spliced transcripts observed in RNA enriched after short s4U pulses 

have been interpreted as fast splicing [112], but these results could also be explained by 

contaminating background (e.g., from fully spliced mature RNAs). To test if TimeLapse 

chemistry could be used in conjunction with TT-seq to distinguish bona fide new RNAs 

from contaminating background, I treated K562 cells with s4U for 5 min, and Erin Duffy 

performed biochemical enrichment as in TT-seq [87], except with more efficient MTS 

chemistry to biotinylate the s4U-RNA [80]. After enrichment and before sequencing, I 

performed TimeLapse chemistry. As expected, transient RNA species were enriched for 

introns (two-sample Kolmogorov–Smirnov test, P < 10−15; Fig. 2.5d–f) but depleted for 

splice junctions (P < 10−15). Both enrichment of introns and depletion of splice junctions 

were slightly greater than previously observed [87], which was likely due to the 

efficiency of MTS chemistry. Even with only 5 min of s4U treatment, the majority of the 

biochemically enriched reads contained TimeLapse-induced mutations (Fig. 2.5d). 

Mutation-containing reads represented a subpopulation that was further enriched for 

introns and depleted for splice junctions (Fig. 2.5e,f). This suggests that mutated reads 

Figure 2.7. TT-TimeLapse-seq distinguishes 

bona fide reads from background 

contamination in the ACTB locus. Shown top 

is a 5 min TT-TimeLapse-seq track, which 

displays an uneven mutation distribution 

across the gene body. In particular, there are 

many more unmutated (grey) reads in exonic 

regions, consistent with background 

contamination from abundant processed 

mRNAs (shown in total RNA-seq track, 

bottom). 
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effectively capture the profile of new RNAs, while the reads without mutations represent 

a subpopulation that is contaminated by unlabeled reads. We estimated that 15–20% of 

total TT-seq reads arise from contaminating RNA (estimate from splice-junction content, 

17–20%; from intronic content, 18–20%; see methods and Table 2), similar to estimates 

from previous s4U experiments [86]. Reads without mutations were enriched for 

contaminating reads (estimate from splice junctions, 33–39%; estimate from introns, 35–

40%), while reads containing mutations are depleted in contamination. For reads with a 

single mutation, contaminating reads make up <5% of the signal; for reads with two 

mutations, the contamination is <1%. Taken together, RNA contamination contributes to 

the signal at the level of RNA-seq, but TimeLapse-chemistry-induced mutations can be 

used to discriminate between signal from new RNAs and contaminating reads. These 

results demonstrate transcripts including ACTB (Fig 2.7) are not highly spliced on this  

timescale (5 min) and highlight how TimeLapse chemistry can provide an extra 

specificity filter when analyzing rare, transient RNAs. 

 

2.5.7 RNA isoform-specific dynamics with TimeLapse-seq  

I applied TimeLapse-seq using treatment conditions optimized for studying 

mRNA turnover (4-h s4U) [113] in a chronic myelogenous leukemia model cell line 

(K562). Using a binomial model applied to the observed mutation distributions (see 

methods 6.19), we obtained highly reproducible half-life estimates that correlated with 

previous observations [114] (Fig 2.8 c-e). Inspection of individual transcripts revealed 

reads mapping to both a shorter isoform of ASXL1 (NM_001164603), as well as a longer 

isoform (NM_015338) of ASXL1. The ASXL1 protein is involved in epigenetic 
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regulation of chromatin, and mutations in the longer isoform of this gene are implicated 

in myelodysplastic syndromes (MDSs) [115]. Analysis of the mutational content of the 

Figure 2.8: Reproducible estimates of transcript half-lives with in MEF and K562 cells. a) 

Correlation of estimated RNA half-lives between 1 h TimeLapse-seq replicates in MEF 

cells. b) Correlation with previously reported RNA half-lives in mouse 3T3 cells 

(Schwanhäusser et al. 2011). c-d) Correlation of replicate RNA-seq counts and estimated 

RNA transcript half-lives (see methods) from K562 4 h TimeLapse-seq samples. e) 

Correlation of estimated RNA transcript half-lives from TimeLapse-seq compared to RNA 

transcript half-lives derived from Friedel et al. 2009. f) Plot of estimated half-lives for K562 

transcripts, filtered by indicated GO annotation term, and average half-lives for each family. 
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individual exons from ASXL1 demonstrated that reads mapping to the longer isoform 

had substantially greater turnover than those mapping to the first four exons (Figs. 2.9 a-

b), a conclusion supported by transcriptional inhibition (data not shown). The different 

stability of ASXL1 isoforms is particularly intriguing given the importance of RNA 

processing to many pathologies, including MDS [116]. 

 

 

 

 

 

 

 

Figure 2.9. TimeLapse-seq reveals differential transcript isoform stability of the ASXL1 

transcript. (a) ASXL1 tracks from TimeLapse-seq (4-h s4U treatment) with exon-

containing regions expanded (lower panel). (b) Exonic T-to-C mutation distributions for 

ASXL1 in comparison with three transcripts with different stabilities, ACTB, CDK1, and 

FOSL1. 
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2.6 Discussion 

The oxidative nucleophilic aromatic substitution reaction optimized for TimeLapse-seq 

can in principle be used in combination with any existing s4U-based method to assess 

RNA dynamics. We demonstrate the utility of combining TimeLapse chemistry as a 

bioinformatic filter for TT-seq. We have also combined TimeLapse chemistry with small 

RNA isolation in collaboration with the Steitz lab (see Chapter 4.2). In addition, 

TimeLapse chemistry is applicable to other thiol-based metabolic labels that are known to 

be incorporated into newly transcribed RNAs [86, 117]. Lea Kiefer found that TimeLapse 

chemistry efficiently converts the s6dG nucleoside to a substituted adenosine by mass 

spectrometry and a restriction enzyme digestion assay [118]. Furthermore, performing 

Figure 2.10 mRNA half-lives determined through s6G recoding correlate well with those 

determined through s4U recoding. Half lives were determined after 4 h s6G treatment and 

binomial modeling, as in Figure 2.8, then compared to s4U half-lives from Schofield et al. 

2018. Figure reproduced from Kiefer et al. 2018. 
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transcriptome-wide TimeLapse-seq with a 4 h s6G treatment in K562 cells, Lea found 

that estimated half-lives from our previously published s4U and s6G experiments correlate 

well (R = 0.84), with similar median half-lives (s4U = 8.3 h, s6G = 8.5 h, Fig. 2.10). 

These results demonstrate the ability to extend TimeLapse-seq into a second orthogonal 

metabolic label, which could be used in applications where use of s4U is prohibitive, and 

to observe multiple timescales of RNA dynamics in a single sample.  

 The experiments reported in this chapter were performed using a pulse metabolic 

labeling strategy, though it has been demonstrated that cells can be metabolically labeled 

with 4-thiouridine for extensive periods of time followed by a chase with uridine to 

follow RNA decay rates. This approach has been used to estimate the decay rates of s4U-

labeled transcript using s4U alkylation in an approach similar to TimeLapse-seq [119]. 

 

2.7 Limitations 

 In general, s4U metabolic labeling has been found to be non-toxic to many cell 

types, though s4U has been demonstrated to cause cellular stress in specific cell types 

[120]. An assessment of cellular viability (e.g. MTT colorimetric assay) should be 

performed before performing TimeLapse-seq in a novel system. The sensitivity of 

TimeLapse-seq depends on the number mutations observed, therefore the s4U 

incorporation rate should be assessed (e.g. dot blot with MTS-TAMRA) and may require 

optimization for any given experiment. Finally, care should be taken during isolation and 

handling of metabolically labeled RNAs prior to TimeLapse-seq to prevent thiol-specific 

read loss and subsequent bias in sequencing. I describe in Chapter 3 improved handling 
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conditions to mitigate this read loss, but measurement of read loss and bioinformatic 

correction is often necessary. 
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Chapter 3 

Considerations on the design and analysis of 

nucleoside recoding experiments 

3.1  Author Contributions 

I performed all experiments and bioinformatic analyses with assistance from 

Matthew Simon. 

 

3.2 Summary 

There are several considerations in properly designing, executing, and analyzing 

TimeLapse-seq and related s4U-based approaches to study RNA dynamics. Among these 

considerations are the labeling time and s4U concentration, handling of RNA material to 

prevent thiol-specific read loss, and accurate identification of new RNAs in sequencing.  

 

3.3 Introduction 

The transcriptome continually undergoes synthesis and decay to properly tune 

gene expression. In addition, regulated shifts in synthesis or decay rates allow cells to 

quickly change their expression profile, and defects in RNA stability are associated with 

a number of diseases. There is a growing need to assess transcriptome-wide RNA 

dynamics, particularly using methods that capture changes in both old and new RNA 

populations. Recently, a number of high-throughput approaches (TimeLapse-seq [88], 
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SLAM-seq [119], TUC-seq [121]) using metabolic labeling in combination with 

nucleoside modification have been reported to assess the dynamics of RNA. These 

approaches all take advantage of the orthogonal reactivity of s4U to induce T-to-C 

mutations in new RNAs visible through RNA sequencing, though the method of 

nucleoside modification differs among these approaches. There are two principal 

strategies to induce mutations in thiolated nucleosides: recoding the Watson-Crick face 

through oxidative nucleophilic aromatic substitution, and disrupting the Watson-Crick 

face through alkylation.  

 With recent the increase in reports assessing total RNA with thiolated metabolic 

labels, there is a need to critically assess the robustness and biases of these methods. We 

have observed in our data and in literature an underrepresentation of sequencing reads 

aligning to fast turnover RNA features, including introns and short-lived transcripts. We 

expect these high turnover species to contain higher metabolic label content, indicating 

the bias is specific to thiolated RNAs. Without bioinformatic correction, this bias results 

in an underestimation of new RNAs over the labeling period. We therefore aimed to 

optimize the handling of thiolated total RNA to increase the robustness of metabolic 

labeling methodologies. We found that alterations in standard isolation methods upstream 

of nucleoside modification decreases thiol-specific read loss. These changes in the RNA 

handling protocol lead to reduced biases in transcriptome-wide metabolic labeling 

experiments, and we demonstrate the robustness of the protocol using TimeLapse-seq. 

This protocol can be widely applicable to all methods that require the isolation of s4U or 

s6G labeled RNAs prior to biochemical enrichment or nucleoside modification and 

sequencing. 
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3.4 Design 

 Experiments performed using s4U metabolic labeling are prone to thiol-specific 

read loss. In order to screen for RNA isolation conditions that reduce s4U-specific read 

loss, I designed an RT-qPCR assay to recapitulate the s4U-specific loss without the need 

for time intensive and costly RNA sequencing. This dropout assay compares fast turnover 

transcripts, which are more likely to be lost in a s4U-specific manner, to slow turnover 

transcripts containing relatively little s4U. Using this assay, I screened through 

modifications to standard RNA isolation protocols to determine conditions that reduce 

the degree of thiol-specific read loss. To demonstrate the generality of the isolation 

conditions, I prepared transcriptome-wide TimeLapse-seq libraries with standard 

isolation and improved isolation. I then compared the fraction of intronic reads over total 

reads per gene, with the assumption that intronic reads will be predominantly new over a 

2 h metabolic labeling period.  

 

3.5 Results 

3.5.1 Optimizing metabolically labeled RNA isolation using in-vitro dropout assay 

To efficiently assess the degree of thiol-specific loss, I employed an RT-qPCR 

based dropout assay, as described in the methods. The dropout assay compares relative 

abundance of fast-turnover transcripts, which are expected to have higher thiol content 

and are therefore more frequently lost after metabolic labeling. Purification of s4U-treated 

RNA using a standard isolation protocol results in extensive loss (referred to herein as 
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“dropout”) of fast turnover transcripts (Fig 3.1), and this loss is specific to s4U treatment. 

I tested several modifications of the isolation protocol, including addition of reducing 

reagents to various steps of the isolation, choice of cell lysis buffer, and method of RNA 

concentration. I found two steps in the isolation protocol that contributed most to the 

degree of dropout: cell lysis, and RNA concentration following genomic DNA depletion. 

Modifying these two steps in the isolation protocol (see methods) significantly reduces 

the degree of dropout in s4U-treated samples (Fig 3.1). Additionally, these protocol 

modifications are generalizable to dropout induced by the G-based labels s6G and 6-TG. 

 

3.5.2 Improved handling reduces bias in transcriptome-wide metabolic labeling 

I prepared transcriptome wide TimeLapse-seq libraries treated with 200 uM 

metabolic label (s4U, s6G, or 6-TG) for 2 hours to compare standard isolation with our 

optimized isolation. We theorized that because introns are generally higher turnover 

species than exons, the fraction of intronic reads per annotated transcript observed in 

TimeLapse-seq data should be reduced in samples treated with the standard isolation. I in 

Fig 3.1. a) Scheme of RT-qPCR assay to assess thiol specific read loss. B) Comparison 

of standard RNA isolation protocol to improved isolation. Fast turnover transcripts 

incorporate a higher proportion of s4U during labeling and are lost to a higher degree 

through standard isolation. Improved isolation rescues this s4U-specific read loss. 
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fact observe a depletion of intronic reads in metabolically labeled libraries proportional to 

gene intronic content using the standard isolation (Fig 3.3), evident in our data as well as 

s4U-treated data obtained from literature [122]. Our modified protocol rescues the loss of 

high turnover introns, apparent in both TimeLapse-seq browser tracks and by the fraction 

of intronic reads observed per gene (Figs 3.2 & 3.3). As expected, because rescue of high 

turnover RNA species increases the number of mutated reads retained in sequencing, I 

observe a modest increase in per gene T-to-C mutation rates for s4U labeled samples, as 

well as an increase in G-to-A mutation rates of s6G and 6-TG labeled samples (standard 

average intronic T-to-C mutation rate =  4.3%, improved T-to-C = 5.0% T-to-C, standard 

G-to-A = 1.0-1.1%, improved = 1.4-1.5%). I then compared the consequences of our 

improved handling conditions on the analysis of fraction new of mRNAs at steady state. 

As expected, half-life estimates without correction using s4U metabolic labeling and 

standard isolation are longer than fraction new estimates from the improved isolation 

Figure 3.2: Representative browser shot of TimeLapse-seq tracks with standard 

isolation and improved isolation. Fast turnover transcripts are underrepresented in 

standard handling tracks with s4U treatment, but are rescued in improved handling 

tracks. Left inset shows zoomed intronic region in yellow. 
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(standard mean = 7.9 h, improved mean = 6.0 h), due to an overrepresentation of pre-

existing unlabeled RNAs using standard isolation.  

Figure 3.3. Transcriptome-wide analysis of thiol-specific read loss in standard isolation, improved 

isolation, and literature datasets. For each gene, the proportion of intronic reads is plotted for thiol-treated 

samples compared to untreated samples. A) plotted are s4U-treated samples with standard isolation (blue), 

literature data (Muhar et al., green), or improved isolation (red). B) plotted are s6G-treated samples with 

standard isolation (blue) or improved isolation (red). In general, there is a suppression of intronic reads in 

all thiolated nucleoside-treated samples, but the loss is more severe with standard isolation and in the 

processed literature dataset. 
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3.5.3 Binomial modeling approaches and bias correction for s4U-specific read loss 

 We use three principal approaches to estimate the fraction new using the binomial 

distribution, each with its own advantages and drawbacks. A detailed description of each 

approach is described in the methods section, but broadly each approach takes into 

account the following: observed background and s4U and chemistry-induced mutation 

rates; U content per read; and number of observations [88]. The first approach is a 

Bayesian hierarchical model and no U-turn MCMC sampling, which takes into account 

both global and gene-specific mutation rates to fit data. In addition, a parameter can be 

used for s4U-specific read loss for experiments in which the observed s4U-specific read 

loss is relatively high. This approach provides robust measures of experimental 

parameters but is computationally expensive. The second approach is a non-linear 

minimization (nlm) of the binomial distribution for observed mutations. The nlm 

approach generates reproducible estimates of fraction new for thousands of transcripts, 

increasing the scale of analysis. Nlm modeling does not fit values for a small proportion 

of transcripts, however. The final approach is assigning new and old reads based on a 

per-read mutation rate cutoff. New RNA and old RNA mutation distributions overlap to 

an extent dependent on s4U-specific T-to-C mutation rate, background mutation rate, and 

read length. The mutation rate cutoff should be chosen to balance the sensitivity (true 

positive rate) and specificity (true negative rate) of assigned reads. I curated a test set of 

intronic reads in highly expressed transcripts as a proxy for new reads (with s4U 

treatment) and old reads (without s4U treatment). For each read, I determined the 

mutation fraction (T-to-C / number of Ts) and determined the sensitivity and specificity 

for a range of mutation rate cutoffs. I found for a paired-end 75 nt experiment an optimal 
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cutoff of 3.6% mutation content, with a sensitivity of 0.60 and a specificity of 0.85. 

Increasing read length to 150 nt increases sensitivity to 0.65 and specificity to 0.94. 

Comparison of nlm estimates to a simple mutation rate cutoff based on the fraction of 

mutations per read indicates demonstrates a high degree of correlation (Fig 3.4), 

indicating that the simpler cutoff approach is valid, and provides an orthogonal means of 

determining fraction new.   

 

 

3.6 Discussion 

 The utility of s4U to examine RNA dynamics is evident by the wide range of 

applications by a number of research groups. Careful examination of all biochemical 

methods is necessary to avoid biases and to generate reproducible data. I report in this 

chapter an assessment of s4U-specific read loss, which leads to an overestimation of 

Figure 3.4: Comparison of 

fraction new estimates from 

biological replicates derived 

from non-linear 

minimization and fraction of 

mutations per-read cutoff. 

Replicates and strategies for 

binomial modeling display 

high levels of correlation. 
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stable transcripts in total RNA sequencing. The analysis of s4U-treated RNA sequencing 

data from literature [122] parallels our observation of thiol-specific read loss using 

standard handling conditions, indicating the generality of the bias. I report improved 

handling conditions to reduce this bias using straightforward modifications to the 

isolation protocol. Changes to the isolation protocol to improve handling are consistent 

with thiolated RNAs preferentially sticking to surfaces during lysis and concentration.  

 

3.7 Limitations 

 The improved handling conditions developed in this chapter are specific to 

adherent cells with a Trizol-based isolation strategy. There are many isolation strategies 

for a diverse range of applications, and a critical examination of each strategy should be 

performed when necessary. RT-qPCR assays to assess read loss can be applied to any 

isolation strategy, provided the quantity of RNA is sufficient for the assay. Analysis of 

several sequencing libraries suggests that thiol-specific read loss is unavoidable to some 

extent, though improved isolation strategies can make this loss negligible. Bioinformatic 

assessment of read loss should be performed to determine whether correction is 

necessary. 
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Chapter 4 

Collaborative work to profile RNA dynamics 

with TimeLapse-seq 

 

4.1 Introduction 

 When developing TimeLapse-seq, we saw the potential for its application to a 

number of different types of RNAs in different biological systems. We demonstrated that 

TimeLapse-seq profiling can be used with nanograms of total RNA to profile mRNAs 

and combined with biochemical enrichment to profile transient RNAs [88]. To date, I 

have worked with a number of research groups to profile the dynamics of RNAs in a 

range of contexts, including: mRNA stability; miRNA turnover; transcriptome-wide and 

gene-specific analysis of transient RNAs; transcriptome-wide responses to drug treatment 

and viral infection; cellular localization of RNAs; effects on RNA processing with RNA 

binding protein mutants; and dynamics of mRNA splicing. This collaborative work has 

allowed us to continuously optimize s4U-based sequencing methodologies and analyses, 

and opens up further avenues to investigate a variety of biological questions. In this 

section are selected applications of TimeLapse-seq in collaboration with research groups 

at Yale University.  
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4a Identifying changes in mRNA stability in 

DCP2 knockout  

4a.1 Author Contributions 

Experiments were designed by myself, Vicky Luo, Matt Simon and Sarah Slavoff. 

Experiments and data analysis were carried out by myself and Vicky Luo.  

 

4a.2 Summary 

I performed TimeLapse-seq to identify changes in mRNA stability in DCP2, 

MSI2, and NoBody KO cell lines. Using fold change analyses on both new and old RNA 

populations, I identified groups of transcripts that are more affected by changes in mRNA 

stability than changes in transcription. After validating stabilized transcripts using RT-

qPCR, we explored the relationship between changes in transcript degradation rates, P-

body localization, and m6A modification. Our results provide evidence of the subset of 

transcripts that are substrates of DCP2 decapping, and support the role of DCP2 

association with P-body enriched RNAS. 

 

4a.3 Introduction 

The regulation of mRNA stability is a complex process that is dependent on a 

number of factors. A widely studied aspect of RNA stability is the function and 

composition of processing bodies (P-bodies), ribonucleoprotein complexes that are 

composed of translationally repressed RNAs as well as RNA destabilizing protein 
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complexes [123]. A significant amount of work has suggested that P-bodies exhibit the 

properties of liquid droplets, phase separated regions that concentrate biochemical factors 

for increased local concentration or sequestration [124]. Liquid droplet formation 

requires multivalent interactions between biochemical factors, which is accomplished in 

P-bodies through a network of mRNAs and interacting proteins. Among the protein 

factors found to be enriched in these networks is YTHDF2, a reader of the m6A RNA 

modification known to play a role in modulating mRNA stability [125]. P-bodies have 

been proposed to act as both storage sites and degradation sites for RNAs [126, 127], 

though recent microscopy work has suggested that mRNA degradation by the factors 

enriched in P-bodies does not occur within the P-bodies themselves but instead occurs in 

the cytoplasm outside of the phase separated body [128]. FRAP studies have 

demonstrated that components of translational repression and RNA decay shuttle 

dynamically between the P-body and the cytoplasm in at a rate inversely proportional to 

valency [129]. Among the factors that dynamically shuttle between P-bodies and the 

cytoplasm are the decapping Dcp1/Dcp2 complex, and the 5’-3’ exonuclease Xrn1. 5’-3’ 

RNA decay by the Xrn1 exonuclease require the removal of the m7G cap structure prior 

to degradation, making decapping a rate limiting step in the 5’-3’ decay pathway. The 

process of 5’-decapping has long thought to be catalyzed predominantly by Dcp2, though 

it was demonstrated that decapping occurs in cell types lacking DCP2 [130]. Recent 

studies suggest an expanded role in mRNA decapping by Dcp2 homologs Nudt16 [130] 

and Nudt3 [131]. Furthermore, novel components of RNA decay pathways continue to be 

discovered or further characterized. These factors include the RNA associated factor 

Msi2, which has been found to confer specificity in degradation in certain cellular 
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contexts [132], and has been demonstrated to bind to 3’-UTR regions of mRNA targets 

[133]. In addition, a novel microprotein named NoBody has been found to interact with 

components of mRNA decapping machinery, and perturbation of NoBody alters P-body 

abundance and the NMD process [134].  A number of questions remain concerning the 

exact role of particular components of mRNA destabilization pathways. Of particular 

interest is the role of DCP2 in mRNA decay, including its transcript specificity, and how 

DCP2 functions in the context of phase separated bodies to promote decay.  

Despite consistent efforts to study P-bodies and mRNA stability, the exact 

substrates of DCP2 and other mRNA destabilizing factors remain difficult to determine. 

Transcriptional shutdown is highly perturbing to cells [72], and no single RNA-protein 

interaction or RNA motif has been shown to fully explain changes in RNA stability. We 

therefore worked with the Slavoff lab to determine the transcriptome-wide effects on 

mRNA stability with DCP2, MSI2, and Nobody KOs. Our analysis on perturbed stability 

of RNAs due to knockouts in components of RNA stability pathways relates specific 

subsets of transcripts to known determinants of RNA stability, including P-body 

enrichment and m6A modification.  

 

4a.4 Design 

The Slavoff lab generated DCP2, MSI2, and NoBody HEK293T knockout cell 

lines to study the roles of these proteins on mRNA stability. I performed TimeLapse-seq 

on these cell lines using a 2 h s4U labeling period to study changes in stability of mRNAs 

between a WT cell line and the mutant cell lines. I then developed analyses to determine 

rates of mRNA synthesis and decay, and used these analyses to determine candidate 
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transcripts that are post-transcriptionally stabilized in mutant cell lines. Changes in 

synthesis and decay were validated by transcriptional shutdown and RT-qPCR by Vicky 

Luo.  

 

4a.5 Results 

 I performed s4U metabolic labeling (2 h, 500 uM s4U) in WT, DCP2 KO, MSI2 

KO, and NoBody KO HEK293T cell lines. I performed RNA isolation, TimeLapse 

chemistry, and library preparation as described in Chapter 3. I estimated new and old read 

counts using the fraction of mutations per read cutoff. Using these counts, I performed 

differential expression analysis using DEseq2 to determine the log2-fold change and 

significance of change for new and old RNAs. I then performed rank ordering of new 

Fig 4.1.1. Plot of log2-fold change (DCP2 KO / WT) values for inferred new reads 

and inferred old reads from TimeLapse-seq data. Data points are colored by log2 

ratio of P-value rank (lowest rank number = lowest P-value), and points in bold 

are the top 5% most significantly changed transcripts by old RNA-FC. 
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RNAs and old RNAs based on p-value, and ranks of new RNAs against ranks of old 

RNAs. I found that the separation of fold change analysis based on new vs. old RNAs 

allowed for the categorization of RNAs into distinct categories, including increasing 

transcription, decreasing transcription, increasing stability, and decreasing stability 

(Figures 4.1.1 and 4.1.2). Vicky Luo performed transcriptional shutdown time courses 

followed by RT-qPCR and validated several transcripts as being stabilized, changed in 

transcription, or unchanged by DCP2 KO.   

Figure 4.1.2. Selected examples of transcripts displaying diverse changes after 

DCP2 KO. Changes in both new RNAs (red) and old RNAs (grey) are interpreted 

as changes in transcription, whereas changes in old RNAs only are interpreted as 

changes in stability. 
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We then explored the relationship between RNA degradation rates and biochemical 

determinants of mRNA stability using literature data. I estimated transcript fraction new 

using a fraction of mutations per read cutoff, and determined the rates of synthesis and 

degradation for each transcript using the following equations:  

Kdeg = -log(1-Fnew)/2 

Ksyn = Ntotal * Kdeg 

I then determined the fold change in degradation rate for transcripts in DCP2 and MSI2 

KO compared to WT. Compared to all transcripts, we found a negative shift in 

degradation rate for p-body enriched transcripts (P-body enrichment > 2.5 [135]), and a 

positive shift in degradation rate for P-body depleted transcripts (P-body enrichment < -

2.5 [135]), consistent with the role in P-bodies in the regulation of mRNA processing. 

We also found a negative shift in degradation rate for m6A-enriched transcripts [136], 

consistent with the role of m6A in mRNA stability. In addition, transcripts that are P-body 

enriched and m6A enriched are stabilized to a greater degree than transcripts in either 

category alone. I performed this same analysis on MSI2 KO TimeLapse-seq data and 

observed the same trends in relation to P-body and m6A enrichment, though the 

magnitude of shift is less than that of DCP2 KO (data not shown). 
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4a.6 Discussion 

 TimeLapse-seq allows for the estimation of relative rates of synthesis and decay 

without the use of transcriptional shutdown. Our 2 h TimeLapse-seq data has provided a 

functional connection to DCP2, MSI2, and NoBody to a particular subset of transcripts. 

Follow-up DCP2 analyses provide further evidence of a functional link to P-body 

Fig 4.1.3. Cumulative distribution plot of change in degradation rate between 

DCP2 KO and WT transcripts. Transcripts enriched in P-bodies and m6A 

modifications tend to have greater decreases in degradation rate with DCP2 KO, 

whereas P-body depleted transcripts display relatively little decrease in 

degradation rate with DCP2 KO. 
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localization of transcripts and mRNA degradation pathways. Further work on MSI2 and 

NoBody data will help to advance our understanding of the determinants of mRNA 

stability and the regulation of cellular homeostasis. 
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4.b Tracking changes in miRNA turnover with 

HSUR1 expression 

4b.1 Author Contributions 

Experiments were designed by myself, Paulina Pawlica, Matthew Simon, and 

Joan Steitz. Experiments were carried out by myself and Paulina Pawlica. miRNA data 

pre-processing was performed by Paulina Pawlica. Half-life modeling was performed by 

Matthew Simon with assistance from myself.  

 

4b.2 Summary 

 I performed TimeLapse-seq on isolated miRNAs from cells treated with s4U for 6 

h and 12 h expressing the viral ncRNA HSUR1 to study the effect of HSUR1 on the 

stability of miR27-a. Consistent with literature, we found that HSUR1 leads to an 

increase in fraction new of miR27-a. We continue to build models to assess miRNA 

turnover and to determine changes in rates of processing steps in RNA turnover, 

including rates of tailing and degradation.  

 

4b.3 Introduction 

 miRNAs are small RNAs that play a role in the post-transcriptional regulation of 

mRNA targets. miRNAs bind to AGO to form the miRNA-RISC complex, which can 

then bind to mRNA targets through base pair complementarity and either induce cleavage 

or translational repression [137]. Though their stability ranges widely, miRNAs tend to 
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have long half-lives relative to other RNA species [138, 139]. Much like mRNAs, 

miRNAs are also subject to modification post-synthesis, and these modifications can 

influence the miRNA’s stability or targeting activity [140]. A common miRNA 

modification is non-templated 3’-end tailing through ribonucleotidyltransferase activity, 

including uridine addition through terminal uridine transferase (TUTase, [141]) activity. 

Tailing modification is able to take place after the miRNA has formed an association with 

AGO, suggesting that the turnover of the miRNA-RISC complex can be dynamically 

regulated through miRNA modification.  

Viruses have the ability to target several aspects of the host miRNA pathway, 

including modulating expression of host miRNA processing factors and expressing viral 

miRNAs able to inhibit the host viral response [142]. Herpesvirus saimiri (HVS) is a 

virus that results in acute T-cell lymphoma in select species of monkeys [143]. HVS 

expresses a number of structured non-coding RNAs that have been shown to interact with 

host miR-27a, promoting accelerated miRNA degradation [144]. The HSUR1 ncRNA 

expressed in HVS has been demonstrated to interact with miR-27a, resulting in an 

increase in tailed miR-27a species. It follows that the mechanism of miR-27a 

destabilization could be through an increase in tailing rate, leading to a larger population 

of unstable miRNA species. 

Given the precedence to study miRNAs using s4U metabolic labeling [80], we 

worked with the Steitz lab to directly measure changes in stability of miRNA targets with 

HSUR1 expression. We examined several miRNA and miR* species, as well as 3’-end 

tailed miR-27a transcripts in order to better understand the mechanism of miRNA 

destabilization by HSUR1.  
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4b.4 Design 

 miRNAs tend to have longer half-lives than mRNAs, necessitating a longer 

metabolic labeling period. WT cells, empty-vector containing cells, and ncRNA HSUR1 

expressing cells were treated with s4U for 6 h and 12 h. miRNA libraries were prepared 

using small RNA-specific protocols adapted to integrate TimeLapse chemistry. We then 

used MCMC modeling to fit binomial models to estimate the fraction new of miRNAs 

and miR* transcripts, and determined the change in fraction new of different miRNA 

species with HSUR1 expression.  

 

4b.5 Results 

 Small RNA sequencing reads were analyzed using a custom Perl script to identify 

T-to-C mutations and 3’-end tailing modifications. Because miRNAs are short in length, 

they contain very few uridines available for s4U incorporation and chemical 

transformation. Despite this limitation, we observe miRNA reads containing multiple 

mutations, allowing us to determine miRNA and miR* fractions new. Attempts to model 

fraction new were difficult in longer (12 h) time points, as cellular s4U levels diminish 

over the observation period, resulting in varying mutation probabilities for miRNAs. We 

therefore focused our analyses on the shorter 6 h time point to determine fraction new 

and fold change of miRNA species with HSUR1 expression. We utilized a binomial 

model to fit the data and determined the posterior ratio of HSUR1 to no viral expression. 

The data in the model consisted of reads from several abundant miRNA and miR* 

species with varying degrees of turnover, including miR-92, miR-27a*, miR-27a, miR20-

a, miR-16. miR* species are intermediates in the generation of mature miRNA and are 



53 
 

therefore unstable relative to the 6 h labeling period and display less heterogeneity in 

mutation rates, as their window of synthesis is smaller. Data was incremented by viral 

expression, as mutation rates differed between samples in a HSUR1-dependant manner. 

Consistent with other reports [144], we found that with HSUR1 expression, both miR-27a 

and miR-27b display an increase in fraction new while other miRNAs and miR*s 

remained unchanged with HSUR1 expression. We subdivided miR27-a reads into 

different categories based on 3’-end modification, and found an increase in the number of 

tailed species with HSUR1 expression. We found that tailed miRNA species appear 

unstable, though our estimates for tailed miRNA species display a high degree of 

uncertainty due to the limited number of observations (data not shown).  

 

4b.6 Discussion 

 We demonstrate in this section the utility of TimeLapse-seq to investigate the 

dynamics of miRNAs, and provide further evidence for the destabilization of miR-27a in 

Figure 4.2.1. Effect of HSUR1 ncRNA viral expression on the dynamics of various 

miRNA and miR* species, estimated through binomial modeling. A) miR-27a is 

substantially downregulated with HSUR1, whereas other transcripts are not, consistent 

with previous reports (Cazalla et. al 2010). B) Estimated fractions new of slow turnover 

miRNAs and fast turnover miR-27a*. C) Estimated change in fraction new with 

HSUR1 expression. miR-27a appears less stable with HSUR1 expression. 
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response to viral HSUR1 expression. Despite relatively few uridines available for 

mutations in small RNAs, we are able to model the fraction new of abundant miRNA and 

miR* species. Mechanistic insights into the specific mechanism of miRNA 

destabilization in relation to rates of miRNA tailing remain limited in this dataset due to 

high variance in estimates for rare tailed miRNA species. Further functional analyses 

following perturbation of tailing enzymes may be necessary to determine the exact 

mechanism of HSUR1-mediated miRNA destabilization. 
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4c Investigating transcriptional landscape in X-

linked dystonia parkinsonism disease locus 

TAF1 

4c.1 Author Contributions 

Experiments were designed by myself, Anna Szekly, Matthew Simon and 

Sherman Weissman. Experiments were conducted by myself and Anna Szekly. Data 

analysis was performed by myself and Matthew Simon.  

 

4c.2 Summary 

 Patients with X-linked dystonia parkinsonism frequently have repeat expansion 

mutations in an intronic region of the TAF1. We performed TimeLapse-seq on RNA 

isolated from family-matched human patient primary cells to analyze the transcriptional 

landscape of the disease locus. We performed analysis on transcripts originating from the 

TAF1 locus to explore changes in RNA processing between disease and non-disease 

patients. Our preliminary analysis suggests changes in intron retention in disease TAF1 

locus, opening up further analyses of RNA processing in X-inked dystonia parkinsonism. 

 

4c.3 Introduction 

 X-linked dystonia parkinsonism is a disease characterized by involuntary muscle 

contractions and bradykinesia [145]. XDP affected individuals contain mutations in the 
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intronic regions of the TAF1 locus that include SNPs and transposon insertions referred 

to as a SINE-VNTR-Alu element (SVA) [146]. XDP disease phenotypes tend to be more 

severe for affected individuals with increased numbers of repeats in the SVA insertion, 

motivating the study of the molecular biology in the TAF1 locus. Diseases associated 

with SVA insertions have been shown to have effects on gene expression driven by a 

number of molecular mechanisms, including changes in splicing and DNA methylation 

[147]. We established a collaboration with Sherman Weissman, who works with primary 

cells derived from XDP affected patients, to investigate the RNA dynamics related to 

SVA insertion in XDP affected patients. 

 

4c.4 Design 

 Primary cells for TimeLapse-seq analysis were collected from patients with X-

linked dystonia parkinsonism (from the CCXDP) and a family member without the 

disease as a control. Cells were from two affected patients with differing numbers of 

repeat insertions in the TAF1 locus, which correspond to the severity of the disease 

phenotype. We performed a 1 h s4U metabolic labeling followed by TimeLapse-seq to 

capture a wide range of RNA dynamics. We performed transcriptome-wide TimeLapse-

seq analysis and a detailed analysis on different TAF1 regions, including individual 

exons and introns.  

 

4c.5 Results 

 TimeLapse-seq reads from XDP affected patient RNA and family matched RNA 

were analyzed using differential expression analysis, which revealed modest changes in 
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the total RNA population with SVA insertion (data not shown). Because previous work 

with SVA insertion diseases have been associated with changes in RNA processing, we 

further investigated TimeLapse-seq reads aligning specifically to the TAF1 locus. We 

observed a high degree of intron retention near intron 32, proximal to the site of SVA 

insertion (Fig 4.3.1). Recently, another group published the observation of XDP intron 

retention [148], underscoring the interest in RNA processing in the TAF1 locus. 

 

4c.6 Discussion 

 Retrotransposon insertions and subsequent changes in RNA processing and 

epigenetic regulation have been shown to contribute to the pathology of a number of 

diseases [149]. Interpretation of our TimeLapse-seq data from XDP affected individuals 

is limited due to relatively low read depth in intronic regions of the TAF1 locus. Future 

work will take advantage of the repertoire of RNA tools developed in the Simon lab to 

study a range of RNA dynamics in iPSC cells and the TAF1 locus specifically. Transient 

Figure 4.3.1. Browser shot of TimeLapse-seq reads aligning to the TAF1 locus. Data is 

derived from primary cells from XDP affected individuals and family-matched 

unaffected individuals (iPSC 1 and iPSC 2 are matched, and iPSC3 and iPSC 4 are 

matched). Intronic reads in intron 32 (highlighted in yellow), proximal to the SVA 

insertion site, are retained in XDP affected patient cells. 
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RNA reads generating from the TAF1 locus will be analyzed by short s4U pulses (TT-

TimeLapse-seq), and changes in splicing and RNA turnover will be analyzed using 

deeper TimeLapse-seq libraries. Each of these experiments will be improved by the 

optimized handling methodology described in Chapter 3.  
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Chapter 5 

Examining the dynamics of transcription start 

site switching with HDAC inhibition 

5.1 Author Contributions 

I performed all experiments with assistance from Josh Zimmer. I performed 

bioinformatic analyses with assistance from Josh Zimmer and Matthew Simon. 

 

5.2 Summary 

I performed TimeLapse-seq on 293T cells after treatment with histone deacetylase 

(HDAC) inhibitor trichostatin A (TSA). I observed changes in transcription start site 

(TSS) usage after TSA treatment for hundreds of transcripts, in which downstream start 

sites are upregulated and upstream start sites are repressed. We hypothesize that 

downstream TSS activation results in feedback to suppress upstream transcription, or that 

nucleosome remodeling activity functions to physically occlude the upstream TSS. To 

study potential mechanisms of TSS switching, I performed a detailed RNA-seq analysis, 

ChIP-qPCR for chromatin modifications, and TT-TimeLapse-seq to study transient 

transcription. I found that transcription and acetylation at switching TSSs change 

dramatically within minutes of TSA treatment. I am continuing work to assess the 

dynamics of transient transcription due to acute HDAC inhibition and the open chromatin 

landscape to determine the mechanism of TSS switching. 
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5.3 Introduction 

The ability for cells to specialize and adapt to their environment is provided in 

large part by the dynamic regulation of chromatin. Histone modifications define 

regulatory features and help coordinate factors that promote or suppress transcription. In 

addition, histone modifications and chromatin structure change drastically through 

processes including the cell cycle [150], X-chromosome inactivation [151], and 

differentiation [152]. Histone acetylation is frequently associated with regions of active 

transcription, including enhancer and promoter regions [153, 154]. Histone acetylation 

levels are regulated by processes of acetylation by histone acetyltransferases (HATs) and 

deacetylation by histone deacetylases (HDACs).  

 HDAC inhibitors are used clinically to treat certain cancers, in part because they 

lead to the induction of apoptosis pathways and because HDACs are known to act on 

non-histone proteins (including P53 [155]) that control cellular proliferation [156]. It has 

been observed in cell culture that treatment with HDAC inhibitors lead to increased 

acetylation in the gene body away from the promoter [157]. This gene body acetylation 

can result in alternative splicing due to increased PolII processivity, and has been 

observed to induce cryptic TSS initiation far downstream of the promoter [158, 159]. 

These so-called treatment-induced non-annotated TSSs (TINATs) can result in truncated 

and misfunctional proteins. Brocks and coauthors found that TINATs originate at long 

terminal repeats (LTRs), sequences originating from retrotransposon insertion into host 

chromosomal DNA. TINATs were induced by treatment with suberanilohydroxamic acid 

(SAHA), a class I and II HDAC (zinc hydrolase family) inhibitor structurally similar and 

with overlapping specificity for HDAC enzymes to the thoroughly characterized 
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trichostatin-A (TSA) [160]. The median distance between the new TSS and pre-existing 

TSS is 9 kb, and were generally not expressed in normal tissues except for testicular and 

fetal thymic samples.   

 Profiling of the transcriptome after HDAC inhibition shows widespread changes 

in gene expression, including the upregulation and downregulation of thousands of 

transcripts within hours of treatment [161, 162, 163]. Global changes in H4ac also occur 

within the first 6 hours of treatment, consistent with observed timescales of epigenetic 

regulation for acetylated histones [161]. Given the large degree of changes to 

transcription and RNA processing over timescale of hours, we decided to perform 

TimeLapse-seq after HDAC inhibition to better understand the early changes to the 

transcriptome after TSA treatment. 

 

5.4 Design 

To observe the transcriptional changes due to changes in histone acetylation, I 

treated 293T cells with HDAC inhibitor TSA for 6 h, then performed s4U metabolic 

labeling for 1 h followed by TimeLapse-seq. I determined changes in transcription 

through differential expression analysis for both total RNA-seq as well as inferred new 

reads based on T-to-C mutations. To study changes in RNA isoform usage due to TSA 

treatment, I performed differential exon usage analysis, and found widespread changes in 

transcription start site usage. Using ChIP-qPCR, I probed the levels of acetylation at pre-

existing and newly established transcription start sites, and performed a time course to 

determine the kinetics of acetylation changes. After determining that drastic changes 

occur in minutes after TSA treatment, I profiled transient transcription and start site 
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dynamics using TT-TimeLapse-seq and Start-seq after 10 and 30 minutes of TSA 

treatment. 

 

5.5 Results 

5.5.1 TimeLapse-seq transcriptional changes after TSA treatment 

Treatment of 293T cells with TSA for 6 h resulted in widespread changes in the 

transcriptome. I identified 1034 genes significantly upregulated and 780 genes 

significantly downregulated in total RNA (DEseq Padj < 0.05, log2-FC cutoff of 1.5). 

Using the mutations per read cutoff strategy as described in the methods section, I 

identified 963 genes significantly upregulated and 844 genes significantly downregulated 

in new RNA. Compared to the 1048 genes reported as “TSA responsive” in several cell 

types from a recently published ligation-based expression profiling dataset [162], 283 

genes are found in the top ~1000 most significant differentially expressed genes in total 

RNA after 6 h of TSA treatment in our dataset (DEseq Padj < 10-30). 

 

5.5.2 Alternative RNA isoform usage with TSA treatment 

 Apart from changes in transcription, I also observed changes in RNA processing 

after 6 h TSA treatment. I observed instances of alternative splicing after 6 h of TSA 

treatment, consistent with previous work demonstrating the effect of histone acetylation 

on PolII processivity and splicing factor binding [158]. In particular, I observed cassette 

exon skipping of exon 33 in FN1 (data not shown), a gene known to utilize different 

isoforms dependent on cellular context [164] and shown to be TSA responsive [158]. To 

further study changes in splicing due to TSA treatment in our data, I performed 
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differential exon usage analysis using DEXSeq to identify genes with significant changes 

in isoform usage due to TSA treatment in our RNA-seq data. There were 2363 genes 

displaying alternative exon usage (p < 0.05), recapitulating widespread changes in RNA 

isoform usage described in literature. To better assess the nature of alternative splicing 

with TSA, I inspected RNA-seq tracks for the 265 most significantly changed genes (p < 

10-7). Unexpectedly, 71 of these genes display changes in the first exon (including 

ZNF460, Fig 5.1), suggesting TSA treatment causes changes in transcription start site 

usage. Of the 71 initially observed genes with alternative start site usage, 67 display a 

relative increase in downstream TSS usage. To determine the approximate positions of 

transcription start sites from RNA-seq data, I visually examined aligned data using the 

IGV genome browser. I assigned TSS locations to the nearest annotated start site from 

Figure 5.1: Example RNA-seq tracks and Sashimi plots of ZNF460 gene undergoing 

alternative TSS usage with TSA treatment. Numbers indicate observations of splice 

junction containing reads spanning indicated arc. Without treatment, upstream and 

downstream splice sites are utilized, though with TSA treatment usage of the upstream 

splice site is suppressed. 
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NCBI refseq and/or locations of unambiguous read density at the 5’-end of the gene.  The 

majority of these switching TSSs are within a range of 200-5000 nt downstream of the 

first TSS, with a median distance of 600 nt, shorter than the previously characterized 

TINATs [159]. To quantify the observed changes in total RNA, I determined the number 

of RNA-seq reads in the range of 0-200 nt downstream of upstream and downstream start 

sites, and normalized these reads to gene-specific expression changes between TSA and 

no treatment (Fig 5.2). I found that there was no change in normalized reads following 

the downstream TSS, but there was a notable decrease in normalized reads following the 

upstream TSS.  

 

 

 

 

Figure 5.2: Suppression of total RNA 

following upstream TSSs after 6 h of 

TSA treatment. RNA-seq reads were 

counted in the region of 0-200 nt 

downstream of each TSS, and log2-

FC with TSA treatment was calculated 

and normalized to the overall log2-FC 

of the gene. 
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5.5.3  Transcription start site analysis after 6 h of TSA treatment 

 To further characterize the changes in TSS usage with TSA treatment, Josh 

Zimmer performed Start-seq on samples treated with TSA for 6 h. Start-seq utilizes 5’-

cap enrichment and gel electrophoresis size selection to isolate newly initiated RNA 

[165].  I then performed differential expression analysis on TSSs identified by TSScall. I 

inspected the 100 most significantly changes TSSs (p < 10-10), several of which were 

identified through total RNA-seq analysis. I then used peak locations from Start-

TimeLapse-seq to precisely define the location of upstream and downstream TSSs for the 

expanded list of switching genes (n = 158). Using the positions of TSSs as defined by 

TSScall and through visual inspection, I determined the number of reads aligning to 

upstream and downstream sites. Consistent with mRNA analysis, the Start-seq abundance 

at upstream TSSs appears to be suppressed (data not shown).  

 

5.5.4 Analysis of chromatin modifications at switching TSSs 

 I next performed meta analyses on ChIP-seq data downloaded from literature to 

profile the chromatin state of the upstream and downstream TSSs. As expected, the 

upstream TSS displays a nucleosome depleted region flanked by chromatin marks 

H3K4me3 as well as acetylation. The downstream TSS also resides in a nucleosome 

depleted region marked with a downstream H3K4me3 peak of equal magnitude to the 

upstream peaks. In contrast, the upstream TSS is strongly acetylated, while the 

downstream TSS displays only weak acetylation. The chromatin landscape at 

downstream TSSs resembles that of poised enhancers, which are marked by H3K4me1 

but devoid of acetylation  
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 To determine whether TSS switching is general to all genes with similar gene 

structures, I created a control set of genes by pulling gene annotations from UCSC and 

filtered for genes with two annotated start sites separated by distances within the same 

range (200-5000nt) of the majority of switching genes (n = 1039). The acetyl landscape 

of the control upstream start sites appears similar to those of switching upstream start 

sites. I also compared the acetyl landscape of promoters after SAHA treatment from 

literature data  [157]. Treatment with SAHA leads to an increase in relative acetylation 

directly downstream of the TSS, consistent with literature observations. Together these 

results suggest that the downstream start sites are poised for activation, and are activated 

upon HDAC inhibition and acetylation in the gene body.  

 To assess the changes in acetylation due to TSA at specific upstream and 

downstream TSSs, I next performed ChIP-qPCR in 293T lysates using a pan-Kac 

Fig 5.3: H3K27ac enrichment increases in the gene body following SAHA treatment. 

ChIP-seq data obtained from Greer et al. 2015. H3K27ac signal surrounding the 

promoter region was clustered into 4 classes based on no HDACi control (DMSO). 

Classes of genes with low levels of acetylation (clusters 2 and 4) display an increase 

in acetylation downstream of the promoter, consistent with previous observations.  



67 
 

antibody and an H4ac antibody, with and without 6 h TSA treatment. I designed qPCR 

primers against several loci that undergo TSS switching, as well as control gene-poor 

genomic regions that are expected to be devoid of acetylation. I found that the control 

intergenic regions increased in acetylation (pan-Kac mean fold change = 20.9, H4ac 

mean fold change = 10.6, n = 2), consistent with reports of increased acetylation in 

intergenic regions with HDAC inhibition [157]. The regions corresponding to the 

downstream TSS appear to increase in both total acetylation and H4ac (pan-Kac mean 

fold change = 3.1, H4ac mean fold change = 2.1, n = 5), consistent with their increase in 

TSS usage in TimeLapse-seq data. Acetylation appears to decrease at the upstream TSS 

(pan-Kac mean fold change = 0.6, H4ac mean fold change = 0.3, n = 6), suggesting not 

only that the downstream TSS is activated but that the upstream TSS is being suppressed 

with TSA treatment. 

 

5.5.5 Profiling dynamics of TSS switching after TSA treatment 

Our TimeLapse-seq data analyzes the dynamic transcriptome after 6 hours of 

TSA treatment. Global changes in histone acetylation are known to occur within the first 

6 hours, and depending on the modification site and chromatin context, acetylation is 

dynamic on the timescale of minutes [166]. To determine the time scale on which the 
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TSS switching occurs, I designed qPCR primers against the upstream and downstream 

spliced RNA isoforms for several genes. I performed TSA treatment in 293T cells for 15 

min, 45 min, and 90 min, followed by 15 min of s4U metabolic labeling after each time 

point. I then performed MTS-biotin enrichment and RT-qPCR to measure the relative 

upstream vs. downstream isoform usage. I found that the relative change in transcription 

in unspliced primers for ZNF460 begins within the first 15-30 min of TSA treatment (Fig 

5.4). In spliced primer sets, there is a delay in observing upstream vs. downstream 

Fig 5.4: TSA switching gene ZNF460 undergoes change in relative usage within first 

30 min of treatment. a) Locations of primers to assess relative abundance of ZNF460 

isoforms. B) Scheme of  MTS-biotin enrichment of s4U treated cells after a time 

course of TSA treatment. c) Relative abundance of downstream vs upstream ZNF460 

expression following TSA treatment by RT-qPCR.  
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switching, occurring within the first 45-60 min of TSA treatment. These results suggest 

the switch in TSS occurs in an acute manner, well within the first hour of TSA treatment.  

  I then performed a time course of TSA treatment followed by ChIP-qPCR for 

H4ac. Consistent with prior reports, I observed that the level of H4ac spikes within the 

first 15-45 min of TSA treatment for both upstream and downstream sites (Fig 5.5) [166]. 

The deacetylation dynamics appear different for upstream and downstream sites, 

however, as the level of acetylation after 180 min of TSA treatment remains high relative 

to t = 0 for downstream TSSs, but returns to or drops below t=0 for upstream TSSs. 

Figure 5.5: H4-acetylation exhibits highly dynamic behavior within minutes of TSA 

treatment. ChIP-qPCR relative abundance of pan-H4ac using primers located at 

upstream and downstream TSSs over a time course of TSA treatment. H4ac signal 

peaks for both upstream and downstream TSSs, but appears to remain higher at 

downstream TSSs after 180 min of treatment. 
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These results suggest widespread and dynamic changes to the chromatin following TSA 

treatment that may contribute to significant changes to chromatin structure and the 

regulation of activity at alternative promoters.  

5.5.6 Measuring transient transcription after TSA treatment 

To measure the dynamics of the transient transcriptome after HDAC inhibition, I 

performed TT-TimeLapse-seq with 5 min of s4U after short (10 min and 30 min) TSA 

treatment. I filtered for bona fide new transcripts across the gene body by using the 

fraction of mutations approach as described in the methods. I input these inferred new 

reads into k-means clustering to assess the range of responses over time to TSA. I found 

that genes exhibit a wide range of acute transcriptional responses over the first 30 

minutes of TSA treatment (Fig 5.6). Over 50% of TSS switching genes are in clusters 1 

Figure 5.6: Genes display a wide range of acute transcriptional responses to short 

TSA treatment. Log2-FC is plotted on the Y-axis for inferred new reads from TT-

TimeLapse-seq data after 10 min (light blue) or 30 min (dark blue) TSA treatment. 

Clusters were determined through k-means clustering (see methods). 
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and 2, which display the highest degree of downregulation after 30 min of TSA 

treatment. 

  

5.6 Discussion 

Inhibiting the biochemical activity of histone deacetylation results in profound 

effects on chromatin and on the dynamics of transcription. I found in particular that 

treatment with HDAC inhibitor TSA results hundreds of significantly differentially 

expressed transcripts after 6 hours. In addition, hundreds of genes are changed in their 

relative usage of TSSs after TSA treatment. Much of the reported work profiling 

transcription after HDAC inhibition is performed after 24 hours or more of drug 

treatment, but our results and others in literature suggest [166] that many effects on 

chromatin occur within minutes. The fast kinetics of changing acetyl landscape opens up 

a number of directions for study. My initial profiling of transient transcription in the 

promoter regions of switching genes does not indicate induction of antisense transcription 

generated from the downstream TSS, inconsistent with a model of transcriptional 

interference from downstream activation. Despite this inconsistency, further 

characterization of the transient transcriptome through early time points of TSA treatment 

will provide insights into the rapidly changing chromatin landscape after HDAC 

inhibition. In addition, profiling of the accessible chromatin landscape in early time 

points of TSA treatment may indicate whether occlusion of the upstream TSS is 

responsible for the observed repression of upstream transcription. It has been 

demonstrated previously in yeast that nucleosome remodeling activity at gene promoters 

is important to preserve the fidelity of transcription initiation and reduce cryptic initiation 
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[167], and that chromatin remodeling and nucleosome repositioning is important for 

changing transcriptional profiles in a number of contexts [68, 168]. In addition, the 

median distance between upstream and downstream TSSs in our switching genes is about 

600 nt, a distance equivalent to approximately 4 nucleosome units. In yeast, the SER3 

serine biosynthetic gene has been demonstrated to be suppressed by transcriptional 

interference from the tandem promoter SRG1 oriented in the sense direction 400 nt 

upstream [169]. Expression of SER3 in serine depleted media was found to be dependent 

on the repression of upstream SRG1 [170], and furthermore this repression is dependent 

on nucleosome remodeling activity by Spt6 to occlude the upstream TSS [171]. A TSA 

time course with a genome-wide accessibility assay such as ATAC-seq will provide 

insights into whether the suppression of upstream transcription could be due to rapid 

chromatin remodeling activity leading to occlusion of the upstream TSS. Finally, an 

investigation into gene-specific functional consequences of RNA isoform usage may 

provide insights into biological disease types. For example, profiling of alternative 

isoform usage in multiple cancer cell types has demonstrated that the expression of 

specific alternative RNA isoforms is associated with decreased survival rate [172]. One 

such example of a switching gene with differential cancer outcome is ZNF12, a 

transcription factor containing a KRAB box transcriptional repression domain in one of 

its commonly expressed isoforms. We observe in our data TSS switching in the ZNF460 

gene, which also contains a KRAB box domain in one of its isoforms. Isoform switching 

events in our data change the sequence of 3’-UTR and/or the open reading frame, 

potentially changing the stability of the mRNA or function of the protein. 
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 The data presented in this chapter present changes in TSS usage distinct from 

previous HDACi-induced cryptic initiation [159], and open up a number of potential 

mechanisms for the suppression of upstream transcription. Presented in Figure 5.7 are 

two potential mechanisms for TSS switching, driven predominantly by transcriptional 

interference or nucleosome remodeling activity. Ongoing work to assess the transient 

transcription and chromatin accessibility after short TSA treatments will help to refine 

these models and provide further insights into the regulation of chromatin. 
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Figure 5.7: Two potential models for TSS switching with TSA treatment. 1) Increase 

of acetylation in gene body results in increased transcriptional activity interfering 

with upstream TSS. 2) Chromatin remodeling activity at downstream TSS leads to 

occlusion of upstream TSS by nucleosomes.  
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Chapter 6 

Methods and analyses 

 

6.1 LC-MS analysis of nucleosides 

To a solution of s4U (50 μM) and ammonium bicarbonate (10 mM) was added 

and amine (e.g.TFEA, 600 mM final). A solution of oxidant (e.g. mCPBA, 10 mM final) 

was added dropwise to the reaction mixture. After 1 h at 25°C, the reaction was analyzed 

by reverse-phase LC-MS with a Hypersil GOLD column (Thermo, 3 μm, 160 × 2.1 mm) 

using chromatography conditions described in Duffy et al. 2015 [80]. Masses were 

collected using positive ion mode, and extracted ions were identified and integrated using 

Agilent MassHunter software. 

 

6.2 Nuclear magnetic resonance analysis of nucleobase chemistry 

4-thiouracil (4.3 mg, 1 equiv) was dissolved in DMSO-d6, and TFEA (3.4 μl, 1.3 

equiv) was added to the solution. After mixing, a solution of NaIO4 in DMSO-d6 (12.3 

mg, 1.7 eq) was added to the nucleobase and amine solution, and the reaction was 

allowed to proceed at 45 °C for 4 h. 1H NMR spectra were processed using the 

MestReNova software. 

 

6.3 NotI restriction endonuclease assay 

An RNA containing a single s4U nucleotide was in vitro transcribed (IVT) from a 

synthetic DNA template (see Table 1) strand using T7 RNA polymerase and s4UTP in 



76 
 

place of UTP for 16 h at 37°C. The reaction mixture was treated with TURBO DNase for 

1h at 37°C. The RNA was purified using denaturing PAGE, and the resulting band was 

extracted by crushing the gel slice and soaking it in extraction buffer (1 mM EDTA, 1 

mM DTT, 20 mM Tris, 300 mM NaOAc pH 5.2) at 4°C for 4 h. The supernatant was 

passed through a 0.45 μM syringe filter, and the RNA was ethanol precipitated and 

washed with 75% ethanol before resuspension in nuclease-free water. 

IVT RNAs were screened for optimal TimeLapse chemistry as follows. RNA 

(120 ng) was added to a mixture of amine and water. A solution of oxidant was then 

added dropwise, and the reaction mixture was incubated at the temperature and time 

chosen for the particular screen. The RNA was then ethanol precipitated and washed 

three times with 75% ethanol before resuspension in nuclease-free water. 

After chemical treatment, IVT RNA (50 ng) was reverse transcribed with 

SuperScript III according to the manufacturer's directions. The cDNA was PCR amplified 

for 30 cycles with a fluorescent forward primer, then it was amplified an additional 2 

cycles using 1/5 of the previous PCR reaction material with nonlabeled primers. The 

amplified PCR product was then incubated with NotI HF for 1 h at 37°C. The fluorescent 

products were visualized using native PAGE followed by scanning with a Typhoon FLA 

imager, and the proportion of cut product was determined relative to a positive control 

(with C in the RNA instead of s4U) using ImageJ. 

 

6.4 Primer-extension assay 

IVT RNA containing a single s4U nucleotide (200 ng RNA) was treated with 

TimeLapse chemistry and purified as described above. Chemically treated IVT RNA (34 
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ng) was then annealed to a Cy5 5′ end-labeled primer, and reverse transcription was 

performed according to manufacturer's instructions using the SmartScribe First Stand 

cDNA Synthesis kit (15 min). The reaction was then treated with RNase H, and the 

fluorescent products were visualized using urea PAGE followed by scanning with a 

Typhoon FLA imager. Full-length and truncated RT products were quantified by 

densitometry using ImageJ. 

 

6.5 Targeted TimeLapse sequencing 

MEF cells were grown at 37 °C in DMEM containing 10% FBS and 1% P/S at 

approximately 60% confluence, and the media was replaced with media supplemented 

with s4U (700 μM). After 2 h, the cells were rinsed with PBS, resuspended in TRIzol 

reagent, and stored overnight at −80°C. Following chloroform extraction, total RNA was 

ethanol precipitated including 1 mM DTT to prevent oxidation of the s4U RNA and 

washed with 75% ethanol. Total RNA was resuspended and treated with TURBO DNase, 

then extracted with acidic phenol:chloroform:isoamyl alcohol and ethanol precipitated 

and washed as described above. Isolated total RNA was added to a mixture of TFEA (600 

mM), EDTA (1 mM) and sodium acetate (pH 5.2, 100 mM) in water. A solution of 

NaIO4 (10 mM) was then added dropwise, and the reaction mixture was incubated for 1 h 

at 45 °C. Potassium chloride (300 mM) and sodium acetate (pH 5.2, 300 mM) were 

added, and the reaction mixture was allowed to stand on ice for 10 min before 

centrifugation (>10,000 r.p.m., 30 min, 4°C) to precipitate remaining periodate. The 

RNA in the supernatant was then ethanol precipitated and washed three times with 75% 

ethanol before resuspension in nuclease-free water. The chemically treated RNAs were 
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then reverse transcribed using a mixture of mouse Actb- and Gapdh-specific mRNA RT 

primers (see Table 1). The resulting cDNA was then amplified with Phusion polymerase 

using corresponding forward PCR primers to produce PCR amplicons approximately 150 

nt in length. An Illumina sequencing library was constructed using the Illumina TruSeq 

Index adapters. Paired-end 75 bp sequencing was performed on an Illumina HiSeq 2500 

instrument. Sequencing reads were trimmed to remove adaptor sequences and aligned to 

the mouse genome using Bowtie2 [173]. Aligned reads were parsed to identify mutations 

at each nucleotide position in the Actb and Gapdh mRNAs using a published software 

package [90]. Raw mutation probabilities were determined by dividing the number of 

recorded mutation events by the number of reads at that position. Mutation probabilities 

were normalized to appropriate control samples and filtered by read depth (only positions 

with depth >3,000 were included in analyses). Analyses and figure plot generation were 

performed in R using the tidyverse, corrplot, and multiplot packages [174, 175]. The 

enrichment in mutation rates was tested for significance using a two-sided Wilcoxon test. 

Targeted sequencing was performed in duplicate using biologically distinct samples. 

Targeted TimeLapse-seq of K562 RNA was performed similarly with the 

following exceptions. Cells were grown at 37°C in RPMI containing 10% FBS and 1% 

P/S. At approximately 50% confluence, the media was supplemented with a range of s4U 

concentrations (10–40 μM) for 1 h. Total RNA was isolated and chemically treated as 

described previously. The chemically treated RNAs were then reverse transcribed using a 

mixture of human MYC-specific mRNA RT primers (see Table 1). A targeted 

sequencing library was prepared and analyzed as described above. 
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6.6 Transcriptome-wide TimeLapse-seq 

For experiments described in Chapter 2, MEF cells were grown at 37 °C in 

DMEM containing 10% FBS and 1% P/S. At approximately 60% confluence, the media 

was replaced and supplemented with s4U (1 mM). The cells were incubated at 37°C for 1 

h, at which point total RNA was isolated and chemically treated as described in the 

targeted sequencing section. For heat shock analyses, at approximately 60% confluence, 

the media was replaced and supplemented with s4U (1 mM), and heat-shocked cells were 

incubated at 42°C for 1 h. RNA was prepared as described for the Targeted TimeLapse-

seq libraries. For each sample, 10 ng of total RNA was used to construct a sequencing 

library using the Clontech SMARTer Stranded Total RNA-Seq kit (Pico Input) with 

ribosomal cDNA depletion. Paired-end 100 bp sequencing was performed on an Illumina 

HiSeq 4000 instrument. TimeLapse-seq was performed in duplicate using biologically 

distinct samples for experimental samples both with and without heat shock. Raw and 

processed sequencing data have been submitted to the GEO database. 

For experiments performed in Chapters 4 and 5, the updated handling protocol 

was utilized upstream of TimeLapse chemistry. s4U metabolic labeling times and 

concentrations are noted in the results section. After TimeLapse chemical treatment, 

RNA was isolated using an equal volume of RNAclean beads according to 

manufacturer’s instructions, then incubated in reducing buffer (10 mM DTT, 100 mM 

NaCl, 10 mM Tris pH 7.4, 1 mM EDTA) for 30 min at 37°C. RNA was then again 

isolated using an equal volume of RNAclean beads. 
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6.7 Cell viability 

MEF cells were grown at 37°C in DMEM containing 10% FBS and 1% P/S. Cells 

were plated at 106 cells/mL in a 96-well microtiter plate and allowed to recover 

overnight. Cells were then treated in triplicate with increasing concentrations of s4U (0–1 

mM) for 1 h, and the ATCC MTT Cell Proliferation Assay kit was used according to 

manufacturer's instructions to assess cell viability. 

 

6.8 Standard isolation of RNA 

After metabolic labeling of 293T cells in a 10 cm dish, media was aspirated and 

cells were rinsed once with PBS. 1 ml of Trizol was then added to the cell culture plate 

and the cell lysate was resuspended until soluble, transferred to a 1.5 ml Eppendorf tube 

and stored at -80°C. After thawing the trizol sample, 200 ul chloroform was added and 

the sample was shaken vigorously for 15 seconds and transferred to a heavy phase lock 

tube. The sample was incubated for 3 min at RT, then centrifuged at 4°C for 10 min at 

12,000 x g. The aqueous phase was transferred to a fresh 1.5 ml Eppendorf tube, an equal 

volume of isopropanol plus 100 uM DTT was added and samples were mixed by 

inversion 10 times. The samples were incubated in the dark for 10 minutes, then 

precipitated in a centrifuge at 4°C for 20 min at 22,000 x g. The pellet was washed twice 

with 75% ethanol, then dried and resuspended in DEPC treated water. The sample was 

then treated with Turbo DNAse according to manufacturer instructions, then purified by 

ethanol precipitation.  
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6.9 Updated isolation of RNA to reduce thiol-specific read loss 

This protocol follows the standard isolation of RNA with the following 

modifications: 1. after metabolic labeling, the cell plate was rinsed once with ice cold 

PBS. 5 ml ice cold PBS was added to the plate, and cells were removed using a cell 

scraper. The cell suspension was transferred to a 15 ml lobind conical tube on ice, and the 

plates were rinsed with 5 ml of ice cold PBS to collect remaining cells. The cells were 

pelleted at 4°C for 5 min at 300 x g, and the supernatant was aspirated. The pellet was 

then resuspended in 1 ml of Trizol. 2. After Turbo DNAse treatment, RNA was purified 

using an equal volume of RNAclean beads according to manufacturer instructions.  

 

6.10 K562 TT-TimeLapse-seq 

K562 cells were grown at 37°C in RPMI containing 10% FBS and 1% P/S. At 

approximately 50% confluence, the media was supplemented with s4U (1 mM). The cells 

were incubated at 37°C for 5 min, at which point total RNA isolation and genomic DNA 

depletion were performed as described above. 50 μg of total RNA was subjected to MTS 

chemistry, followed by biotinylation and streptavidin enrichment essentially as 

previously described [80] with the following modification: after SAV beads were washed 

three times with high-salt wash buffer (1 M NaCl, 100 mM Tris pH 7.4, 10 mM EDTA, 

0.05% Tween), beads were incubated in TE buffer (10 mM Tris pH 7.4, 1 mM EDTA) at 

55°C for 15 min, followed by two washes with prewarmed 55°C TE buffer. After elution 

from SAV beads, enriched RNA was purified using one equivalent volume of Agencourt 

RNAclean XP beads according to manufacturer's instructions instead of purification by 

ethanol precipitation. Enriched RNA and input RNA were chemically treated as 
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previously described. Chemically treated RNA was purified using 1 equivalent volume of 

Agencourt RNAclean XP beads according to manufacturer's instructions. Purified 

material was then incubated in a reducing buffer (10 mM DTT, 100 mM NaCl, 10 mM 

Tris pH 7.4, 1 mM EDTA) at 37 °C for 30 min, followed by a second RNAclean bead 

purification. For each sample, all enriched material or 10 ng of total RNA input was used 

to construct a sequencing library using the Clontech SMARTer Stranded Total RNA-Seq 

kit (Pico Input) with ribosomal cDNA depletion. Paired-end 150 bp sequencing was 

performed on an Illumina HiSeq 4000 instrument. TimeLapse-seq was performed in 

duplicate using biologically distinct samples for experimental samples. Raw and 

processed sequencing data have been submitted to the GEO database. 

 

6.11 TSA treated 293T TT-TimeLapse-seq 

293T cells were grown at 37°C in DMEM containing 10% FBS and 1% P/S. Cells 

were then treated with Trichostatin A (400 nM) for 10 min, 30 min, or 6 h, followed by 

treatment with 1 mM s4U for 5 min. RNA isolation and DNAse treatment was performed 

as described in the updated isolation protocol. After DNAse treatment, 293T RNA was 

mixed with a 4% spike-in of s4U-treated S2 RNA for normalization. MTS enrichment, 

TimeLapse chemistry, and sequencing library preparation were then performed as 

described above. 

 

6.12 Samples for TimeLapse-seq of K562 mRNA 

K562 cells were grown as previously described. At approximately 50% 

confluence, the media was supplemented with s4U (100 μM). The cells were incubated at 
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37°C for 4 h, at which point total RNA was isolated using the RNeasy mini kit with the 

following modifications: buffers RLT and RPE were supplemented with 1% final 2-

mercaptoethanol (BME); an additional 80% EtOH wash was performed after the RPE 

step; and the column was spun at maximum speed for 5 min to dry before elution with 

water. The isolated RNA was then chemically treated and purified as previously 

described. For each sample, 10 ng of total RNA was used to construct a sequencing 

library using the Clontech SMARTer Stranded Total RNA-Seq kit (Pico Input) with 

ribosomal cDNA depletion. Paired-end 150 bp sequencing was performed on an Illumina 

HiSeq 4000 instrument. TimeLapse-seq was performed in duplicate using biologically 

distinct samples for experimental samples. Raw and processed sequencing data have been 

submitted to the GEO database. 

 

6.13 Samples for TimeLapse-seq in miRNA 

 Cells expressing WT HSUR1 or empty-vector were treated in duplicate with s4U 

for 6 h, 12 h, or untreated, then small RNAs were gel purified. 3’ and 5’ adapters were 

ligated to purified small RNAs, and the ligated products were treated with TimeLapse 

chemistry as described previously. Excess oxidant was then removed by addition of 300 

mM KCl and 300 mM sodium acetate, followed by centrifugation at 4°C for 30 min at 

20,000 x g. The supernatant was transferred to a fresh 1.5 ml LoBind Eppendorf tube, 

and was then ethanol precipitated and washed twice with 75% EtOH. The pellet was 

dried, resuspended in nuclease-free water, and SR primer was reannealed prior to reverse 

transcription using SmartScribe RT. The remainder of the sequencing library protocol 

was prepared according to the NEBNext Small RNA Library prep kit manual. 
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6.14 Transcriptional inhibition 

K562 cells were grown as described above. At approximately 50% confluence, 

cells were treated in duplicate with actinomycin D (2 μg/mL final) for 30 min, 1 h, 3 h, 5 

h, and 9 h, or left untreated. Total RNA isolation and genomic DNA depletion were then 

performed as previously described. RT was performed using the SuperScript VILO 

cDNA synthesis kit, and qPCR was performed using primers specific to ACTB, DHX9, 

and ASXL1. qPCR ct values for DHX9 and ASXL1 were then averaged and normalized 

to those of ACTB for each timepoint. The normalized fraction remaining was estimated 

for each primer pair by dividing the relative abundance of each timepoint by the relative 

abundance at t = 0. 

 

6.15 Start-seq 

 Start-seq was performed as described in Nechaev et al. [165] using the same RNA 

isolated for TT-seq analyses. Start RNA peaks were called using TSSCall with default 

settings with a read threshold of 15. Locations of called TSSs were input as exon features 

into DEXSeq [176] for differential expression analysis, and genes with significant 

changes in TSS uasge (P < 10-10) were inspected manually for transcripts with upstream 

TSS suppression.  

 

6.16 ChIP-qPCR 

 30 million 293T cells were treated with trichostatin A (400 nM) for indicated 

amount of time ranging from 15 min to 6 h. Media was aspirated and plates were rinsed 
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with PBS. Cells were fixed with 1% formaldehyde and crosslinked with shaking for 5 

min. Formaldehyde was quenched with 125 mM glycine with shaking for 5 min, 

followed by 2 rinses with cold PBS. Cells were scraped from plates in 10 mL cold PBS 

and pelleted in a centrifuge. Cells were lysed 4 mL in ChIP Lysis Buffer (50 mM HEPES 

pH 7.9, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100), 

incubated on ice for 10 min, and pelleted at 4oC for 5 min at 4,000 RPM. Supernatant was 

removed and the pellet was washed through resuspension and pelleting twice in 3 mL 

ChIP Wash Buffer (10 mM Tris-Cl pH 8.1, 200 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM 

EGTA pH 8.0). The pellet was gently washed without resuspension twice with 1.5 mL 

ChIP Shearing Buffer (0.1% SDS, 1 mM EDTA, 10 mM pH 8.1). The pellet was then 

resuspended in 2 mL ChIP Shearing Buffer and sheared in a 1 mL Covaris tube with the 

following settings: 140 W, 5% duty cycle, 200 burst/cycle, 12 min. Sheared fractions 

were combined and were mixed with 230 ul 10% Triton X-100 and 69 ul 5 M NaCl, then 

spun in 1.5 mL Eppendorf tubes at max speed for 10 min. To the supernatant was added 

either H4ac or pan-Kac antibody, except for 100 uL reserved for input. The IP was 

incubated at 4°C overnight, then added to 30 ul Protein G DynaBeads pre-equilibrated 

with 0.5 ml ChIP Shearing Buffer and incubated at 4°C for 1.5 h. The beads were washed 

in 1 mL for 5 min for each of the following steps: 2x ChIP Low Salt Buffer (0.1% SDS, 

1% Triton X-100, 2 mM EDTA, 20 mM Hepes-KOH pH 7.9, 150 mM NaCl), 2x High 

Salt Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Hepes-KOH pH 7.9, 

500 mM NaCl), 1x LiCl Buffer (100 mM Tris-HCl pH 7.5, 0.5 M LiCl, 1% NP-40, 1% 

Sodium deoxycholate), 1x TE buffer. Beads were resuspended in 100 ul ChIP PK buffer 

(20 mM HEPES pH 7.9, 1 mM EDTA, 0.5% SDS), to which 2 ul proteinase K was added 
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and samples were incubated at 50°C for 30 min with shaking. Beads were captured with a 

magnet and supernatant was collected, to which was added 3 ul 5M NaCl and 0.5 ul 

RNase A, and samples were incubated overnight at 65°C. 1.5 ul proteinase K was added 

and samples were incubated for 1 h at 50°C with shaking. DNA was purified using a 

Qiaquick PCR purification kit. qPCR was then performed as previously described.  

 

6.17 Sequencing alignment and mutational analysis. 

Reads were filtered for unique sequences using FastUniq [177], trimmed using 

cutadapt [178] to remove Illumina adaptor sequences filtering for reads greater than 20 nt 

(−minimum-length = 20) and aligned to the mouse GRCm38 or human GRCh38 genome 

and transcriptome annotations using HISAT2 [179], using default parameters and–mp 

4,2. Files were further processed with Picard tools (http://broadinstitute.github.io/picard/) 

including FixMateInformation, SortSam, and BuildBamIndex. The samtools [180] 

software was used to retain only reads that aligned uniquely (flag: 83/163, 99/147), with 

MAPQ ≥ 2, and without insertions (because of ambiguity in mutational analysis) for 

further analysis. Reads that uniquely map to the human GRCh38 version 26 (Ensembl 88) 

or mouse GRCm38 (p6) were identified using HTSeq-count using union mode. Reads 

mapping to only mature isoforms or to anywhere in the gene body were determined 

separately and compared to identify intron-only reads. To determine the number of 

uridine residues inferred from each read, and the sites of T-to-C mutations, the aligned 

bam files were processed in R using Rsamtools 

(http://bioconductor.org/packages/release/bioc/html/Rsamtools.html), and the sites and 

numbers of mutations were determined using a custom R function (available upon 
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request). Only mutations at positions with a base quality score of greater than 45 that 

were at least 3 nt from the end of the read were counted. Reads were excluded where 

there were greater than five T-to-C mutations, and these mutations did not account for at 

least one-third of the observed mutations (NM tag). Without adequate filtering, SNPs 

could interfere with TimeLapse analysis. To identify sites of SNPs (or RNA 

modifications that could be misidentified as TimeLapse mutations), we used the 

following two strategies. First, we identified T-to-C SNP sites in control samples using 

bcftools [181] with default options and excluded these sites from our analysis. Second, 

we compiled locations where T-to-C mutations were high in non-s4U-treated controls and 

excluded these sites from analysis. Once the putative SNPs were filtered, the total 

number of unique mutations in each read pair was counted. To examine the distribution 

of reads with each minimum number of T-to-C mutations, the bam files were filtered 

using Picard tools. To make genome-coverage tracks, STAR aligner 

(inputAlignmentsFromBam mode, outWigType bedGraph) [182] was used, and the 

tracks were normalized using factors derived from RNA-seq analyses using values from 

DESeq2 (estimateSizeFactors) [183]. Tracks were converted to binary format (toTDF, 

IGVtools) and visualized in IGV [184]. 

 

6.18 Secondary structure analysis 

Aligned reads from the 4 h K562 TimeLapse-seq experiment overlapping the 5′ 

stem loop of 7SK were extracted using samtools. A Python script developed for analyses 

of chemical probing data (RTEventsCounter [90]) was used to calculate the U-to-C 

mutation frequency for each uridine nucleotide. These frequencies were normalized by 
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subtracting mutation frequencies of control samples that were not subjected to 

TimeLapse chemistry. The frequencies of mutations at each position were binned and 

mapped onto a conformational model of this region of human 7SK [185]. Each nucleotide 

was classified as either single stranded or basepaired. A two-sided Wilcoxon test was 

used to determine the significance of differences between mutation rates of the 

basepaired and single-stranded nucleotides. 

 

6.19 Estimation of the fraction of new transcripts and transcript half-lives 

Two different models were used to examine the mutation distribution in 

TimeLapse-seq data set: a simpler Poisson model (which does not take into account the 

uridine content of different reads) and a binomial model that does take the number of 

uridines into account. We obtained consistent results from both models. For the simpler 

Poisson model, for each sample (sj), the distribution of T-to-C mutations (Yi) was 

determined in each read, and the reads were grouped based on the transcripts to which 

they map. A negative control sample (no s4U treatment) was used to estimate the 

background rate of read pairs containing T-to-C mutations that map to each transcript. 

These frequencies depended on the cell line used (MEF samples required higher s4U 

treatment to obtain similar levels of mutations compared to K562 cells) as well as the 

sequencing experiment (different samples led to different background rates independent 

of chemistry or s4U treatment). The mutation rate and fraction of new transcripts was 

modeled as a two-component mixture of Poisson distributions with probability mass 

function: 
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where θn is the fraction of new transcripts, λO is the rate of background mutations 

(determined from −s4U controls), λn is the rate of mutations found in new transcripts, and 

yi is the number of passing T-to-C mutations found in read i. Reasonable estimates of 

these values could be approximated by examining the mutation rates in fast turnover 

RNAs such as introns. To obtain more objective estimates of the global parameters λO 

and λn while allowing for low levels of transcript-to-transcript variability, we used a 

Bayesian hierarchical modeling approach using RStan software (Version 2.16.2 [186]) 

that uses no-U-turn Markov Chain Monte Carlo (MCMC) sampling. To estimate a global 

mean and s.d. for λO and λn, we used weakly informative priors (see below). We 

estimated gene-specific rates by drawing from the global mean and s.d., with a mixing 

rate with an uninformative prior (θn ∼Uniform(0,1)) where the mixing rate (θn) estimates 

the fraction of each transcript that was new: 

 

Global parameters: 

 λ°,μ ∼ Normal(μ = 0, σ = 1) 

 λn,μ ∼ Normal(μ = 0, σ = 10) 

 λ°,σ ∼ Normal(μ = 0, σ = 10) 

 λn,σ ∼ Normal(μ = 0, σ = 10) 

  λ∼ Normal(μ = λ°,μ, σ = λ°,σ) 

 
 g ∈ {1, 2, ..., ngenes} 
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Priors: 

  λn,g ∼ Normal(μ = λn,μ, σ = λn,σ) 

  λ°,g ∼ Normal(μ = λ°,σ, σ = λ°,σ) 

for read i ∈ {1, 2, ..., ng}: 

 

Attempts to model entire TimeLapse-seq data sets using this approach were 

computationally challenging, but we found that consistent results were obtained using 20 

representative transcripts from each sample. The majority of these transcripts were 

chosen randomly from all reasonably expressed transcripts (>200 reads), but we included 

few transcripts that were hand chosen to ensure the modeling included both fast and slow 

turnover RNAs such as Myc and Actb. The results using 20 transcripts were consistent 

with results from 200 transcripts. In the case of the MEF samples shown in Figure 2.5, 

the λo was estimated as 0.07 mutations/read (50% credible interval 0.062-0.074), and λn 

was estimated as 2.3 mutations/read (2.298 mutation/read, 50% CI 2.10–2.30 for heat 

shock; 2.288 mutation/read, 50% CI 1.90-2.29 for untreated). 

Once these global parameters were determined, they were used to estimate the 

fraction of new transcripts (θnew), using expectation maximization by minimizing the log 

likelihood using the nlm function in the MASS package in R:  
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The 95% Wald confidence interval was calculated using the Hessian (nlm option hessian 

= TRUE), to calculate: 

 

To ensure the mutations were both s4U-treatment and TimeLapse-chemistry dependent, 

we only included transcripts where there was sufficient data (reads > 100 counts in at 

least two samples), and where the fit converged (−0.05 < θn < 1.05; hessian > 1,000). The 

inferred new read counts were determined by multiplying the estimated fraction of new 

transcripts by the total RNA-seq transcript count. Correlations between replicates were 

determined using the log10-transformed counts. While the reproducibility of the data was 

generally high when all converged transcripts were included (Pearson's r > 0.91), filtering 

for transcripts with at least 75 inferred new reads provided slightly more reproducible 

results (n = 3,603, r = 0.934), and this filter was used for further analysis. 

To account for differences in the number of uridine residues in each read pair, an 

alternative model was used based on the binomial distribution. Specifically, the data were 

modeled as mixture of two binomial distributions: 

 

 

where po, pn are the probabilities of mutation at each uridine nucleotide for old and new 

transcripts, and nu is the number of uridines observed for read i. To determine the global 

mutation rate, we used Bayesian hierarchical modeling as described above for the 



92 
 

Poisson model but using a mixture of binomial distributions. From this analysis, we 

estimate the background mutation rate (po) to be 0.0012 mutations/uridine (50% CI 

0.00121, 0.00123) and the mutation rate for new reads (pn) to be 0.0332 

mutations/uridine (50% CI 0.0329, 0.0335). In other words, ∼0.1% of Us are mutated to 

C in pre-existing reads, and in new reads ∼3% of Us are mutated to C. Using these global 

parameters, the distributions of individual genes were fit with nlm similarly to what is 

described above, except by minimizing the log likelihood of the binomial model instead: 

 

 

In addition to computing the confidence interval using the hessian, we also examined the 

quality of the fit by plotting the observed frequency of mutations in each replicate in the 

TimeLapse data (gray points in distribution plots) to a simulated distribution of the 

expected new and old reads based on the binomial model (Fig. 2.5). Estimates of the 

fraction new were highly similar between those determined using the binomial model and 

the Poisson model. 

In addition to the nlm modeling approach, we also implemented a simpler 

binomial approach of separating new and old reads based on the fraction of T-to-C 

mutations on a per-read basis. First, I filtered a non-treated and s4U-treated dataset for 

reads representative of new and old RNAs: intronic reads in highly expressed genes with 

minimal overlapping transcript isoforms. I then calculated the fraction of mutations per 

read (Fmut) by dividing T-to-C mutations by the number of Ts per read (muts / Nobs). I 

then performed a sensitivity and specificity analysis for a range of possible values of 
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Fmut to determine the threshold of old vs. new reads, which is the value that maximizes 

sensitivity and specificity according to the following equations: 

Sensitivity = [True Positive] / ([True Positive] + [False Negative]) 

Specificity = [True Negative] / ([True Negative] + [False Positive]) 

I then assigned new reads and old reads in a TimeLapse-seq experiment as those with 

Fmut above or below the determined threshold, respectively. The fraction new estimates 

determined using this Fmut cutoff approach correlate reasonably well to those determined 

through nlm modeling (R = 0.98) 

To account for any specific loss of transcripts that might arise from biased loss of 

s4U-RNA transcripts independent of TimeLapse chemistry, or TimeLapse-dependent loss 

due to reverse-transcription termination, we developed a means of estimating the loss of 

fast-turnover transcripts in the data. This correction was only used when estimating 

transcript half-lives after observing a modest, but statistically significant loss of reads 

from high turnover RNAs. To estimate the fraction of new reads missing, we used the R 

package nlm to fit the equation: 

 

 

where sy and so are scale factors that adjust for library sizes determined using DESeq2 

with the total (RNA-seq) transcript counts for the experimental sample and control, 

respectively; Ny and No are the counts for each transcript; and θn is the unadjusted 

fraction new of each transcript. This equation was fit using transcripts where 0.8 < θn for 

K562 RNA, but 0.5 < θn in the case of MEF RNA (the shorter s4U treatment lead to fewer 

transcripts with high θn, so the threshold was lowered to increase the number of 
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transcripts). For example, the adjustment factor determined for chemistry-induced 

dropout was ∼5% in our MEF data (i.e., x = 0.05 in the equation above, which leads a 

transcript with 75% new reads to be adjusted to 79% and a transcript with 25% new reads 

would be adjusted to 26% new reads). 

The transcript half-lives were determined using the adjusted fraction of new RNA 

assuming a simple exponential model of their kinetics. The half-life values were 

compared to similar reports and the r2 determined using the lm function in R. 

 

6.20 Gene ontology analysis 

GO analysis from the PANTHER database (version 12.0) [187] was performed 

using a statistical over-representation test (default parameters) on the complete biological 

process annotation set using the top 10% slow or top 10% fast turnovers RNAs in our 1 h 

MEF TimeLapse-seq data as determined by the half-life analyses described above.  

 

6.21 Differential expression analysis. 

Differential expression analysis was performed using DESeq2. To examine the 

inferred differences in the new transcript pool based on TimeLapse mutations, we used 

the unadjusted estimates of the fraction of new RNA to infer the number of counts 

resulting from new transcripts as described above. As TimeLaspse-seq data are internally 

controlled, we used the size factors determined from total counts to scale each data set 

(i.e., we ran DESeq2 on the total RNA-seq data and used the sizeFactors function to scale 

the inferred new RNA counts to the RNA-seq-determined values) with default conditions 

including the Benjamini–Hochberg [188] adjusted P value (padj in text). RNA-seq 
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analysis was performed on all reads (i.e., reads that had zero or more T-to-C mutations) 

using DESeq2 with default parameters. 

 

6.22 Differential exon usage analysis 

Differential exon usage was performed using Ensemble GRCh38 exon 

annotations for total TimeLapse-seq. For differential TSS usage, a custom annotation was 

generated from the output of TSScall for Start-seq data. Called TSSs were assigned to 

genes using bedtools (intersect) [189], and a flattened GTF was generated with each TSS 

assigned as an exon feature. For each sequencing format, DEXseq was performed 

(testForDEU), and switching start sites were identified by examining the most significant 

calls of differential usage. 

 

6.23 Estimation of contaminating reads in TT-TimeLapse-seq 

Reads from TT-TimeLapse-seq were processed and analyzed as for TimeLapse-

seq. Junction-containing reads were determined from the presence of “N” characters in 

the CIGAR string in the aligned bam file using bamtools (version 2.3, https://hcc-

docs.unl.edu/display/HCCDOC/BamTools). The levels of contaminating reads were 

estimated by assuming the contaminating reads have the same ratios as RNA-seq data, 

and that reads with three or more mutations constitute the true ratio of reads. We use of 

reads with three or more mutations as true positives, because the probability of a read 

containing three or more mutations without s4U is <10−5. We used the fraction of intron- 

or junction-containing reads for the RNA-seq data (ro), the total in the true positive 

population (rtp), and the total for each population (rx). In each analysis, we only 
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considered reads that had nonzero ratios and ratios that were less than one. The fraction 

of reads from contamination (cx) was then estimated: 

 

For comparisons with the TT-TimeLapse-seq data presented here, the data from Schwalb 

et al. [87], (SRR4000390, SRR4000391 and SRR4000397) were aligned and processed 

using the same pipeline described for TimeLapse-seq. For this comparison, we 

reprocessed our TT-TimeLapse-seq data using only 75 nt of each read, and this trimming 

was performed on fastq files before alignment. This step was performed because the 

probability of a sequencing read containing a splice junction or being an intron-only read 

is dependent on the read length. Otherwise, all processing was handled equally between 

data sets. 

 

6.24 Transcriptome-wide estimates of intronic read loss 

 TimeLapse-seq or literature reads [122] were aligned to the GRCh38 or GRCm38 

genome and annotated transcriptome with HISAT2 and parameters described in the 

TimeLapse-seq alignment methods section. Intronic vs. exonic features were counted 

using HTSEQ and the fraction of intronic reads per gene was determined using the 

following equation: 

Fracintronic = (Gene – Mature) / Gene 
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6.25 Estimating rates of synthesis and decay in DCP2 KO cells 

 Old and new RNAs were assigned based on the fraction of mutations per read 

approach, with a cutoff determined through maximization of sensitivity and specificity 

from intronic read distributions. New and old read counts were used to calculate relative 

rates of synthesis and decay using the following equations: 

 

 

6.26 Clustering analysis of TT-TimeLapse-seq data 

TT-TimeLapse-seq alignment and mutation calling was performed as described 

previously. Inferred new reads were identified by the fraction of mutations approach as 

described previously. Inferred new reads were filtered for genes with a minimum of 10 

reads and a maximum of 10,000 reads per sample (n = 12,499). The optimal number of 

clusters was determined by minimizing the sum of squares for n clusters, followed by k-

means clustering using the Pheatmap package in R, using correlation distance for samples 

and Euclidean distance for genes. 
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Table 1: Primers used 
Primers for in-vitro transcription (IVT) and restriction enzyme (RE) PCR 

IVT template CTTGCGTTTCTCTCGTCCTTctgtcttgctgttgttcG

CGACCGCcctgtGCGGTTGTGTCTTTTGTCCT

GCCTATAGTGAGTCGTATTAATTTC 

 

IVT positive control template 

 

CTTGCGTTTCTCTCGTCCTTctgtcttgctgttgttcG

CGGCCGCcctgtGCGGTTGTGTCTTTTGTCCT

GCCTATAGTGAGTCGTATTAATTTC 

 

IVT T7 promoter 

 

GAAATTAATACGACTCACTATA 

 

RE RT and reverse primer 

 

CTTGCGTTTCTCTCGTCCTT 

 

RE fluorescent forward primer 

 

/5Cy5/AGGACAAAAGACACAACCGC 

 

RE forward primer 

 

AGGACAAAAGACACAACCGC 

 

Primer extension RT 

 

/5Cy5/CTTGCGTTTCTCTCGTCCTT 

 

Primers for targeted TimeLapse-seq 

Name Forward Reverse 

mActB1 CTACACGACGCTCTTCC

GATCTNNNNN 

ACTGAGCTGCGTTTTAC

ACCC 

CAGACGTGTGCTCTTCC

GATCTTCCTGAGTCAAA

AGCGCCAAAAC 

mActB2 CTACACGACGCTCTTCC

GATCTNNNNN 

AATTTCTGAATGGCCCA

GGTCT 

CAGACGTGTGCTCTTCC

GATCTGGTGTGGCACTT

TTATTGGTCTCAAGTC 

mActB3 CTACACGACGCTCTTCC

GATCTNNNNN 

ATGGTGGGAATGGGTCA

GAAGG 

CAGACGTGTGCTCTTCC

GATCTGCCACACGCAGC

TCATTGTAG 

mActB4 CTACACGACGCTCTTCC

GATCTNNNNN 

TGAAGTGTGACGTTGAC

ATCCG 

CAGACGTGTGCTCTTCC

GATCTGAGGAGCAATGA

TCTTGATCTTCATGG 

mGapdh1 CTACACGACGCTCTTCC

GATCTNNNNN 

TCCGTCGTGGATCTGAC

GTG 

CAGACGTGTGCTCTTCC

GATCTCATCGAAGGTGG

AAGAGTGGG 

mGapdh2 CTACACGACGCTCTTCC

GATCTNNNNN 

CTCTTCCACCTTCGATG

CCG 

CAGACGTGTGCTCTTCC

GATCTGGTGGGTGGTCC

AGGGTTTC 

mGapdh3 CTACACGACGCTCTTCC

GATCTNNNNN 

AGGACACTGAGCAAGA

GAGGC 

CAGACGTGTGCTCTTCC

GATCTGTGGGTGCAGCG

AACTTTATTG 

mGapdh4 CTACACGACGCTCTTCC

GATCTNNNNN 

CAGCAATGCATCCTGCA

CCA 

CAGACGTGTGCTCTTCC

GATCTACAGCTTTCCAG

AGGGGCC 
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hMYC1 CTACACGACGCTCTTCC

GATCTNNNNN 

CTTGGCGGGAAAAAGA

ACGG 

CAGACGTGTGCTCTTCC

GATCT 

TATTCGCTCCGGATCTC

CCT 

hMYC2 CTACACGACGCTCTTCC

GATCTNNNNN 

GCATCCACGAAACTTTG

CCC 

CAGACGTGTGCTCTTCC

GATCT 

CCTTTCAGAGAAGCGGG

TCC 

hMYC3 CTACACGACGCTCTTCC

GATCTNNNNN 

TACTGCGACGAGGAGG

AGAA 

CAGACGTGTGCTCTTCC

GATCT 

CGAAGGGAGAAGGGTG

TGAC 

hMYC4 CTACACGACGCTCTTCC

GATCTNNNNN 

CAGGACTGTATGTGGAG

CGG 

CAGACGTGTGCTCTTCC

GATCT 

GGTACAAGCTGGAGGTG

GAG 

PCR Amplification primers CAGACGTGTGCTCTTCC

GATC 

CTACACGACGCTCTTCC

GATCT 

qPCR primers for TimeLapse-seq validation 

Name Forward Reverse 

Rsrp1 (a, heat shock) AAGTACAGGCGCTACTC

ACG 

GACGGCGACTTGTAGTA

CCT 

Rsrp1 (b, heat shock) AAGATCCAGAACCAGGT

CGC 

GCAGTGGCTTTGCTACG

GAA 

Rsrp1 (c, heat shock) TCCTTGGACAGCTAGGG

GAT 

CACGAATACCCGACTCC

TGT 

Rsrp1 (d, heat shock) GAGGGGTTTGTGTCCAG

CAT 

ACCTCAACCATGAACGT

CCC 

Hist1h1d (a, heat shock) AAGAAGGCAGCAAAGA

GTCCA 

AGATTTTCAAAGCAGGA

CGCA 

Hist1h1d (b, heat shock) AAGCCTAAGAAGGCGA

CTGG 

TCTACTTCTTGCGAGGG

GCA 

ACTB (normalization) GGCATGGGTCAGAAGG

ATT 

CACACGCAGCTCATTGT

AGA 

DHX9 (validation and 

dropout) 

CCGATTCCTCCATGCGA

GTT 

TCTGGCCTTCTACCGAG

ACA 

ASXL1 (Pair 1) TCGGATGCTCCAATGAC

ACC 

CCTTCTGCCTCTATGAC

CTGC 

ASXL1 (Pair 2) ACCAGGCCCCTTCATCT

TAAT 

TCCCAAGCTTACAGCAG

GTT 

ASXL1 (Pair 3) GAAGCCCCGGCTTGAAG

AT 

TGTGGCTTTTCGGTGTG

AAC 

ASXL1 (Pair 4) ATCCTCACCGACTGATT

GCC 

CATGAGCCACCAAGCCC

TAA 

ASXL1 (Pair 5) TGCATTGCCTGGGGATT

TGA 

CTCGAGATGGCACAGTC

CAG 

CDKN1B pre-mRNA 

(dropout) 

GTCTTAGGTGTTCAGTG

CTACC 

CAGAAAGTGCATTCTCC

GCC 

MIR17HG (dropout) GACTCCTGACAAAATGC

AGCC 

TCTGAAGTCTCAAGTGG

GCAT 

EGR1 (dropout) GCCACCACCTCATACCC

ATC 

CTGTCATGTCCGAAAGC

CCT 
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MYC (dropout) CATACATCCTGTCCGTC

CAAG 

GAGTTCCGTAGCTGTTC

AAGT 

Primers for ChIP and switching PCR 

Name Forward Reverse 

ZNF460 upstream (ChIP and 

enriched PCR) 

TGGGTGGCTATTTTAAC

TGCTCA 

CCCGCGACTTCTCGCTT 

ZNF460 downstream (ChIP 

and enriched PCR) 

TTACGCCCCTTCTTCGC

GTC 

CCGGTGGGACACCTCGT

T 

AAAS upstream (ChIP) GAACAACCCCAGAGAG

CACAT 

ATCTAGCCCGGGAACCG

AG 

 

AAAS downstream (ChIP) TTGTCCTTCCCAGGAAC

ACC 

TGGGGACAGTATCTGGG

GAG 

ARHGEF7 upstream (ChIP) CGTGGCTCATCACTCTG

GG 

AGAGGACCACCCCATCC

TTC 

ARHGEF7 downstream 

(ChIP) 

GTGATCAGGCAAAGTCG

TGC 

AGAGAAAGGAGTGCGG

CTG 

NARF upstream (ChIP) TCACCGACTCCCTGGTG

AA 

CCGGTTTCCGCTTCTCGT 

NARF downstream (ChIP) CTCTTCAAGGCGCCCCC ACAAGTTCAGGGAGAA

CCGC 

SREBF1 upstream (ChIP) GCTGAAGGGTGGCTCGT

C 

AGGAAGGGCCGTACGA

GG 

SREBF1 downstream (ChIP) TTGGAGGTAGCCCTCCA

CTT 

GCTACGCAACTTGAGCA

GGA 

Intergenic control 1 (ChIP) CATGTGCTGTCACCCTA

CCT 

GACACATGGGGGTTTCA

GGA 

Intergenic control 2 (ChIP) ACATGAGAGGGGTGTCC

CTT 

ATCTCTCCTTCTGGCCCT

GT 

 

Table 2. Analysis of contaminating reads in TT-TimeLapse-seq 
Proportions of contaminating reads for TT-TimeLapse-seq replicates by mutation count 

per read estimated through splice-junction or intron analysis (see methods). 
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Appendix A 
Total RNA isolation and TimeLapse chemistry 

protocol 

 
A1. s4U treatment and cell harvesting 

 
1. Plate and grow cells to ~60-70% confluence. 

2. Supplement media with s4U and incubate cells for a time determined based on desired 

application (e.g. mRNA turnover, 4h s4U treatment; transient species, 5 min s4U 

treatment). 

 Note 1: Final concentration of s4U will depend on application and cell type. For 

example, 293T cells can be treated with 100 µM s4U for 4 h (or longer), or 1 mM s4U for 

5 min. 

 Note 2: If the cells’ culture media is relatively fresh (split within the last 24 h), 

transfer media from culture plate to falcon tube, add stock of s4U in sterile water (e.g. 500 

mM stock), invert gently to mix, and reintroduce to cell culture plate. If the culture media 

is relatively depleted, use pre-warmed fresh media with supplemented s4U. 

 Note 3: s4U is photosensitive, keep solutions wrapped in foil and minimize 

exposure of samples to light. 

3. After incubation period, place cell culture plates on ice. Aspirate media from plate, 

gently rinse plate once with 5 ml ice cold PBS and aspirate again.  

4. Add 500 µl ice cold PBS to cells. Gently scrape cells from plate using a cell scraper, 

and transfer cell suspension to a 1.5 ml loBind epi tube. 

5. Pellet cells in a pre-chilled (4°C) centrifuge at 300xg for 3 min. Carefully aspirate PBS 

from cell pellet. 

 Note 4: If centrifuge does not accommodate 1.5 ml epi tubes, the epi tube can be 

placed in an empty 15ml falcon tube for centrifugation. 

6. Resuspend pellet in 1 mL Trizol by gently pipetting up and down ~10 times. 

 Note 5: Trizol is toxic, use with care and in well ventilated area. 

7. Trizol samples can be stored overnight at -80°C, or kept on ice for RNA isolation. 

 

A.2 RNA isolation 

 
1. Thaw Trizol samples at room temperature. Once completely thawed, keep samples at 

room temperature for 5 minutes in dark. 

2. Add 200µl chloroform to each Trizol sample. Shake samples vigorously for 15 

seconds. 

3. Transfer Trizol/chloroform mix to heavy phase-lock tube. 

 Note 6: Prepare phase lock tubes before adding sample by spinning tubes at 

12,000xg for 1 min. 

4. Allow sample to stand for 2 min at RT in dark. 

5. Centrifuge sample at 12,000xg for 10 min in pre-chilled (4°C) microcentrifuge. 
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6. Transfer 500 µl of aqueous layer to fresh loBind epi. 

 Note 7: 1 µl of Glycoblue coprecipitant can be added to sample at this step if 

anticipated yield is low. 

7. Add 500 µl (1 eq) of isopropanol supplemented with 1mM final freshly prepared DTT 

to sample. Invert tube ~10 times or until thoroughly mixed. 

8. Incubate samples 10 min at RT in dark. 

9. Pellet RNA at ~20,000xg for 20 min in pre-chilled (4°C) microcentrifuge. 

10. Remove supernatant from pellet, wash pellet once with freshly prepared 75% EtOH. 

11. Remove EtOH and dry pellet. 

 Note 8: Tube can be spun after removing bulk of EtOH to collect residual liquid 

at bottom of tube. Carefully remove residual EtOH using narrow pipette tip (e.g. 10 µl 

filter tip), and sample tube can be left open covered by a kimwipe to dry. Do not overdry 

or pellet will be difficult to resuspend. 

12. Resuspend pellet in small volume (~50 µl) of nuclease-free water and keep on ice. 

13. Assess RNA concentration by nanodrop. 

 

A.3 Genomic DNA depletion 

 
1. Combine 20 ug of isolated RNA, 2 µl Turbo DNAse, 10 µl Turbo DNAse buffer, add 

nuclease free water to total volume of 100 µl in a PCR tube. 

2. Incubate at 37°C for 30 min. 

3. Add 100 µl RNAclean beads to each sample. 

 Note 9: Prior to use, vortex RNAclean beads and allow to come to room 

temperature for 30 minutes. 

4. Flick and invert or lightly vortex samples to mix. Incubate samples for 8 minutes. 

5. Place samples on magnetic rack and allow beads to collect until solution is clear (~5 

min) 

6. Remove supernatant and wash 2x 200 µl freshly prepared 80% EtOH 

7. Remove EtOH and briefly spin PCR tubes to collect residual EtOH. Removed residual 

with 10 µl pipet tip. 

8. Leave PCR tubes open on magnetic rack and allow to dry (~5 min). 

 Note 10: When beads are dry, you may see a slight crack in the pellet and the 

beads will appear lighter in color. Larger bead volumes (e.g. 100 µl) require longer to 

dry. 

9. Add 20µl nuclease-free water to dried beads and flick tubes until completely 

resuspended. Incubate in dark for 5 min at RT. 

10. Briefly spin tubes to collect sample at bottom and place on magnetic rack until 

solution is clear (~1-2 min). 

11. Transfer eluted RNA in water to clean PCR strip. 

12. Assess RNA concentration by nanodrop. 

 

A.4 TimeLapse chemistry (25µl volume) 

 
1. Dilute RNA (~2-5 ug) into 15µl nuclease-free water. 

2. Prepare TimeLapse master mix (8.7 µl per sample, make 10% extra) 
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 -Per sample: 1.3µl Trifluoroethylamine (TFEA), 0.84µl 3 M sodium acetate pH 

5.2, 0.2µl 500 mM EDTA, 6.4 µl nuclease free water. 

 Note 11: TFEA is volatile, use care when pipetting to ensure adding proper 

volume. Pipetting TFEA up and down a few times will equilibrate the vapor pressure. 

3. Freshly prepare a 200 mM solution of sodium periodate in nuclease free water. 

4. To each sample, add 8.7 µl TimeLapse master mix. Flick tubes to combine well and 

briefly spin to collect sample at bottom of tube.  

5. Add 1.3 µl sodium periodate solution to each sample and flick tubes to combine well. 

Briefly spin tubes to collect sample at bottom of tube. 

6. Incubate in PCR cycler at 45°C for 1 h.  

7. Purify RNA with an equal volume (25 µl) of RNAClean beads, repeating steps 3-10 in 

genomic DNA depletion section of protocol (elute with 20 µl nuclease free water).  

8. Transfer 18 µl eluate to fresh PCR tube.  

 

A.5 Reducing treatment 

 
1. Prepare reducing master mix (2 µl per sample) 

 -For 100µl: 58 µl nuclease-free water, 10 µl 1 M DTT, 10 µl 1 M Tris pH 7.4, 2 

µl 500 mM EDTA, 20 µl 5 M NaCl. 

2. Add 2 µl reducing master mix to each sample, flick tubes to combine well. Briefly spin 

tubes to collect sample at bottom of tube. 

3. Incubate in PCR cycler at 37°C for 30 min. 

4. Purify RNA with an equal volume (20 µl) of RNAClean beads, repeating steps 3-10 in 

genomic DNA depletion section of protocol (elute with between 10-20 µl nuclease free 

water, depending on downstream application). 

5. Assess RNA concentration using nanodrop or bioanalyzer. 

 


