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 RNA sequencing is a sensitive, transcriptome-wide analysis of RNA levels, 

valuable for assessing changes in gene expression, or measuring RNA enrichment after 

immunoprecipitation or cellular fractionation. However, accurate quantification of reads 

in RNA sequencing datasets is challenging due to variance from variable handling during 

RNA purification, and biases introduced in downstream processing, like shearing and 

amplification. To address these challenges, I developed TimeLapse Chemistry Labeling 

in Cell Culture (TILAC), an internally controlled and normalized approach to compare 

RNA content between samples using RNA metabolic labeling that is analogous to the 

SILAC method from protein biochemistry.  

TILAC utilizes the metabolic labels 4-thiouridine (s4U) and 6-thioguanisine (s6G) 

to differentially label RNA populations, allowing the samples to be pooled at the 

beginning of the experiment, prior to any of the handling steps that can introduce noise. 

TimeLapse chemistry recodes s4U into a C analogue, and s6G into an A analogue, thereby 

inducing mutations in sequencing reads. The ratios of RNAs from the two samples can be 

determined using the mutational content of the sequencing library.   

I have used TILAC to study perturbations to both transcription and translation of 

RNA. First, I show that TILAC can capture the global downregulation that occurs when 
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cells are treated with the RNA polymerase II inhibitor, flavopiridol. Then, in the context 

of the Drosophila heat shock system, I show that TILAC captures both the high 

upregulation of heat shock responsive genes, as well as the more subtle downregulation 

across much of the transcriptome. I then turn my attention to translation, which can be 

studied by isolating polysomes by velocity sedimentation over a sucrose gradient. This 

method fractionates total cell lysate, and so polysome fractions contain contamination 

from non-ribosomal RNPs with similar coefficients of sedimentation. I use TILAC to 

characterize the background in sucrose sedimentation under normal conditions, and 

conditions of sodium arsenite stress. Armed with this knowledge, I used TILAC to study 

changes in translation, as well as in the total RNA pool in response to stress. Surprisingly, 

I found that there were few changes in the total RNA pool, but there was increased 

translation of a set of RNA helicases that are also found in stress granules. This puts forth 

an exciting hypothesis that the cell may need to upregulate these proteins to mitigate the 

potential damage caused by aggregating RNA in the cytoplasm. Through this set of 

experiments, I explore the advantages of using TILAC in RNA sequencing experiments 

and demonstrate how it can be used to advance biochemical studies, particularly in the 

context of global changes in RNA levels and in fractionations.     
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this work was completed. In the early months of 2020, a novel coronavirus was emerging 
in Wuhan, China and President Donald Trump was being impeached. By March of 2020, 
the COVID19 pandemic had hit New York City. Businesses closed. Travel across state 
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On May 25th, the murder of George Floyd in Minneapolis, MN by Derek Chauvin was 
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at the hands of police. White people like me, sitting at home in relative safely during a 
pandemic, could no longer look away from the racism that destroys the lives of people 
living just a few blocks away. Protests continued for weeks. During the same week I 
returned to lab from the months-long shutdown, I also marched through New Haven with 
5,000 other Connecticut citizens to protest police violence. The Yale MBB department 
participated in the Shutdown STEM Day, led by Wendy Gilbert.  
 
The Democratic primary ended in the nomination of Joe Biden, and the historic choice of 
Kamala Harris as the first Black and India woman as a vice presidential nominee. A bitter 
battle over the US Post Office, mail in ballots, and election security ensued.  
 
There was record turn-out for the 2020 Presidential election, including record use of 
mail-in ballots. I worked the polls as a tabulator, during which I stood by the door and 
made sure people properly submitted their ballots. It took until Saturday, Nov 7th, to call 
the election for Joe Biden and Kamala Harris.  
 
On December 11th, the Pfizer COVID19 vaccine was approved, less than a year after 
development started. The Moderna vaccine was approved on December 18th. These are 
the first two mRNA vaccines to be approved by the FDA, and the culmination of decades 
of research by thousands of graduate students, post-docs, and faculty into the basic 
biochemistry of RNA.  
 
President Donald Trump continued to claim election fraud. On January 6th, Trump 
supporters stormed the Capitol in an attempt to prevent the certification of the vote for 
President-elect Joe Biden and Vice President-elect Kamala Harris.  
 
I submitted my last libraries to the YCGA on January 8th. These were 28 libraries to study 
how translation changes during and after stress.   
 
Joe Biden and Kamala Harris were sworn into office on January 21st.  
 
Today, Febrary 12th, as I finish my thesis, Donald Trump is in his second impeachment 
trial, related to the January 6th attack on the Capitol.  
 
Over 475,000 people in the US have died from COVID19.  
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Chapter 1. Introduction 

1.1. Central challenge in RNA sequencing  

 This work explores the challenges of quantifying reads in RNA sequencing. I 

approach this problem with an eye to the sources of noise that are inherent in every step, 

and with optimism that new technologies can greatly improve the accuracy with which all 

biologists and biochemists, not just RNA specialists, can describe their systems. Thus, I 

will introduce current biochemical and computational techniques in RNA sequencing, 

and compare them to what is available in protein biochemistry. Then I will discuss how 

nucleotide recoding technology developed in the Simon lab enabled me to develop an 

internally normalized method for performing RNA sequencing. The background given 

below justifies the need for a robust, comparative, internal normalization method for 

analyzing sequencing data, and presents several biological systems in which I applied the 

method. Subsequent chapters will present technical validation of the method, as well as 

its use in discovering a new set of transcripts that are preferentially translated during 

stress.   

1.2. RNA Sequencing Technology   

RNA sequencing has transformed RNA biology, and fields beyond, as a method 

to quickly profile both gene expression and differences in expression between conditions. 

It is a vital part of research programs from those studying the mechanisms of splicing, to 

the physician-researcher doing occasional sequencing experiments to understand a 

specific disease. With improving library preparation protocols and rapidly decreasing 

costs, it is a ubiquitous tool1. In RNA sequencing, RNA is isolated from cells and 
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converted into cDNA. The base sequence of the cDNA is read on a high-throughput 

sequencer. To date, sequencing has most often been done on an Illumina sequencer using 

short-read technologies, although long-read technologies like Pacific Biosciences 

sequencing and Oxford Nanopore sequencing are becoming increasingly common2. The 

data is then analyzed by aligning reads to a genome, quantifying transcripts covering 

genes, normalizing those reads, and calculating differential expression.  

RNA-sequencing is often combined with other upstream biochemical steps in 

order to measure specific populations of RNA. Methods like formaldehyde RNP 

immunoprecipitation (fRIP) 3 or UV crosslinking and immunoprecipitation (CLIP) 4 are 

used to study the populations of RNAs that interact with a specific protein or protein 

complex. Fractionations that separate chromatin, nucleoplasm, and cytoplasm are used to 

ask about RNA processing status and localization over time5,6. Purification of polysomes, 

complexes of many ribosomes translating the same RNA, is used to study what is being 

actively translated7,8. These techniques are essential for RNA biochemistry and have 

provided an enormous wealth of invaluable biochemical knowledge. It is worth 

continuing the work to improve these methods to increase our capacity to study essential 

biochemical processes sensitively and accurately. 

 

Technical Challenges in Performing RNA Sequencing 

 To perform short-read (Illumina) sequencing, the RNA population of interest 

must be enriched, then converted into a DNA library spanning about 150-500bp in size. 

Adapters are added that can preserve strandedness, serve as handles for sequencing 

platforms, and uniquely label individual libraries for pooling. Finally, libraries are 
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amplified to increase the amount of cDNA available for sequencing. I will go through 

each step to understand how it affects variance in RNA expression estimates.  

The first source of noise is the selection of mRNAs to sequence. Many RNA 

sequencing experiments are designed to investigate how protein coding transcripts 

change. Since these RNA’s make up only about 2-5% of the transcriptome9, these 

transcripts have to be enriched to avoid wasting reads on ribosomal RNA. One solution to 

the problem is polyA+ selection. Since protein-coding genes are polyadenylated, they can 

be enriched from heterogenous RNA preparations using oligo-dT probes attached to 

beads that can be pulled down, either through magnetic separation or centrifugation10. As 

with any pulldown, the key to this step is to have the same efficiency in pulldown 

between comparable libraries. Another method is oligo-dT primed reverse transcription. 

By initiating reverse transcription with an oligo-dT primer, poly-A+ mRNA is selectively 

converted into DNA. However, this enriches for 3’ fragments over the rest of the 

transcript length. These primers can also prime at A-rich motifs present in some RNAs, 

causing artifactual amplification of some transcripts over others 9,11,12.  

By enriching for polyA+ RNA, other non-coding RNAs that might be of interest, 

for example snRNAs or lncRNAs, are also depleted. Therefore, ribosomal depletion may 

be a preferred method to enrich for interesting RNAs. Many of these strategies are best 

done using kits, and most of these methods are variations on the basic concept that probes 

complementary to rRNA are added and allowed to hybridize. Sometimes these probes are 

biotinylated, and the rRNA can be removed by pull-down. Other strategies use probe-

directed degradation, in which enzymes such as RNaseH degrade the nucleic acid 

hybrid10,13.  
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For Illumina sequencing, RNA needs to be fragmented into short pieces less than 

500nt in length. This helps decrease 5’ bias14. Placing RNA into alkaline solution with 

divalent cations like Mg2+ or Zn2+ will encourage internal transesterification.15 This 

process is structure dependent, and is often done at high temperatures to decrease 

secondary structure14. Degradation using RNase III will also have some structure bias, 

since it preferentially cleaves dsRNA9. The extent of shearing has additive effects 

downstream. The size and sequence context of these short pieces affects ligation and 

amplification of cDNA.  

Right after shearing, RNA needs to be reverse transcribed into cDNA, often using 

random hexamer priming14,16. Adaptors are added either during the reverse transcription 

step, using template-switching oligos, or through direct ligation in a separate step17. The 

specific challenge in adding adaptors is keeping track of the specific strandedness of the 

cDNA fragment being sequenced. In the most simple solution, different adaptors are 

added onto the 5’ or 3’ ends using RNA ligase I or II18. However, the sequence context at 

the 5’ and 3’ ends can have large effects on the efficiency of the ligation9.  

Properly sized cDNA fragments are enriched through bead purification and PCR 

amplified to generate enough material for sequencing. Overamplification creates PCR 

duplicates in the biochemical sample, decreasing library complexity. It also selectively 

amplifies smaller over larger library fragments19.  

Each of the above steps can introduce both bias and noise into sequencing 

libraries. This is problematic when it comes time to make comparisons between two 

different libraries in order to assess differential gene expression. If RNAs are fragmented 

to different sizes in the first step, different portions of the RNA pool will be size selected 
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or selectively amplified by PCR. RNAs fragmented to different sizes may end up with 

enrichment of different 5’ and 3’ ends, have different adaptor ligation efficiencies, and 

end up with slightly different library composition. In additional, smaller-sized RNA or 

cDNA pools will have less effective ribosomal depletion. These all affect the 

composition of the library that is ultimately put on the sequencer.  

 

Technical challenges in performing upstream RNA biochemistry experiments 

 In addition to the technical biases inherent in library preparation, biochemical 

steps upstream of sequencing carry their own unique challenges. RNA 

immunoprecipitation is used to study how a specific protein binds to RNA. Proteins are 

pulled down with either an antibody, or a protein tag. These pulldowns, which take place 

within a crowded cell lysate, suffer from the need to both wash away background 

interactions and stabilize true interactions, even while true interactions can be of varied 

strength20-22. Crosslinkers are a common and often necessary way to stabilize 

interactions, but also keep nonspecific background associated with the complex3,4,23-25. 

Higher stringency washes can wash away background, but could also eliminate true low-

affinity interactions. Fractionations deal with similar background issues. Incomplete lysis 

of the plasma membrane, or premature lysis of the nuclear membrane, can contribute to 

contamination of fractions, and chromatin fractionations can suffer from polyA+ 

contamination, especially without extra depletion steps 26,27. When samples are processed 

in parallel for comparison after sequencing, each sample goes through its own handling 

steps, and accumulates different types of the bias described above.  
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1.3. Common normalization strategies in RNA sequencing 

Most often RNA sequencing experiments are asking about the difference in gene 

expression between two conditions, e.g. healthy and diseased. The actionable information 

a researcher wants is a list of genes, ordered by expression change, and assessed by 

multiple-test adjustment as to whether the difference between conditions is significantly 

different than the null-hypothesis that there is no change. For this analysis, expression 

levels need to be accurately inferred. Technical variation could be dealt with by 

increasing the number of replicates in order to amplify real biological signal over 

disperse noise, but this is rarely done in RNA sequencing due to the expense associated 

with library preparation and sequencing, and conclusions are routinely drawn from as few 

as 2-3 replicates. Additionally, RNA sequencing produces uneven read coverage, and 

genes with low expression often have highly variable read counts across samples, 

something which can be summarized as the variance being inversely dependent on the 

mean read count 28.  

A variety of normalization approaches have been developed to control for both 

intra-sample bias and inter-sample bias. Intra-sample normalization methods control for 

gene-specific effects, such as gene length and GC content. Inter-sample normalization 

methods have to control for differences in sample preparation, as discussed above, 

including differences in sequencing depth. The simplest methods of normalization adjust 

for sequencing depth by dividing read counts over any one gene by the library size14. This 

can skew results if one sample’s total read count is very sensitive to a few high-expressed 

genes. An extra layer of normalization can be added, by dividing the read count also by 

the gene length. However, due to non-uniform coverage over a gene, this metric is often 
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insufficient29,30. More sophisticated between-sample normalization methods are upper-

quartile and full-quantile, but these methods cannot account for overdispersion, an issue 

discussed in detail below29.  

 

Statistical normalization of RNA sequencing reads 

With low numbers of sequencing replicates, uneven read coverage, and a 

dependence of the variance on the mean read count, RNA sequencing data can be 

challenging to quantify, and error modeling improves inferences about gene expression 

by modeling both biological and technical variations31. Accounting for technical 

variability allows researchers to use a statistical test to ask if there are true differences 

between the populations32. We can assume that sequencing reads are selected randomly 

out of the pool of possible cDNAs in the library, so ideally the abundance follows a 

Poisson distribution. In reality, at very low read counts (i.e. low gene expression), the 

variance is very high since the addition of a couple extra reads could double the amount 

of observed expression, even though that difference is likely due to random sampling 

effects of RNA sequencing. The Poisson distribution has only 1 parameter that describes 

both the mean and variance, and it is not able to capture the inverse correlation between 

mean read count and variance. The problem of having the variance of the count of reads 

be large at a small read count is called over dispersion, in that the variance is beyond 

what can be captured by a Poisson distribution28,32.  

Computational methods to model over-dispersion use different statistical models 

that rely on the negative binomial distribution, which has parameters for both the mean 

count and dispersion, and so can more accurately estimate expression and expression 
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changes31. Incremental improvements to this method involve developing algorithms that 

more accurately estimate parameters of the negative binomial distribution. Importantly, 

when these methods normalize for library size, they assume that most transcripts do not 

change expression, and the library sizes should be the same between samples28,32. It 

therefore forces the two libraries to have the same number of reads, while allowing only a 

subset of genes to experience large changes in expression. This assumption is not always 

true, and some transcription factors increase RNA production overall33,34, while other 

perturbations decrease overall transcription35. These types of global changes are difficult 

to capture using these sorts of statistical programs.  

 

Spike-in normalization of RNA sequencing reads 

An alternative biochemical approach is to use RNA spike-ins. Spike-in RNA is 

exogenous RNA, either from a different species or of a synthetic nature, that is added in 

the same amount to all samples. They go through all the same handling and library prep 

as extracted RNA from the biological samples. Sequencing results are normalized based 

on knowing that there should be the same spike-in each sample.  

RNA from a different species is often used as a spike-in because it is easy get 

from another model organism in the researcher’s own lab or a lab on the same floor. A 

different species’ genome will have different gene-length and sequence composition, and 

therefore this RNA can still experience biases different than the experimental RNA. 

Some proposed solutions have included using chimp RNA, since it is most similar to 

human RNA36, or to use RNAs synthetically generated to have similar GC content as 

humans but to not align to the genome37. A set of standards has been proposed and 
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endorsed by the National Institute of Standards and Technology. This set consists of 92 

polyA+ RNAs designed to span the full range of length and GC content present in 

genomes38,39. While useful under some conditions, if used carefully, spike-in RNAs do 

still experience a variety of technical variation that can make them unreliable. Reads 

counts of spike-ins can be variable compared to their initial concentration in the spike-in 

pools and their presence or absence in the final sequencing library can be highly 

depended on steps like polyA+ isolation efficiency40. The use of spike-ins for 

normalization is a complementary method to statistical methods like DESeq2, but there is 

a need for a method that is robust under a broader variety of experimental situations.  

 

Use of SILAC in advanced protein biochemistry  

SILAC41,42 is a popular approach to quantitative biochemistry that uses internal 

normalization. It uses incorporation of either light or heavy isotope amino acids into 

distinct cellular populations. The cells are combined and go through mass spec as one 

mixed sample. This decreases any variability that may result from slight variations in 

handling that occur when processing samples separately. By decreasing technical noise, it 

becomes easier to identify important biological effects.  

To compare two different cellular states through internal normalization, it helps to 

have as much of each population labeled as possible, and to have even amounts of label 

between samples. For SILAC, cells are grown for at least 5 doubling times in SILAC 

media42. This is enough time for the proteome to turn over, meaning there will be about 

97% incorporation of the heavy isotope amino acid, of which the mostly commonly used 

are lysine and arginine. Because peptides are digested into smaller peptides by trypsin 
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cleaving at lysine and arginine residues, using these labels ensure that almost every 

peptide fragment will contain a label43. Data is analyzed with a program called 

MaxQuant, that identifies pairs of peptides that differ in mass by integers of the potential 

labels, and quantifies the ratio between them44,45.  

In its simplest form, SILAC makes quantitative comparisons of protein levels in 

two different cells types. More often, it is combined with many other biochemical 

experiments. For example, it can be used to identify post-translational modifications46, in 

protein immunoprecipitations to distinguish real from background interactions47, or used 

with additional labels to make measurements at multiple timepoints48. SILAC has even 

been extend to challenging samples, like primary neurons, where complete labeling isn’t 

possible. In these cases, SILAC can be performed but requires two separate and 

distinguishable metabolic labels49. 

   

1.4. Nucleotide recoding technologies  

Metabolic labeling 

 Metabolic labeling by incorporating non-canonical RNA bases into newly 

transcribed RNA enables separation of new and old RNAs from the total pool of cellular 

RNAs. The metabolic label can serve as a handle to immunoprecipitate new RNA away 

from preexisting RNA{Duffy:2018gm, Schofield:2018ff, Schwalb:2016bc}50. These 

pulldown methods suffer from high background and challenging normalization, and often 

low recovery of labeled RNA due to limited biotinylation efficiency51. Recently 

developed nucleotide recoding technologies allow newly made RNA to be distinguished 
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from old RNA without the use of biochemical enrichment, by making the label visible to 

the sequencer.  

 

TimeLapse-seq 

TimeLapse-seq is a nucleotide recoding method developed in the Simon Lab, with 

the intention of gaining kinetic information about RNA synthesis and decay52,53. It uses 

oxidative-nucleophilic-aromatic substitution to convert the metabolic label 4-thiouridine 

(s4U) into a cytidine analogue and 6-thioguanine (s6G) into a guanine analogue. This 

induces T-to-C or G-to-A mutations, respectively, in the resulting sequencing reads. It 

does this by replacing the thiol group with an amine group, thus changing the hydrogen 

bonding pattern of the nucleobase (Figure 1: TimeLapse Chemistry Recoding of s4U and 

s6G). The presence or absence of mutations gives an indication of whether that read was 

made prior to, or after, the metabolic feed.  

A key advantage to TimeLapse-seq, compared to pull-down techniques discussed 

above, is that it is “enrichment-free”. RNAs are sequenced within their natural context of 

cellular RNAs. Kinetic information is taken from the same pool of RNAs as whole RNA 

sequencing, and is therefore internally normalized. There is no need to attempt to 

normalize enrichment to input to estimate concentration or contamination of labeled 

RNAs.  

The ability to use two orthogonal labels that are converted in the same reaction 

conditions is a powerful tool to apply to many different types of experiments. Two 

metabolic labels enables complex kinetic measurements53. Most importantly, it provides 
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two independent and distinguishable metabolic labels to uniquely label two different 

RNA populations for internal normalization methods.  

 

Figure 1: TimeLapse Chemistry Recoding of s4U and s6G 

Top: TimeLapse chemistry recodes s4U to a C analogue. Bottom: TimeLapse chemistry 
recodes s6G into an A analogue.  

 

Alternative Methods of Nucleotide Recoding  

 SLAM-seq is another chemistry that can induce T-to-C mutations that uses 

iodoacetamide to covalently attach a carboxyamindomethyl group to the thio group by 

nucleophilic substitution. This reaction does not recode the hydrogen pattern, but can still 

induce T-to-C mutations. However, the method has lower mutation rates than TimeLapse 

chemistry, and has not been applied to s6G54.  
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1.5. Biological systems studied using TILAC  

To demonstrate the potential applications of TILAC, I applied it to several well-

characterized systems. First, I studied transcriptional regulation using flavopiridol 

inhibition and heat shock treatment. Flavopiridol, I knew, would have strong effects on 

transcription that should be easily detected. The heat shock response would allow me to 

test TILAC on a more nuanced system, which needed to capture not only large changes in 

expression, but small downregulations that are challenging to detect. Studying translation 

is an important extension of TILAC, since it requires an additional fractionation step. 

Sucrose sedimentation separates polysomes (actively translating ribosomes and their 

mRNAs) from bulk lysate. Like any fractionation, this experiment is susceptible to 

variance due to its numerous handling steps. Properly identifying and controlling for this 

background allowed me to uncover a set of transcripts that I think could be translationally 

upregulated in response to stress.  

I present background to these systems here, and will discuss the results in the next 

chapter.  

 

Transcription Inhibition with Flavopiridol 

 RNA transcription is carried out by one of three RNA polymerases, numbered I, 

II, and III. RNA polymerase I transcribes ribosomal RNA, which makes up the majority 

of transcription in the cell55. RNA polymerase III makes 5s rRNA as well as a number of 

other small, noncoding RNAs like tRNA, 7SK, 7SL1, some miRNAs and snoRNAs56. 

The majority of the transcriptome is transcribed by RNA polymerase II (RNAPII) 57. As 

the polymerase responsible for making protein coding genes, it has evolved to be highly 



14 

regulated, through both post-translational modifications and association with accessory 

proteins.  The regulation is mediated in part through the RNAPII C-terminal domain 

(CTD). This domain is unique to RNAPII compared to I and II. It consists of a long, 

flexible tail made up of repeats of the consensus sequence YSPTSPS. The serine residues 

are differentially phosphorylated at initiation, elongation, and pausing throughout the 

gene body22,23.  

After initiation and before elongation, RNAPII goes through a step called 

promoter proximal pausing. It stops about 20-60bp downstaream of the transcription start 

site. This poised state is characterized by interaction with DRB-sensitivity-inducing 

factor (DSIF) and negative elongation factor (NELF). Release from pausing requires the 

kinase Positive transcription elongation factor b (P-TEFB), which phosphorylates 

members of the paused PolII complex58. Flavopiridol is a very potent inhibitor (Ki = 

3nM) of P-TEFb, preventing any polymerases from entering elongation and shutting 

down PolII transcription19,20. PolI and PolIII are not inhibited, since they do not need P-

TEFb for transcription elongation59.  

 

Heat Shock  

In response to experiencing elevated temperatures (37°C for Drosophila cells) the 

transcriptional activator heat shock factor (HSF) trimerizes and binds to highly conserved 

DNA sequences called heat shock elements60,61. This transcriptionally upregulates a set of 

heat shock response genes, which code for protein chaperones necessary to deal with 

misfolded proteins and the resulting aggregation62,61,63. This rapidly increases the number 

of chaperone proteins available to mitigate the effects of protein misfolding and 
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aggregation. In Drosophila, this activation occurs within 30-120 seconds following heat 

exposure for genes such as hsp70, hsp22, hsp26, and hsp2764. Many more transcripts are 

downregulated compared to upregulated, and the extent of this downregulation is minor 

compared to the upregulation of stress-response transcripts65. Transcription of these 

repressed genes shuts off with the same speed as those upregulated64,66. In our lab, we 

have seen the bulk transcription can take up to 10-15 minutes to totally shut down 

(Zimmer, unpublished).  

 There isn’t good agreement about the extent to which heat shock genes are 

upregulated67. Methods such as PRO-seq68 and GRO-seq69 get immediate snap-shots of 

RNA Polymerase II position, and therefore what is being actively transcribed. This gives 

a more faithful view of active transcription than steady-state RNA sequencing. However, 

it can only provide a momentary measurement of transcription during a time when the 

cell is not at steady state, and levels of transcription are changing on the time scale of 

minutes to hours. Under these conditions, a better measure for cellular response could be 

the accumulation of mature mRNAs. However, measurement of total cellular mRNA can 

make it hard to see small changes in transcription.  

Several investigations of genome-wide changes to transcription in Drosophila 

heat shock system have employed DNA microarrays, RNA Polymerase and HSF ChIP, 

and PRO-seq. PRO-seq has identified active transcription happening or repressed across 

broad swathes of genome67. PolII ChIP-seq studies in S2 cells have also seen a decrease 

in genome-wide PolII occupancy during heat shock, often associated with changes in 

nucleosome turnover and chromatin accessibility70.    
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Sucrose sedimentation background and puromycin treatment  

 Ribosomes and polysomes can be isolated over a sucrose gradient by 

sedimentation velocity ultracentrifugation. The movement of particles through the 

gradient towards higher densities is interpreted using hydrodynamic theory, which relates 

its size, shape, and interactions to its sedimentation coefficient. The spinning rotor creates 

a centrifugal force outward, which is resisted by the viscous resistance of the media the 

particle is moving through. For a particle with a given size and density, its sedimentation 

coefficient is proportional to its buoyant molar mass. Sucrose gradients are generally run 

in buffer conditions that preserve the native state of the molecules. Ribosomes can still 

dissociate to some extent during centrifugation71, and so cycloheximide is used to trap 

ribosomes on their associated mRNAs7.  

 Ribosome are isolated by sedimentation through a 10-50% sucrose gradient, 

which separates them into monosomes (RNAs with 1 ribosome) and subsequent 

polysome fractions (mRNAs with 2, 3, 4… ribosomes on them). Since they are part of a 

complex mixture, other RNPs with a similar buoyant mass will co-sediment. It’s not 

possible to distinguish this contamination from what is truly being translated on 

ribosomes. To control for this background, a separate sample needs to be prepared that 

lacks translating ribosomes. This was done using puromycin treatment when studying the 

translation regulation that contributes to the Drosophila oocyte-to-embryo transition. This 

study estimated that in oocytes, 25% of the mRNAs were likely contamination, and 9% in 

activated eggs72. 

Ribosomes are dissociated by treating lysate with puromycin72,73. Puromycin is a 

potent translation inhibitor made by Streptomyces alboniger through the enzymatic 
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conversion of ATP74. It consists of a modified adenosine base, linked to a modified 

tyrosine amino acid by a peptide bond 75. This is structurally very similar to a charged 

tyrosyl, with the most consequential difference being the peptide linkage between the 

amino acid and base, as opposed to a more labile, ester bond in a canonical tRNA. The 

consequence of this is that puromycin can enter the ribosomal A site and be covalently 

attached to the 3’ end of the elongating peptide chain. However, an incoming tRNA 

cannot hydrolyze the peptide bond to continue the chain. This triggers translation 

termination and dissolution of the ribosome, mRNA, peptide complex75.  

While puromycin can be fed directly to live cells, translation termination in vivo 

has consequences for the living cell. As translation stops, accumulation of free mRNAs 

induces the formation of cellular compartments called stress granules and activates 

cellular stress responses76. I wanted a way to assess background in sucrose sedimentation 

gradients, without activating the cellular stress response, so I followed protocols for in 

vitro ribosome dissociation. To dissociate ribosomes in vitro, cell lysate is incubated with 

puromycin at 0°C. This causes release of the nascent peptide chain, but not of the tRNA 

or associated mRNA. Upon reheating to 37°C, the ribosomes completely dissociate 77.  

 

Cellular Stress induced by Sodium Arsenite  

 Cells respond to stress by activating the integrated stress response using one of 

the four eIF2a kinases (HRI, PKR, PERK, and GCN2) to phosphorylate eIF2a, 

preventing the formation of additional ternary complex and quickly halting translation78. 

As the currently translating ribosomes terminate, unbound RNA accumulates in the 

cytoplasm, promoting the formation of stress granules78,79. Stress-responsive transcripts 
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such as that transcription factor ATF4 escape translational downregulation in many 

stresses, including ER stress, leading to accumulation of this transcription factor97. 

Studies of cellular stress commonly focus on stress granules and their 

accumulation and dissolution during and after stress. Since these compartments contain 

ribosome-free mRNA and translation initiation factors and form upon phosphorylation of 

eIF2a, the field speculates that they could sequester untranslated RNA, and that 

interactions between stress granules and the often associated P-bodies could promote 

sorting and degradation of some RNAs78,80. One hypothesis is that stress granules store 

RNA for translation after stress, and protect it from degradation that could be happening 

during stress, both in P-bodies and the cytoplasm. However, like translation, 

deadenylation and RNA turnover appear to be stalled during stress81,82. In addition, 

single-molecule microscopy has indicated that RNA turnover for some ribosomal 

transcripts does not resume for 2 hours after stress. To address the idea that only RNAs 

store in stress granules are being translated, the same single-molecule study assessed how 

many transcripts are being translated during recovery from stress. They saw a higher 

quantity of transcripts being translated than just what is sequestered in stress granules, 

indicating that storage for translation is not the main role of these bodies84,85. Independent 

studies of translation are necessary.  

Knowledge of composition of stress granules could still be useful in understand 

the cell biological response to stress, and help interpret the results of translation studies. 

Proteomics data has revealed that, in addition to translation initiation factors, stress 

granules consist of many DEAD-box helicases, heat shock proteins, and the MCM 

DNA/RNA helicase complex86. This and other evidence showing the role of the eIF4A 
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helicase in stressed cells indicates that RNA helicases may play a key role in controlling 

RNAs that are no longer part of their canonical RNP complexes87.  

This investigation has begun with several translational studies. One used genome-

wide, ribosome profiling of sodium arsenite stress in 293T cells, but focused on the 

potential role of 5’UTR’s, without a thorough description of translational changes over 

time88. Subsequent studies have used single-molecule microscopy and focused on 

individual transcripts, chosen to be representative of different classes of RNA, and shown 

different behaviors for different classes84,85. These studies need to be extended to a 

whole-transcriptome understanding of translation at several timepoints during the course 

of stress and return to homeostasis.  

 

1.6. Summary 

RNA sequencing is a powerful tool for understanding gene expression and regulation, as 

well as translation and RNA association with RNPs. Conducting well-controlled 

sequencing experiments is an ongoing challenge, and new methods are always being 

developed to try to improve the accuracy with which RNA levels can be measured. I 

contribute to this effort by developing TimeLapse Chemistry Labeling in Cell Culture 

(TILAC), an internally controlled and normalized approach to compare RNA content 

between samples. Below, I describe it applications to several transcriptional and 

translational systems, and discuss the details of its implementation.   
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Chapter 2. TILAC  

2.1. Author Contributions 

I performed all experiments, with assistance from Rachel Niederer, who 

performed the sucrose sedimentation. RNA sequencing data was processed using the 

TimeLapse pipeline written by Matthew Simon, Martin Machyna, and Josh Zimmer. I 

performed the bioinformatic analysis with assistance from Isaac Vok. Simulations code 

was written by Isaac Vok, and I adapted it to fit my statistical model.  

 

2.2. Summary 

  I describe a method (TimeLapse Labeling in Cell Culture) to internally normalize 

and control RNA-sequencing for comparative studies. Internal normalization requires a 

way to uniquely label two different populations, and to achieve this I chose to use the 

metabolic labels 4-thiouridine (s4U) and 6-thioguanine (s6G) in combination with 

TimeLapse chemistry. TimeLapse chemistry is a nucleotide recoding technology that can 

be used with high-throughput sequencing to generate a sample of sequencing reads 

containing induced mutations. The mutational content of the sample can be used to infer 

what proportion of the sample came from either of the two mixed conditions.  

I apply this method to study transcription and translation in cells. I first validate 

my method against several well-known systems: (1) Transcription inhibition using the 

Cdk9 inhibitor flavopiridol (2) The heat shock response massively upregulates heat-shock 

response transcripts, while inhibiting transcription across much of the rest of the 

transcriptome and (3) Sucrose sedimentation is used to enrich polysomes and study active 

translation. Using the sucrose sedimentation experiment I establish in (3), I study how 
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translation changes during and after cellular stress with sodium arsenite. I provide a 

global characterization of translational dynamics and identify a set of RNA helicases as 

translationally upregulated during stress.  

 

 

2.3. Experimental set-up  

To perform TILAC, cell populations need to be independently labeled, then 

mixed. Mixed samples experience all of the same biochemical manipulations, TimeLapse 

chemistry, and library preparation (Figure 2a). The mutational content of the resulting 

sequencing reads allows one to infer what portion of the signal is from the experimental 

or control samples (Figure 2b). Once these fractions are known, the experimental signal 

can be divided by the control signal, to get a ratio of expression levels, or TILAC ratio. 

Taking the log2 of the TILAC ratio results in an internally normalized measurement of 

differential gene expression.  

To control for the effects of the metabolic labels, two types of TILAC samples are 

collected. Experiments where the experimental plate of cells is fed s4U and the control 

plate is fed s6G are called “forward” samples. When the opposite combination is made, 

and the experimental plate of cells is fed with s6G and the control plate is fed with s4U, it 

is called a “reverse” sample (Figure 2c). This terminology is taken from SILAC89.   
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Figure 2: TILAC experimental design. 

a, internal normalization is achieved by independently labeling two different cellular 
populations, then mixing them for downstream processing and sequencing. b, 
TimeLapse chemistry recodes the hydrogen bonding pattern of thiolated nucleobases, 
inducing mutations in sequencing reads. c, TILAC is performed in both “forward” and 
“reverse” combinations to control for any potential effects of the labels. 

 

 This chemistry is thoroughly validated for metabolic labeling experiments that are 

completed over the course of minutes to hours52,53. For these lengths of time, at moderate 

concentrations of nucleotide analogue (100uM to 1mM), there are minimal toxicity side-

effects from the nucleotides, and labeling does not significantly affect transcriptome-wide 

gene expression. This allows one to get kinetic information on the time-scale of the 

average half-life of an RNA. In contrast, methods like SILAC or TILAC often want to 

answer a question about the steady-state levels of protein or RNA. In these cases, it is 

beneficial to have the entire proteome or transcriptome labeled. To perform a canonical 

SILAC experiment, cells are fed for at least 5 days to ensure that all peptides are labeled. 

Feeds of this length are impossible with s4U and s6G, since cells do start experiencing 
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toxicity effects after 24 hours of a feed with s6G. Therefore, any TILAC experiment will 

need to deal with the technical challenge of inferring levels of steady state RNAs with 

incomplete labeling of the transcriptome.  

 

2.4. Statistical Method  

Bayesian method of analyzing data 

In order to analyze TILAC data, we need to determine which reads came from 

which population, either the s4U fed or s6G fed. The simplest strategy is, for each sample, 

to separate reads into those with T-to-C mutations or with G-to-A mutations. There are 

two technical challenges that make this approach insufficient. First, due to short labeling 

times and incomplete labeling of the transcriptome, there are many reads with no 

mutations, and we cannot uniquely assign them to either condition. Secondly, mutations 

occasionally arise naturally during sequencing. Just because a transcript has a T-to-C 

mutation, does not necessarily mean it is from the s4U fed sample. There is a small 

chance that the read is from the s6G fed sample and was unlabeled due to the short feed 

time, but a T-to-C mutation arose as an artefact of Illumina sequencing. Additionally, 

reads may have both T-to-C and G-to-A mutations, where one might be induced by a 

metabolic label, and the other is sequencing error. I cannot assign a read like this 

confidently to either population. For these reasons, I needed to develop a more 

sophisticated statistical method to analyze TILAC data.  

To develop this statistical method, I built on the existing TimeLapse chemistry 

analysis strategy that is used for singly-labeled samples52. I will describe that model first, 

and then extend its logical foundations to modeling TILAC data. The goal of the 
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TimeLapse model is to determine the fraction of sequencing reads that are labeled, based 

on the observed number of mutations. It models reads as coming from two populations, 

RNAs that existed before the labeling feed, with a number of mutations arising based on 

the background mutation rate, and RNAs made after the labeling feed started, that have a 

number of mutations arising from the mutation rate induced by labeling and TimeLapse 

chemistry (labeled mutation rate). That description includes several parameters that need 

to be estimated: (1) the fraction of labeled reads, (2) the expected number of mutations in 

a read from the unlabeled population, and the (3) expected number of mutations in a read 

from the labeled population. The number of mutations arising in a read can be modeled 

by a Poisson distribution, with an expected rate of mutations defined as 𝜆. We write this 

Bayesian statistical model in the probabilistic programming language Stan90, which infers 

maximum likelihood estimates of the parameters using a Markov chain Monte Carlo 

algorithm called the No-U-Turn sampler. We use the maximum likelihood estimate of the 

posterior as the value of the fraction labeled.  

In a TILAC experiment, the same mutation kinetics and modeling strategy hold 

true, and I now just need to keep track of T-to-C and G-to-A mutations, and how they 

influence the posterior distribution of the fractions labeled in experimental or control 

samples, based on whether the data is from a forward or reverse TILAC experiment. This 

can be accomplished with careful indexing and a slight extension of the current model.   

 For each forward and reverse TILAC sample in an experiment, reads are 

aggregated into groups which align to the same gene, are of the same mutation type, and 

have the same number of mutations per read. Unlabeled controls are used to determine 

the background expected rate of mutations from sequencing error. Induced rates of 
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mutations for each label are modeled as a mixture of two Poisson distributions, one 

describing TimeLapse-induced mutations, and the other describing mutations arising 

from sequencing noise. These distributions are parameterized on a log scale. Fraction of 

reads from each sample (experimental or control) is inferred by indexing data as to 

whether it has come from the forward or reverse experiment and using the appropriate 

mutational content and mixed Poisson distributions to update the log likelihood. As an 

example – the number of reads containing T-to-C mutations from the forward experiment 

will influence the fraction of reads from the experimental sample, as well the number of 

reads containing G-to-A mutations from the reverse experiment.   

   

The probability mass function describing this is:  

 

𝑓(𝑦!|	𝜆",!, 𝜆$,!) = 	𝜃%𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝐿𝑜𝑔	2𝑦;	𝜆$,!4 + (1 − 𝜃%)𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝐿𝑜𝑔(𝑦	|𝜆",!)			 

 

Where lu,m is the rate of mutations in unlabeled reads, ll,m is the rate of mutations in the 

labeled reads, for m = mutation type (T-to-C or G-to-A). ym is the number of mutations 

per read  of the given mutation type (m). qc is the fraction of labeled transcripts for the 

condition, either experimental or control. The condition is determined by considering the 

label combination (forward or reverse) and the mutation type (T-to-C or G-to-A). As 

briefly discussed above, T-to-C mutations from the forward replicates and G-to-A 

mutations from the reverse replicates are used to update the likelihood of the fraction of 

reads from the experimental condition. G-to-A mutations from the forward replicates and 
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T-to-C mutations from the reverse replicates are used to update the likelihood of the 

fraction of reads from the control condition.  

To estimate the above global parameters, as the proportion of the dataset from 

experimental or controls samples per gene, I wrote the model in the Bayesian modeling 

software RStan, which uses No-U-turn Markov Chain Monte Carol (MCMC) sampling90. 

For this model, we chose global parameters with weak priors for expected mutation rates 

and fraction labeled.  

 

Global parameters:  

𝑙𝑜𝑔(𝜆",!)	~	𝑁𝑜𝑟𝑚𝑎𝑙(−2, 2) 

log	(𝜆$,!) = 	 log	(𝜆",! + 𝑇!) 

𝑇!~	exp	(0.5) 

𝐼& =	 J
0, 𝑠 ∈ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

𝑔 ∈ 	 Q1, 2, … , 𝑛'()(*S 

  

Gene-specific priors:  

𝑙𝑜𝑔𝑖𝑡(𝜃+,-,.)	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝑙𝑜𝑔𝑖𝑡(𝜃%/0$,.)	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

For read 𝑖	 ∈ 	 Q1, 2, … , 𝑛.S 

𝑓.!2𝑦.,!	T	𝜃% , 𝜆",!, 𝜆$,!	) 

         =	∏ 2𝐼&𝜃%,.	𝑃𝑜𝑖𝑠2𝑦2,!, 𝜆$,!	4 + 21 − 𝐼&𝜃%,.4𝑃𝑜𝑖𝑠𝑠𝑜𝑛2𝑦2,!	T	𝜆",!4
/!
234   



27 

Validation of method using simulations 

 Before applying the model to complex sequencing data, I first wanted to 

understand how it works on a smaller dataset. In R, I simulated a TILAC experiment with 

75 genes, each gene with its own unique expression pattern across the experimental and 

control samples. The experiment I simulated contained 3 samples, 1 forward TILAC mix, 

1 reverse TILAC mix, and 1 control, unfed sample.  

To perform the simulation, I first need to choose the expression pattern of each of 

those 75 genes, which is the fraction of reads in those samples unambiguously 

attributable to the experimental condition (Fe) or control condition (Fc), as well as the 

fraction that cannot be uniquely assigned to either condition. First, I chose the fraction of 

the sample attributable to the control condition (Fc) randomly from a uniform distribution 

between 0 and 0.8. From this, I calculated the corresponding fraction attributable to the 

experimental condition (Fe) by subtracting 1 – Fc, and multiplying by a random 

downscaling factor that I drew, again, from a uniform distribution between 0 and 0.8. I 

multiplied by this random downscaling factor to make sure the fraction experimental and 

control did not add to 1. The remaining reads belong to the group that cannot be 

unambiguously assigned. I then calculated the fold change by taking the log-2 of the 

experimental divided by control fractions. This is the “ground truth” against which I will 

measure how my statistical model performs.  

 To simulate data for these 75 genes with their various fractions, we need to know 

the T-to-C and G-to-A mutation rates, both in reads that are labeled or that unlabeled. 

From our sequencing data, we observe a 5% induced mutation rate and 0.1% background 

mutation rate for T-to-C mutations. For G-to-A mutations, there is a smaller induced 
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mutation rate (2%) and a slightly higher background mutation rate (0.4%). Rather than 

using the same set mutation rates for each simulated gene, we let the mutation rate vary 

slightly between them. This should capture the fact that biologically genes might have 

different mutation rates due to noise. For each gene, a unique set of mutation rates are 

chosen from a set of normal distributions, each with a mean equal to the percentages 

described above, and a standard deviation of 0.2.  

 For each gene, we simulated 5000 reads, each 200nt long. They were split into 3 

bins, labeled with s4U, labeled with s6G, and unlabeled. The number of U’s or G’s per 

read is drawn from a binomial distribution with a chance of being a U or G each set to 

0.25 (there are 4 possible bases). Based on the bin, the number of TC or GA mutations 

per read was determined using a binomial distribution for the numbers of U or G in a read 

and the corresponding mutation rates.  

 The resulting data included information about the sample, gene, mutation type, 

number of mutations of that type per read, and the number of reads observed with those 

qualities. This data was analyzed using the Poisson model described above. As can be 

seen in Figure 3, there is very good agreement between these values, indicating that the 

Bayesian model is accurately inferring the gene expression differences.  
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Figure 3 TILAC Bayesian Model Validation. 

Fold changes in gene expression between two conditions (experimental and control) 
are inferred using a Bayesian Poisson model. The known fold change in expression 
was set, and given a set of experimental parameters, a small sequencing dataset was 
simulated. This was then analyzed using the Bayesian Poisson model. The known and 
inferred fold changes in expression are plotted against each other.  

 

 Additionally, there are some model validation parameters that need to be 

examined at the end of each model run to determine if it converged. The first is the 

Gelman-Rubin convergence diagnostic, 𝑅, which should be less than 1.01 if the model 

has converged. Another metric is the ratio of effective number of samples to actual 

sampling steps (abbreviated here as neff). This is essentially a metric for how randomly 

the model iterated while it ran, and anything at or above 1 means the model was 

sufficiently random. Metrics for this simulation are shown in Figure 4.  
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Figure 4: Rhat and n_eff metrics for simulated data 

 

 Two additional metrics evaluate individual model parameters. The pairs plot 

shows the correlation between inferred values. Parameters such as the expected rate of 

mutation during labeling (ll) for s4U, s6G, and the background rate of mutations in 

unlabeled reads (lu) rates should be uncorrelated. Since their posterior distributions are 

normal with respect to each other, we can see that they are indeed independent and well-

converged. Lastly, we can look at the trace plots. The trace plots show how the model 

explores the parameter space at each iteration. A trace plot that oscillates rapidly up and 

down indicates that the model is rapidly exploring the whole parameters space, as 

indicated in Figure 5: Pairs plots and trace plots of simulated data.  
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Figure 5: Pairs plots and trace plots of simulated data 

Normally distributed pairs plots indicate independence of estimates. Chains oscillate 
rapidly up and down, which is an indication that the model is rapidly exploring the 
potential parameter space.  

 

2.5. Application to transcriptional inhibition by flavopiridol  

Flavopiridol inhibits cyclin-dependent kinase positive transcription elongation 

factor b (P-TEFb) 35. This shuts down transcription across most of the genome. These 

huge changes in transcription should be easily detected by TILAC.  

To perform this experiment, I fed the cells (100uM nucleotide) at the same time 

as we treated cells with flavopiridol (500nM). After two hours, I harvested cells, mixed, 

and performed TILAC. In addition to the forward and reverse TILAC experiments, I 

collected unmixed samples, both fed and unfed, to analyze with conventional RNA 

sequencing analysis tools. After harvesting and extracting RNA, I performed qPCR to 

look for transcriptional shutdown. I saw that 500nM flavopiridol had robust 

downregulation of CDKN1B pre-mRNA compared to mature mRNA, indicating that 

transcription was shutdown. In addition, I saw that slowly made and slowly degraded 
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RNAs like ACTB had less robust downregulation compared to MIR17HG, which is 

quickly synthesized and degraded, and therefore is highly downregulated.  

  

Figure 6: qPCR validation of flavopiridol treatment 

Decrease in transcription after 2 hours of flavopiridol treatment. Fast-turnover RNAs 
such as CDKN1B pre-mRNA and MIR17HG show much higher fold decreases in 
transcription compared to slow-turnover RNAs like CDKN1B mRNA or ACTB. Only 
one replicate was performed. We did not try to draw any conclusions beyond that the 
flavopiridol treatment was working.   
 

Before applying our statistical model, we analyzed the raw data to get a sense of 

whether we were capturing changes in gene expression. We considered the forward and 

reverse experiments separately, calculated the T-to-C and the G-to-A mutation rate, and 

used that as a proxy for expression levels in either condition. We plotted the mutation 

rates against each other for each label combination (Figure 7). In samples where 

flavopiridol-treated cells were fed with s4U, there is a depletion of reads with T-to-C 

mutations, where as there is a depletion of G-to-A mutations in samples where the 

flavopiridol-treated samples were fed with s6G.  The depletion of s4U reads in the 

forward experiment, where the s4U fed cells are treated with flavopiridol, (Figure 7, left) 
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is much less obvious. This is due to the low s6G incorporation rate compared to the high 

s4U incorporation rate.  

  

Figure 7: Comparisons of mutation rates in transcription inhibition experiments 

Left: Comparison of TC and GA mutation rates when s4U is fed to flavopiridol-treated 
samples. s6G has a lower mutation rate, and there is incomplete labeling. The 
histograms accentuate the spread of the data, and show a broader distribution than for 
TC mutations.  Right: Comparison of TC and GA mutation rates in the reverse 
experiment. Here, efficient s4U incorporation captures all active transcription.  

 

Despite this technical challenge, s6G is still catching important experimental 

trends. I evaluated how well both labels were capturing experimental data by comparing 

the mutational content of TILAC samples to that of their singly-labeled controls. In 

Figure 8, I look at how the s4U content of the forward and reverse TILAC experiments 

correlates with a singly-labeled s4U fed and flavopiridol treated sample and with a singly-

labeled s4U fed control sample. There are correlations among similar treatments. This 

same analysis for s6G in Figure 9 showed similar trends. If the s6G label were not 

capturing any experimental signal, I would expect no correlation between any of the 

samples. Therefore, while s6G has significantly lower mutation rates I can safely 

conclude that it is functioning well as a metabolic label in TILAC experiments. We have 
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observed that s6G works well with both high and low mutation rates, but the next steps in 

this project will include a full investigation of the sensitivity and specificity of TILAC at 

different mutation rates and sequencing depths.  

 

 

 

Figure 8: Comparing TILAC samples to singly-labeled controls 

The T-to-C mutational content of the TILAC experiments is compared to the T-to-C 
mutational content of samples unmixed, and fed only with s4U. 
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Figure 9: Comparing TILAC samples to singly-labeled controls 

The G-to-A mutational content of the TILAC experiments is compared to the G-to-A 
mutational content of samples unmixed, and fed only with s6G. 

 

Another way to evaluate how well the labeling is working is by looking at 

sequencing tracks. The Simon Lab creates sequencing tracks with reads colored by the 

number of mutations in the read. This type of analysis allows me to understand how the 

labeling is affecting individual genes, and is an important complement to the abstraction 

of examining global mutation rates. Both s4U and s6G are efficiently incorporated into 

MYC transcripts. MYC is a high-turnover gene, meaning it is synthesized and degraded 

quickly. Over the course of a 2-hour experiment, many of its old transcripts will be 

degraded and replaced with newly synthesized, and hopefully labeled, mRNA.  MYC has 
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an enrichment of reads with G-to-A mutations in the forward experiment (s4U 

flavopiridol and s6G control) and an enrichment of reads with T-to-C mutations in the 

reverse experiment (s6G flavopiridol and s4U control). In yellow is highlighted 

background mutations, either T-to-C in the forward experiment, or G-to-A in the reverse 

experiment (Figure 10). Incorporation is easily distinguishable, and there is low 

background from other mutations. 

 

 

Figure 10: Label is efficiently incorporated into Jun transcripts 

Top: In the forward experiment, s4U fed cells are treated with flavopiridol, so most 
reads are expected to come from the s6G fed control sample. Bottom: The opposite is 
true, and the s6G fed cells are treated with flavopiridol. Reads are expected to 
predominantly be form the s4U fed sample. Reads of the opposing type are highlighted 
in yellow, and they constitute a minimal proportion of the reads covering the gene.  

 

I applied my Bayesian statistical method to estimate fold-changes in expression 

between flavopiridol treated and untreated cells. Below, I show model validation for this 

full dataset, as first outlined in the TILAC simulation (pg 27). I show this data to 

demonstrate that the model works with the same precision on a real, complex dataset as it 

does on the simulated data. I will not show model validation for subsequent experiments, 
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as it becomes rather repetitive. In Figure 11, I show that the R metric converges to values 

around 1, and distribution of neff ratio values are at 1 or larger.  

 

Figure 11: Rhats and N effective for flavopiridol transcription inhibition 

R values converge to values less than 1.1 and the neff values are predominantly above 1, 
indicating the model sampled efficiently.  

 

In Figure 12a, the posterior distributions that describe the are largely normally 

distributed, and in Figure 13b, 4 different chains explore the likelihood in efficiently and 

in a random manner.   
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Figure 12: Pairs plots and trace plots of transcription inhibition data 

Normally distributed pairs plots indicate independence of estimates. Chains oscillate 
rapidly up and down, which is an indication that the model is rapidly exploring the 
potential parameter space. 

 

The TILAC analysis pipeline does capture downregulation of a significant portion 

of the transcriptome. As it preserves the ratio of RNA between the two samples, it 

achieves this without the use of spike-ins or additional statistical assumptions. Out of 

23,090 measured genes, 9364 are downregulated. The model is not able to tell if 13,704 

genes significantly changed in either direction. Transcripts made by Pol I or Pol III, for 

example 7SL1, we believe do not change expression between samples. Other are made by 

PolII, but are known to be resistant to flavopiridol treatment, such as IKBKI, PLCB4, 

BRWD3, and PHLPP148. Many of the other nonsignificant genes have quite low read 

counts (< 100 reads/gene) (Figure 13). Since the variance of count data is inversely 

correlated with the mean, we expect high variability in read count data over lowly 

expressed transcripts, and would hope that a good statistical method will not assign value 

to these genes, when we should be rightly skeptical of them. Visual examination of these 
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genes confirms that many of these have sparse or variable coverage. Therefore, we 

conclude that TILAC is adept at catching wide-spread changes in gene expression. 

 

 

Figure 13: TILAC captures transcriptional inhibition by flavopiridol 

Cells were treated with 500nM flavopiridol, and combined with untreated cells for 
TILAC analysis. This plot shows large downregulation of the transcriptome.  

 

I then compared our results to those obtained by DESeq2, the conventional 

software for calculating expression changes. Normalization methods such as DESeq2 

often assume that a small subset of genes experience changes in expression levels, while 

most transcription remains unchanged. This assumption does not hold when cells are 

treated with the RNA polymerase II inhibitor flavopiridol. As expected from the 

assumptions discussed above (pg 7), DESeq2 shrinks fold change values towards zero, 

and identifies only 748 downregulated genes (Figure 14: Transcription inhibition 

measured by DESeq2). That is an order of magnitude fewer transcripts called 
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downregulated than TILAC. DESeq2 identifies 15,132 transcripts as not significantly 

changed, out of which 11,658 genes have read counts too low to make conclusions. This 

number is fairly similar number to what is found by TILAC.  

Comparisons against DESeq2 are a useful foil to put TILAC results into context, 

and will be used again in the heat shock experiment. Importantly, TILAC and DESeq2 

work under different experimental conditions and assumptions. It is not valid to draw 

more extensive comparisons. A major difference is the use of the metabolic label. Since 

TILAC labeling is done over the course of the 2 hour flavopiridol experiment, TILAC is 

largely evaluating the difference in expression over that two hour time period of 

transcriptional shutdown. DESeq2 is performing a true bulk analysis on total cellular 

RNA.  

In conclusion, TILAC does capture global downregulation of transcription, and is 

capable of identifying when it can and cannot be confident in its ability to estimate 

differential expression. TILAC is useful in that it captures more transcriptional 

downregulation than DESeq2, and this is due both to difference in statistical assumptions, 

and also in experimental design. TILAC is useful for assess acute changes in 

transcription, especially when the feed time is concurrent with the drug treatment.  
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Figure 14: Transcription inhibition measured by DESeq2 

Unmixed samples were collected at the same time as Figure 13 and analyzed using one 
common differential expression software.  

 

 

2.6. Heat Shock  

We next applied TILAC to the Drosophila heat shock response (pg 14), in which 

heat shock responsive genes are highly transcriptionally upregulated, while much of the 

genome is transcriptionally repressed67,70,91. While s4U has been used in Drosophila 

experiments previously52, no thiolated G analogue has been tried. We learned through 

work done by Jeremy Schofield while developing TimeLapse (data unpublished) that 

these nucleotide analogues are not well incorporated into HeLa cells, indicating that 

incorporation is highly dependent on cell type. Therefore, I tested the two G analogues 

previously used in TimeLapse, s6G and 6-TG, to see if they are sufficiently incorporated 

into Drosophila RNA for a TILAC experiment. Both s4U and s6G are incorporated into 
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Drosophila RNA, although about 4-fold less than into 293t cells. 6-TG is not 

incorporated at all (Figure 15). Because there was still sufficient incorporation, we 

decided to proceed with the experiment.  

 

Figure 15: Dot blot to assess nucleotide incorporation in S2 cells 

a, thiolated nucleotides were fed to Drosophila S2 cells for indicated times. This is 
comparing s4U, which has been previously validated in S2 cells 52, to s6G and 6-TG, 
since this is the first time the Simon Lab has fed these nucleotides to Drosphila. 6-TG 
is not incorporated. s6G is incorporated, but less than s4U. b, Data from Lea Kiefer, 
taken to compare incorporation between Drosophila and mammalian cells. There is 
less incorporation of nucleotides over time in Drosophila cells. However, trends agree. 
There are dose-dependent increases in nucleotide incorporation, and s4U is more 
extensively incorporated than s6G.  

 

 

The experimental set-up was the same as for transcription inhibition with 

flavopiridol. I collected duplicates of the two TILAC label combinations. In the 

“forward” experiment, heat-shock samples were fed s4U, while in the “reverse” 

experiment, s6G was fed to the heat-shock samples. Heat shock conditions and protocol 
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were taken from lab member Martin Machyna92. We again examined mutation rates in 

both the forward and reverse experiments. In the forward direction, there is the expected 

enrichment of T-to-C mutations in heat shock transcripts. In the reverse experiment, G-

to-A mutations are enriched in the heat shock transcripts (Figure 16). The transcriptional 

downregulation is more subtle in this experiment compared to flavopiridol treatment, and 

more challenging to see in this preliminary analysis, especially with relatively weak s6G 

incorporation. This underscores the need for a robust statistical method for TILAC data 

analysis.  

 
Figure 16: Comparisons of mutation rates in heat shock experiments  

Left: Comparison of TC and GA mutation rates when s4U is fed to heat shocked 
samples. Right: Comparison of TC and GA mutation rates in the reverse experiment. 

 

 

Again, we applied the TILAC Bayesian method and plotted the inferred fold 

changes as an MA plot. The most highly differentially regulated genes are also some of 

the most highly expressed, and are plotted in the top right-hand corner of the graph. 

These include the canonical heat shock proteins - Hsp26, Hsp23, Hsp68, Hsp70Ba, 

Hsp70Bc, Hsp27, Hsp70Ab, and Hsp83. It also includes known accessory proteins such 
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as DnaJ-1, Hsc70-3, Hsc70Cb, Hsc70-5, and Hsc70-4. In addition, 1109 transcripts are 

identified as being downregulated. 

 

 

Figure 17: TILAC captures transcriptional regulation during 1 hour of heat shock 

TILAC identifies the highly upregulated heat shock proteins, and also general 
transcriptional downregulation. 

  

The TILAC result is generally in line with the literature. Early examination of 

transcription on polytene chromosomes and Pol II ChIP-seq have both observed genome-

wide decreases in Pol II throughout gene bodies70,91,93. By DNA microarray, 508 

transcripts are found to be downregulated65. In contrast, Duarte et al. uses PRO-seq to 

profile transcription at 20 minutes of heat shock and finds 2300 transcripts to be 

downregulated. Using DESeq2 to analyze her inputs, Duarte does not see the significant 

decrease in transcription. Neither do I in my study, in which DESeq2 reports 137 

transcripts downregulated. Duarte also cites the challenges of normalization in the heat 

shock system as a reason she cannot identify changes in the transcriptome by bulk RNA 
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sequencing, and uses this to motivate her use of PRO-seq. My study and the Duarte et al. 

2016 study cannot be directly compared because they were performed at different 

timepoints in heat shock, and because the methods measure different aspects of the 

response. This point about what the methods measure is an important way to consider 

how TILAC fits into the body of available techniques to study transcriptional changes. 

While DESeq2 is limited to assumptions on total RNA, PRO-seq can only provide a 

snapshot of what is being actively transcribed over a very short period of time. PRO-seq 

cannot measure how much of that transcription goes on to be a functional and stable 

mRNA in the cell. With metabolic labeling and internal normalization, TILAC can 

measure precisely what was transcribed over the feed time and identify broad 

transcriptional downregulation. 

 

Figure 18: DESeq2 analysis of transcriptional changes during heat shock 

DESeq2 captures transcriptional upregulation of heat shock proteins, but not the subtle 
downregulation that accompanies it.  
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2.7. Puromycin  

Actively translating ribosomes and their associated RNAs have to be purified in 

order to learn what proteins are being synthesized in the cell. This is done by 

fractionating cell lysate over a sucrose sedimentation gradient. Since sucrose 

sedimentation separates cellular lysate by size and density and is not a clean 

immunoprecipitation, there could be other RNP background in the fractions containing 

ribosomes72. In some systems, up to 25% of the isolated transcripts are from 

contaminating RNPs72, making this a significant challenge in accurately quantifying. The 

background was identified by treating cell lysate with puromycin, which dissociates 

ribosomes from their associated mRNAs, and comparing what was in the polysome 

fractions to that in normal, untreated lysate. This analysis requires a reliable spike-in 

control94. TILAC can improve this experiment, since it will control for the numerous 

handling steps at which biases could be introduced, and eliminates the need to devise 

clever spike-in methods. Therefore, I performed a TILAC experiment in which I mixed 

untreated cell lysate, or cell lysate treated with puromycin to dissociate polysomes8,72,77. 

Transcripts that showed decreased polysome enrichment upon puromycin dissociation are 

truly associated with ribosomes, while anything that becomes either enriched or is not 

significantly changed is considered potential background.  

 Cells were fed for 4 hours with 100uM s4U or s6G, harvested, and lysate was 

treated with puromycin (Figure 19a). After puromycin treatment, TILAC samples were 

mixed, and ribosomes were isolated by sucrose sedimentation. As controls, unmixed 

untreated and unmixed puromycin treated samples were also analyzed. Polysome 
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fractions collapse in the puromycin-treated samples, indicating that the treatment worked 

(Figure 19b,c).  

 

 

Figure 19 Sedimentation traces of lysate with or without puromycin treatment 

a, Experimental set-up of puromycin treatment for forward and reverse TILAC 
samples. b, Untreated cell lysate shows canonical polysome oscillations. c, Puromycin 
treated samples lack polysome signal.  

 

The resulting sequencing data was analyzed with the TILAC analysis pipeline. Of 

the 21,286 genes analyzed, 11,856 transcripts are confidently downregulated and 9430 

transcripts would be considered background contamination. Since almost 45% of 

transcripts could be background, it is important to run this control in new systems before 

drawing conclusions about translational regulation.  
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Figure 20: Puromycin treatment of 293t cells 

Upon ribosome dissociation due to puromycin treatment, 11,856 transcripts become 
depleted from polysomes, indicating they are being actively translated. There are 9430 
transcripts that are not depleted, and are considered contaminating background. 

 

 

2.8. Stress response  

Translational regulation is central to the integrated stress response cells use to 

respond to a variety of potentially toxic situations, such as ER stress and oxidative stress. 

One of the most commonly studied stress systems is sodium arsenite treatment. The cell 

biology of this system has been fairly well described, and is characterized by the 

formation of cytoplasmic stress granules. The biochemical details around how translation 

starts and stops has not been thoroughly described.  

Armed with the knowledge of what is background in polysome fractions from the 

previous experiment treating cells with puromycin (pg 46), I was uniquely set up to 

rigorously describe translational changes. Therefore, I decided to stress 293t cells with 
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sodium arsenite and to profile translation using three comparisons: (1) TILAC 

comparisons of stressed and unstressed cells, (2) TILAC comparisons of stressed cells 

and cells 1 hour after recovery, and (3) TILAC comparisons of stressed cells and cells 6 

hours after recovery. In order to do this experiment, I first validated the sodium arsenite 

treatment in 293t cell. Then I performed a puromycin experiment to characterize the 

background in sucrose sedimentation during stress conditions.  

 

Optimizing sodium arsenite stress in 293t cells 

The concentration of sodium arsenite and treatment time vary quite a bit from 

paper to paper. One study examined translational restart of a single reporter transcript in 

U2OS cells by treating with 100uM sodium arsenite for 30 minutes84. I verified these 

conditions were appropriate in 293T cells using a puromycin incorporation assay, which 

has been used previously to assess translation during sodium arsenite stress80. This assay 

does indicate that translation plateaus at a minimum around 30 minutes into treatment 

(Figure 21a). Translational recovery after stress was examined using the same assy. After 

30 minutes of sodium arsenite stress, media was replaced and puromycin incorporation 

seemed to be increasing 1 hour after recovery from stress (Figure 21c). 
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Figure 21 Puromycin incorporation assay to assess translational shutdown and restart 

a, Cells were treated with sodium arsenite for the indicated amount of time. The last 15min 
included a puromycin feed to assess the extent of active translation. b, Ponceau staining of (a) 
to verify equal protein loading. c, The same puromycin incorporation experiment is used to 
assess when translation restarts. The red S indicates 30min of 100uM sodium arsenite stress. d, 
Ponceau staining of (c) to verify equal protein loading. 
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Identifying contamination background in sucrose sedimentation gradients 

 

 

Figure 22: TILAC is used to look for background in both stressed and unstressed cells 

a, Cells are fed for 4 hours, then treated with sodium arsenite for 30 minutes. Cells are harvested and 
lysate is kept on ice or treated with puromycin. b, Absorbance trace for TILAC sample combining 
stressed cell lysate with similar lysate that has been treated with puromycin.  Compare polysome 
fractions to Figure 19. 

 

To look for contamination in polysome fractions during stress, I performed the 

same experiment as described above (pg 46), but with the addition of a 30 minute 

treatment with sodium arsenite (Figure 22). After TILAC analysis, there are 48 

transcripts upregulated, 3671 downregulated, and 18,830 are not able to be significantly 
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called either way. To use both puromycin experiments as controls, I made a combined list 

of all transcripts that were either more present in the puromycin sample, or had no 

statistically significant downregulation in either the stressed or unstressed comparisons. I 

eliminated these transcripts from analysis in any of my experimental samples. 

Fortunately, there were very few transcripts identified in these controls that had to be 

filtered out of the experimental results (Table 1).  

 

 
Status in 

Polysomes 
Total  

Present in 

Control 
Confident   

Stress vs No 

Stress 

Up 64 11 53 

Down  1541 7 1534 

1 hour Recovery 

vs Stress 

Up 5 1 4 

Down  1 0 1 

6 hour Recovery 

vs Stress 

Up 1452 5 1447 

Down  33 6 27 
 

Table 1: Translational regulation and contamination during stress 

 

Experimental Design  

I assayed translation at 4 different time points, (1) no treatment, (2) stressed, (3) 1 

hour of recovery, and (4) 6 hours of recovery. I followed the same basic outline of what 

was performed for the two puromycin experiments. I fed cells for 4 hours to build up a 

pool of labeled RNAs, then treated and combined samples as outlined in Figure 23.  

 



53 

 

Figure 23: Experimental design to study translation during stress 

Three different samples were collected to compare cells that are unstressed, 1 hour into recovery, and 
6 hours into recovery to cells experiencing stress.  

 

To analyze the resulting sequencing data, I used a false-discovery rate of 0.05, 

and compared results to the null hypothesis that the absolute value of the fold change is 

equal to or less than 0.5.  Using these parameters to compare stressed and unstressed 

conditions and accounting for likely background, I identified 59 transcripts that are more 

translated, 1,541 that are downregulated, and 21,144 that cannot be significantly called up 

or down (Figure 24a).   

 GO analysis of the transcripts that have increased presence in polysomes indicate 

enrichment for proteins that could be related to the stress response. This includes the 

RNA helicases DHX30, DDX5, DDX24, UPF1, the U5 helicase SNRNP200, and also 

components of the DNA helicase MCM Complex. Many of these proteins are enriched in 

stress granules, indicating there may be a functional reason the cells needs to produce 

more of these proteins86. Recent work has suggested that RNA helicases may be 

important for managing stress by acting as ATP-dependent RNA chaperones95. Several 

heat shock proteins were identified (HSP90AB1, HSPA1A, HSPA8) and eEF2 which 
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plays a role in phosphorylating eIF2a during ER stress96. Dropping the fold change 

cutoff to 0.3 increases the number of helicase transcripts called translationally 

upregulated, and includes all components of the MCM complex.  

 

 

Figure 24: Translational upregulation during cellular stress 

a, Enriched transcripts include RNA helicases. Depleted transcripts include RNA 
transcription factors and several eIF’s. b, There are almost no changes in 
polysome association. c, About 1500 transcripts are more polysome associated. 
About half are transcripts that became depleted in (a). The other half are enriched 
for transcripts encoding ubiquitin/proteasome associated proteins, but most of 
these are transcriptionally up as well.  
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ATF4 is a ubiquitously expressed mRNA, but the protein is present at very low 

levels in cells at homeostasis. Hypoxia, which induces eIF2a phosphorylation, increases 

ATF4 levels without any transcriptional response. ATF4 transcripts shifts from mostly 

being partially in monosome fractions and largely in low polysome fractions to higher 

polysome fractions in mammalian cells under ER stress97.  Since I am combining all 

polysomes fractions, I’m unlikely to see this translational shift from low to high 

polysome fractions. Another study performed ribosome profiling on 293t cells, and did 

not find significant upregulation in translation efficiency. They did see global 

downregulation of ribosome footprints across the transcriptome, showing that ATF4 

ribosome-footprints and translation efficiency were significantly up relative to other 

similarly expressed transcripts. Our data agree in that there are many transcripts 

translationally down in polysomes compared to ATF4. I additionally identify 

translationally upregulated transcripts with functions linked to stress survival. I based my 

experiment on one that examined translational recovery after stress using a single-

molecule reporter system and smFISH84. This paper analyzes the translation of a reporter 

construct containing the 5’UTR of RPL35. It sees translation shutdown after 30 minutes 

of stress, which we also see.  

The transcripts that are lost from polysomes during stress are enriched for the 

eIF’s (4H, 1, 1B, 5, 3G, 2B1 and several others) and RNA Pol II regulators and 

transcription factors. This fits with the general transcription and translation 

downregulation that occurs during stress.  
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Translated at 1 hour after stress 

 There are very significant changes in what is enriched in polysomes between 

stress and 1 hour of recovery. Five transcripts are more expressed – JUN, EGR1, JUND, 

and DUSP1. The only downregulated transcript encodes a mitochondrial protein, RNR1. 

This result generally agrees with results from my puromycin incorporation results and 

literature, which indicate there is little translation happening 1 hour after stress80 (Figure 

24b). This is in contradiction to the single molecule studies of the reporter construct with 

the 5’UTR of RPL35, which seems to have resumed translation 30 minutes after release 

from stress84. RPL35 is translated 6 hours after release from stress.  

 

Translated at 6 hours after stress 

At 6 hours after stress, 1452 transcripts are translationally upregulated. Of these, 

50% (749 transcripts) were translationally downregulated during stress (Figure 24c). Of 

those that are newly upregulated, GO analysis reveals they are highly enriched for several 

categories of proteins involved in the ubiquitin-proteasome system (p=2.82E-4 to 1E-

11)98. The majority of these are also transcriptionally upregulated.  

 

How input RNA changes between stages of stress and recovery 

 There are relatively few changes in the population of total RNA between the 

unstressed and stressed conditions. Going into stress, 40 transcripts appear to be 

translated less, among them 15 mitochondrial transcripts. Five transcripts appear to be 

translated more. Two of these are JUN and DUSP1, which will become translationally 
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upregulated 1 hour after recovery from stress. ATF3 is a stress-responsive transcript 

(Figure 25c).  

 Between stress and 1 hour of recovery from stress, there are no significant 

changes in the transcriptome. The 4 upregulated transcripts are JUN, EGR1, DUSP1 and 

FOS (Figure 25b). 

 After 6 hours of recovery, 7338 transcripts appear to be significantly enriched in 

total RNA, compared to the stressed condition. Since we have already observed that there 

is no significant RNA turnover during stress or after 1 hour of recovery, I conclude that 

this increase in labeled RNA comes from the cell highly upregulating transcription 

between 1 and 6 hours after recovering from stress. From this experiment, it is impossible 

to distinguish the effects of upregulated transcription or upregulated degradation, but this 

is an interesting future direction (Figure 25c).  

 These results follow the same general trend as observed with an RNA-reporter 

construct using single molecule FISH. This reporter experienced a halt in transcription 

and degradation of mRNAs for about 2 hours after removal of stress84. I cannot say 

precisely when transcription and degradation restart based on my experimental results, 

but they do support the idea that there is a relatively long pause of RNA kinetics during 

and following sodium arsenite stress.  
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Figure 25: Transcriptional changes during sodium arsenite stress 

a, There are few transcriptional changes during stress. b, There are few transcriptional 
changes between stress and 1 hour recovery. c, About 7338 transcripts are enriched in the 
6 hour recovery samples.  
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2.9. Conclusions and Discussion 

 TILAC is a metabolic labeling and analysis method that can be combined with 

any type of biochemical experiment that would benefit from internal normalization. I 

have shown how it can be used to measure RNA levels in whole cell lysate or after 

fractionation. In addition to the experiments described here, TILAC would be beneficial 

when combined with a variety of other subcellular fractionations and formaldehyde RNA 

immunoprecipitaitons. A TILAC experiment can be performed with variable feed times, 

allowing customization of the method for each individual experiment. The experiments 

performed in this section used labeling times that spanned 45 minutes to 10.5 hours. 

Experiments cannot be conducted for timespans greater than 24 hours, due to s6G toxicity 

effects. Analysis is done with a statistical model that can be set up to be relatively user 

friendly, with little to no customization needed to analyze a variety of experiments. 
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Chapter 3. Chromatin-Associated RNAs 

3.1. Author Contributions 

I performed all experiments. DNA origami was made by John Powell in the Lin 

Lab, and he also took some negative stain images. RNA sequencing data was processed 

using the TimeLapse pipeline written by Matthew Simon, Martin Machyna, and Josh 

Zimmer. Bioinformatics analyses are my own, with advice from Jeremy Schofield.   

3.2. Introduction  

 Over the past decade, it has been revealed that mammalian genomes are broadly 

transcribed, including intergenic regions. Transcription over regions that do not code for 

proteins produces non-coding RNAs, many of which are function. Examples of small 

non-coding RNAs include snoRNAs and snRNAs involved in ribosome biogenesis and 

splicing, and also miRNAs involved in gene silencing. Long non-coding RNAs 

(lncRNAs), on the other hand, appear to be localized to and function predominantly on 

chromatin. Two such lncRNAs are involved in regulating gene expression during dosage 

compensation. roX2 is a Drosophila lncRNA that is part of the male sex-lethal complex. 

It localizes to the X-chromosome in males and upregulates transcription so that males 

have equal numbers of transcripts to females with two X-chromosomes99. Mammals have 

developed a similar system using the lncRNA Xist, which silences one of the X-

chromosomes in females100,101.  

Xist is necessary but not sufficient for XCI, and acts by binding to the X-

chromosome, spreading in cis, and triggering silencing of transcription102. While several 

models have been proposed to explain various aspects of this process 103-106, we still do 

not know the biochemical and structural details underlying the molecular mechanism of 
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XCI. Structural studies of Xist have been hampered by the challenges of working with a 

flexible 18 kb RNA. Work to identify and characterize proteins in the Xist 

ribonucleoprotein (RNP) has produced conflicting results 107-109.  

I took inspiration from XCI in mammalian cells to pursue the first two projects of 

my thesis. In this section, I will tell you about my efforts to determine the structures of 

small, modular, structured regions of Xist. Then, I will tell you how I was inspired to 

investigate the Xist binding protein hnRNP-U, and its role in retaining RNAs on the 

chromatin.  

 

 

3.3. A method to probe three-dimensional structures of long-

noncoding RNAs  

My original thesis project examined the mechanism of XCI by interrogating the 

structure of Xist. Current structural data came from chemical probing data from our lab 

and several others110-113. I used these secondary structure predictions as an important 

starting point for 3D structural studies. I integrated RNA chemical probing, DNA 

nanotechnology and cryo-electron microscopy in pursuit of a new method that would 

harnesses the modularity of lncRNAs to provide the first high-resolution structures of 

small, independently folding portions of Xist that are ~50-300 nt long.  

 

Structures of small RNAs using cryoEM  

The field is still working to describe the molecular events leading to the 

transcriptional silencing and heterochromatization of one X-chromosome during XCI. In 
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XCI, the X-chromosome that expresses Xist is transcriptionally silenced and 

heterochromatinized. Xist is necessary for XCI, and generally thought to act in three 

steps: binding to the chromatin, spreading in cis, and silencing transcription105,106. The 

extent to which Xist functions independently in XCI or acts as a scaffold for helper 

proteins is unknown. Efforts to characterize Xist’s protein partners have produced 

conflicting results, identifying anywhere from 10 to greater than 200 interactors 

depending on the study107-109. 

I aimed to understand the role that Xist structure plays in XCI. In order to 

function, RNAs fold into specific structures. LncRNAs have been shown to be composed 

of smaller modules that fold and function independently114,115. Xist likely has similar 

modules (Figure 27), and understanding the structure and function of each of these would 

shed light on how the whole molecule coordinates two partially separable functions, 1) 

associating with the X-chromosome and spreading in cis, and 2) triggering silencing of 

transcription.  

At roughly 18 kb, the size of Xist makes it hard to purify or in vitro transcribe, 

and thus the type of careful biochemical dissection necessary has been essentially 

impossible. Genetics experiments have indicated function for only several small regions 

of Xist, the A repeat region (repA) and the C repeat region (repC) (Figure 26) 106. Both 

regions are predicted to contain modular, highly structured segments of Xist110, indicating 

that these regions require further in vitro characterization. In vivo deletion analysis 

demonstrated that (repA) is important for silencing. This segment of Xist also associates 

with chromatin, and mutational analysis indicates that the structure of repA is responsible 

for this interaction116. If we could understand those mutations in the context of a tertiary 
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structure model of repA, we could identify specific nucleotides that may be involved in 

associating with the chromatin. 

RepC was also identified by deletion analysis and is associated with spreading106. 

This was confirmed by studies using variations on standard oligonucleotides, such as 

locked nucleic acids and protein nucleic acids, that bind to specific regions of Xist and 

disrupt the function of that region. These studies found that targeting repC with LNAs 

disrupted Xist’s interaction with the X-chromosome(Figure 26)110,117,118. One model to 

explain these finding is that the oligonucleotides disrupt a structure that allows repC to 

interact with the chromatin or with helper proteins. Tertiary structure determination 

would confirm that the structure of this region is important. 
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Figure 26: Xist repC region 

The repC region of Xist is both functional and folded. When targeted by locked-

nucleic acid probe at the region highlighted in yellow, Xist is knocked from the 

chromatin.  

 

In addition to the two regions above, the Simon Lab has used computational 

folding algorithms to predict 26 modular regions of Xist ranging from 70 – 300nt in size 

(Figure 27) 110. These regions are too large for NMR, too flexible for crystallography, and 

slightly too small for current methods of single particle cryoEM. I set out to develop a 

new single particle cryoEM method that is easily engineered and versatile, which would 

allow me to investigate a variety of RNAs of different sizes with moderate throughput. I 

proposed to use a DNA origami frame to anchor these RNA modules, restrict 

conformational heterogeneity, and assist in orientation and localization of smaller RNA 

molecules in single particle cryoEM structure determination. 

 

 

Figure 27: Structured Regions of Xist 

Fang et al., 2015, used computational folding algorithms to on the primary sequence of 

Xist and identified 26 regions predicted to be module and structured.  
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Piloting DNA origami strategy using known RNAs 

The modular, functional regions of interest in Xist, discussed above, are roughly 

50 – 150 kDa in size. In 2016, these pieces of Xist were rather small for cryoEM 

structure determination. However, the cryoEM field was in a period of rapid technical 

advances in both hardware and software, and the first studies of small proteins were 

being published as I began working on this project119-121. To anchor small RNA domains, 

restrict conformational heterogeneity, and assist in orientation and localization of the 

molecules, I planned to put these pieces in the context of a large and easily oriented DNA 

origami frame. We designed this frame in collaboration with the Lin Lab at Yale, who are 

experts in DNA origami. The frame is made of interconnected DNA helices, with single-

stranded DNA oligo handles that extend from the frame into the inner window that are 

complementary to single stranded handles on the RNA (Figure 28). This allows the RNA 

to be loaded into the frame by hybridization. While working on this project, the Scheres 

lab published a paper using a similar origami scaffold to determine the structure of a 

DNA binding protein to about 15 Å resolution122. 

 

Results of cryoEM structure determination  

 While my longer-term goal was to study Xist and other lncRNA fragments, my 

pilot work to develop this method focused on the c-di-GMP riboswitch. It is a good 

model for several reasons. First, at about 100nt, it is roughly the same size as some of the 

smaller regions of Xist. Second, preparing well-folded samples is aided by the fact that it 

has picomolar affinity for its ligand, ensuring a high percentage of RNA molecules will 

be properly folded. Finally, the Strobel Lab at Yale solved its structure by 
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crystallography123. I received technical support and mentoring in performing IVT, RNA 

folding, and radioactivity work from Caroline Reiss. Finally, I would be able to compare 

my structure to that determined by crystallography to ensure that my method is not 

introducing biases into the final structures. 

 

 

Figure 28: DNA origami frame used to scaffold small RNAs for cryoEM 

DNA origami frame designed by John Powell in the Lin Lab. a, The DNA origami 
frame is roughly 50nm by 60nm, and 3 helices tall. It is shaped like a thumb, which 
gives it a unique view at every orientation and is appropriate for single particle 
reconstruction. Colors indicate the predicted flexibility, and overall we expected this 
frame to be fairly stable. Across the window of this frame is just a single-stranded 
piece of DNA, which is just to indicate an RNA could be loaded. b, Zoomed in view of 
the hole in the frame shown in a loaded with the c-di-GMP riboswitch. It is attached to 
the frame by 3 handles (orange), anchoring it in one plane relative to the rest of the 
frame.  

 

 

I transcribed, folded, and purified two versions of the c-di-GMP riboswitch. One 

had 10nt long handles, and the other had 19nt long handles. My collaborator in the Lin 

Lab produced versions of the frame that accommodated either version. We reasoned that 
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a shorter linker (10nt) might keep the riboswitch more tightly oriented on a plane within 

the frame, but on the other hand we might need 19nt handles to get specific loading of the 

RNA into the frame. Both RNAs were able to be loaded into the frame (Figure 29). 

 

Figure 29: Loading the c-di-GMP riboswitch into the origami frame 

Left: Loading a c-di-GMP riboswitch with 10nt long handles. Right: Loading a c-di-

GMP riboswitch with 19nt long handles 
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Once the RNA was loaded, John collected and manually averaged some negative 

stain images, and we saw density in the frame that looked like it could correspond to a 

loaded RNA. I then screened cryo conditions on a FEI Technica T-12, and saw that I 

could get several orientations of the frame in ice (Figure 30).  

 

Figure 30: Electron microscopy of a riboswitch loaded into a DNA origami fram 

Left: Negative stain TEM averages of the frame, with or without RNA loaded. Right: A 
cryoEM micrograph taken while screening freezing conditions on a T-12 with CCD 
camera. Insert: Image contrast enhanced in ImageJ.  

 

 Once I had dialed in on a range of freezing conditions that worked, I collected a 

preliminary dataset on a Krios, and performed class averages in RELION124,125. 

Unfortunately, those classes revealed several challenges. First, the frame was much more 

flexible than we had anticipated, and was liable to warping. It was unlikely to be able to 

be reconstructed to any resolution. Second, with my freezing conditions, I was not able to 
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get enough different orientations of the particle. Based on these results, it seemed that we 

would need to redesign the frame in order to move forward.  

 

 

Figure 31: Class averages of cryoEM dataset of frame with loaded riboswitch. 

 

 An alternative to using the frame is to image the RNA directly. West Campus had 

just bought and installed a Krios with a K2 camera, which I used to collect the images in 

Figure 31. I chose to look at two RNAs by negative stain to assess their potential 

suitability for cryoEM. The first was the Xist structure region 8 (Figure 32a). However, 

based on the extended (squiggled) nature of the particles, it appears to be unstructured, in 

contrast to predictions. I also examined the c-di-GMP riboswitch, which does appear to 

be well folded by negative stain (Figure 32b). An occasional artefact with negative stain 
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of RNA that the particles becomes counterstained (is darker than the background) due to 

the high charge of the molecule. From this image, I concluded that the c-di-GMP 

riboswitch is well folded. I moved on to screening cryoEM grids on a FEI Talos L120C. 

The grids needed extensive freezing optimization, and generally showed poor consistency 

and reproducibility. However, in spots where I could find appropriate ice, there did 

appear to be some specks that could represent folded riboswitch (Figure 32c).  

 

Figure 32: Electron microscopy of small RNAs 

a, Negative stain images of Xist structured region 8. This RNA appears to be unstructured 
(light, extended features). b, Negative stain of c-di-GMP riboswitch, where the dark spots 
are thought to be the riboswitch. c, CryoEM image of the c-di-GMP riboswitch. Mottled 
area in the top right is where thick ice gives way to clean ice below and to the left. Dark 
spots could be folded c-di-GMP riboswitch.  

 

Conclusions and Outlook 

 My progression through this project mirrors the progression of the cryoEM field. 

When I started, biochemical strategies to make particles more amenable for single-

particle reconstruction seemed like the best strategy for working within the technology at 

the time. With the rapid advances in imaging and processing technology, the field was 

becoming increasingly ambitious with the size of reconstructed particles, in a race to 

atomic resolution. At the same time, many labs were discovering the challenges of 
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working with DNA origami. During my time at the Cold Sping Harbor Course on 

Electron Microscopy and the Three Dimensional Electron Microscopy Gordon 

Conference, I became more familiar with much of the unpublished research on DNA 

origami frames. Through my increasing knowledge of the cryoEM field and it’s 

technological advance and my increasing familiarity with the DNA origami field, I 

realized reconstructions were going to be done on single RNA particles, without needing 

a frame.  

 Since I put this project down, several beautiful high-resolution structures of small 

RNAs have been published126,127. With better and better instrumentation, this should 

become a routine procedure in biochemistry128,129.  

 

3.4. hnRNP-U and chromatin-retained RNAs  

hnRNP-U, also known as SAF-A, has a SAF DNA binding domain, an RGG 

RNA binding domain, and an AAA+ ATPase domain 130,131. It has been implicated in a 

myriad of nuclear processes, including transcriptional and splicing regulation, RNA 

stability and chromatin structure 132-135, yet there is little consensus about the function or 

mechanism of hnRNP-U in these processes. The most evidence currently is for hnRNP-U 

acting as part of a matrix that anchors some RNAs to chromatin.  

Early in vitro biochemical assays demonstrated that hnRNP-U could bind both 

DNA and RNA in the test tube 130,136,137. In 2003, co-imaging of hnRNP-U and the X-

chromosome, using DNA FISH, showed colocalization of hnRNP-U with 

heterochromatin X-chromosome territories. The association disappeared when hnRNP-U 

was mutated to lack its RGG domains. This experiment relied on overexpression of either 
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hnRNP-U or the mutant over endogenous hnRNP-U, and it was not possible to learn 

anything how this might affect Xist localization.   

However, Xist localization to the X-chromosome is necessary for X-chromosome 

inactivation, and understanding the molecular interaction between RNA and chromatin is 

crucial for understand the epigenetic changes that take place during XCI. More detailed 

studies of XCI depleted hnRNP-U and saw that Xist is delocalized from the X-

chromosome without hnRNP-U, and that this phenotype is dependent on both the SAF 

and RGG domains104. This finding is actively debated in the literature. Other labs have 

found that hnRNP-U is necessary for localization only in some cell types, rarely in 

primary cells, and find the RGG domain is not necessary for this function138. One 

confounding factor is that hnRNP-U has two poorly characterized homologs, hnRNP U-

like1 and hnRNU U-like2 with different expression levels across cell types. These could 

be partially rescuing the hnRNP-U knock down. In addition, the RGG domain is not 

really a structure domain. It is a relatively disordered protein region enriched in argenine 

and glycine residues. Difference is the extent of RGG deletion could have variable effects 

on how hnRNP-U interacts with Xist139.   In addition to Xist, hnRNP-U seem to be 

necessary to anchor CoT1 repetitive RNAs to the chromosome from which they are 

transcribed, similar to Xist133. 

One potential model for how hnRNP-U could affect chromatin structure integrates 

its SAF, RGG, and AAA+ ATPase domains. It proposes that hnRNP-U binds chromatin-

associated RNAs, often nascent RNA, with its RGG domain. This activates an RNA-

dependent AAA+ ATPase domain and induced oligomerization. Oligomers of hnRNP-U 

could regulate large-scale chromatin structures, potentially keeping areas of active 
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transcription euchromatic 131. This model would need to be reconciled with the 

potentially conflicting ideas of how hnRNP-U functions in XCI.  

These microscopy studies have been able to characterize hnRNP-U in relation to 

one RNA or genomic location at a time. I conducted genome-wide sequencing studies to 

ask what RNAs require hnRNP-U for their chromatin localization? What would be the 

characteristics of these RNAs? Are they long-lived, like Xist?  

 

Results 

I optimized an experiment to study RNA dynamics on chromatin. This experiment 

combined a chromatin fractionation technique6 with TimeLapse chemistry developed in 

the Simon Lab (Schofield et al 2018). Briefly, cells were metabolically labeled with s4U 

for 1 hour, after which I isolated chromatin-associated RNA. TimeLapse chemistry 

converted the s4U to a C analogue, so the presence of s4U in a read can be is evident in 

sequencing data as a U-to-C mutation. Mutational content was used to infer the fraction 

of new RNA for any gene.  

To validate the quality of the chromatin fractionation, I performed a Western Blot 

of proteins characteristic of each fraction. In the cytoplasm I looked for actin, in the 

nucleus I looked for U1-70k, and in the chromatin I looked for histone H3. There is some 

U1-70k in the cytoplasmic fraction, indicating that there was likely a few nuclei that 

lysed during the first lysis step. However, the chromatin fraction is free of contamination. 

Additionally, these Western blots confirm that hnRNP-U is knocked-out in this cell line. 

Interestingly, the bulk of hnRNP-U is in the nucleoplasm, but there is a proportion that 

make up a small band in the chromatin fraction.  
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Figure 33: Chromatin fractionation validation by Western blot 

Right: Western blot to confirm fractionation in wild type cells. Left: Western blot confirming 
fractionation in hnRNP-U knock out cells.  
 

 

I also verified that the TimeLapse chemistry worked well by analyzing the 

presence of T-to-C mutations in the datasets. Figure 34 shows the proportion of reads that 

have mutations in red, while the proportion without mutations is in gray. Increasing 

shades of red make up increasing number of T-to-C mutations per read. The actin 

transcripts are slow turnover, meaning they are made slowly and degraded slowly. We 

expect that this population of RNAs will include relatively few reads that were labeled 

during a one-hour period. On the other hand, both Jun and Myc are high turnover, 

meaning they are synthesized and degraded quickly. They have much higher rates of s4U 

incorporation, as indicated by the increase in proportion of the bar colored red. The 

chromatin fractions have high mutation content than the inputs, which makes sense since 

chromatin is where new RNAs containing s4U are made.  

Western Blot Validation 
Wild Type Chromatin Fractionation

Western Blot Validation 
hnRNP-U Knock Out Chromatin Fractionation
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Figure 34: Analysis of T-to-C mutation content in fractionated samples 

Extent of the red bars indicates the proportion of reads that have T-to-C mutations. 
Shown are input and chromatin fractions for all of the sequenced samples. The top six 
rows are the hnRNP-U knock out cells. The bottom six are wild type cells.  

 

I performed several analyses on the data. First, I used the differential expression 

software DESeq2 to look for significant changes in gene expression between the total 

RNA in WT and knock cells. This analysis revealed thousands of genes affected by 

hnRNP-U knock out (Figure 35). Gene ontology analysis results indicated that these 

transcripts are predominantly involved in growth, intracellular signal transduction, and 

signaling pathways.   
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Figure 35: Thousands of transcripts are dysregulated upon hnRNP-U knock out 

 

I then looked for what RNAs are chromatin enriched in WT cells. To distinguish 

between active transcription and retained, long-lived, RNAs enriched on chromatin, I 

used TimeLapse chemistry to identify transcripts with a longer half-life on chromatin. 

However, the list is not made up of lncRNAs, as I had hypothesized. I mostly find 

transcripts coding for proteins involved in the cytoskeleton, extracellular matrix, and 

development.  
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Figure 36: Chromatin retained, long-lived RNAs on chromatin are associated 
with cell strucure.   

 

Finally, I examined which chromatin-enriched RNAs change between WT and 

KO cells. Changes in active transcription occur in transcription factors and RNA splicing 

regulators. Xist and other similar RNAs are more likely to be newly transcribed in 

hnRNP-U knock out cells. This indicates that they potentially are more highly 

transcribed, or more highly turned over. This result indicates that these transcripts, which 

are involved in mRNA splicing, transcription regulation, cellular differentiation, and the 

cell cycle, are more highly turned over in the hnRNP-U knock out cells. 
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Figure 37: Chromatin-retained RNAs in hnRNP-U knock-out cells have shorter 

half-lives  

 

Conclusion and outlook on chromatin-retained RNAs 

I conclude that hnRNP-U does not seem to be involved in anchoring long non-

coding RNAs to the chromatin, based on this experiment in C2C12 MEF cells. Both 

hnRNP U-like1 and hnRNP U-like2 are expressed in these cells, and these proteins could 

be compensating for the hnRNP U knock out. Future experiments should start by 

knocking down these homologs and repeating the experiment. Additionally, changes 
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should be included in the experimental design. The cytoskeletal transcripts that I’m 

finding could be contamination. The experiment should be repeated with polyA+ 

depletion or using TILAC to control for this. The one potentially interesting results is that 

RNAs on chromatin appear to be more likely to be newly made in hnRNP U knockout 

cells than in wild type cells. This could mean that hnRNP U is having an effect on RNA 

stability independent of any potential role in tethering RNA.  
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Chapter 4. Methods 

4.1. TILAC Experimental Procedures 

Cell culture  

Drosophila S2 cells (gift from H. Lin, Yale) were cultured in Schneider medium 

(Lonza) supplemented with 10% heat-inactivated FBS (Invitrogen) and 1% penicillin–

streptomycin (Millipore) and maintained at 27 °C. Cultures were split every 3 d to a 

concentration of 5 × 105 cells per ml.  

MEF and HEK293t cells were grown at 37°C in DMEM – High Glucose media 

(Invitrogen) supplemented with 10% FBS (Invitrogen) and 1% penicillin–streptomycin 

(Millipore). Cells were split when they reached 70% confluence.  

 Regular mycoplasma tests (ATCC) were conducted to check quality for 

contamination.  

Plating cells for TILAC experiments 

To properly compare, the mixture needs to include the same number of cells from 

each labeled condition. Counting cells is extremely time consuming, especially when 

working with large numbers of samples (up to 18), and counting by eye has an average 

error of 20%140. To get as close to the same number of cells as possible, cells are split in a 

specific way. Cells for the experiment are only ever split 1:2 and plated 24 hours before it 

starts. This gives cells time to adhere, but is short enough to minimize any plate-to-plate 

variability in growth. To split, cells are harvested by trypsin, and all plates are mixed into 

a 50mL conical, spun down, and resuspended in media. Cells from this common stock are 
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distributed to the required number of experimental plates. The conical is capped and 

inverted every 3-4 plates to keep cells in a homogenous suspension.  

Dot blots of nucleotide incorporation  

 RNA was labeled, isolated from TRIzol, and DNased according to protocol (pg 

88). RNA (2-5ug) was reacted with 10% MTS-TAMRA (dissolved in dry DMF) by 

weight in 20m HEPES (pH7.4) and 1mM EDTA to a final volume of 50uL. The reaction 

was incubated for 1.5 hours at RT with rotation in the dark. The reaction was cleaned up 

by adding 50uL DEPC and using 100uL of 24:1 chloroform:isoamyl alcohol for one 

extraction. The aqueous phase was combined with 350uL RLT (from Quiagen RNease 

Mini Kit) and mixed thoroughly. Then 250uL 100% ethanol was added and mixed 

thoroughly. The solution was spun through an RNeasy column at 12,000xg for 30 

seconds and flow-through. The column was washed with 500uL RPE (from RNeasy Mini 

Kit), then 500uL 80% ethanol, and finally dried for 2 min at max speed. RNA was eluted 

into 50uL DEPC and imaged by pipetting 5uL onto the glass of a Typhoon imager, using 

the TAMRA setting51,53. 

Heat shock 

Drosophila S2 cells were grown in 6-well plates as described above (pg 80). To 

perform the heat shock experiment, cells were incubated at 37 °C for 1 hour. Cells were 

fed with 100uM nucleotide analogue for the last 45 minutes of heat shock. To harvest, 

cells were scraped into individual tubes if controls, or mixed if they were TILAC 

samples, and immediately placed on ice. Cells were spun down at 500x g at 4 °C, washed 

1x with ice-cold PBS, and resuspended in 500uL of Trizol92.  



82 

Puromycin-induced ribosome dissociation  

HEK293t cells were grown to ~60% confluency in DMEM with 10% FBS and 

Penn/Strep in 15cm plates. Cells were fed with 100uM s4U or s6G for 4 hours. Plates 

were washed in ice-cold PBS and each plate was scraped into its own lo-bind tube. 

Control samples were lysed in cycloheximide lysis buffer (20mM Tris-HCl pH 7.5, 

10mM MgCl2, 200mM KCl, 1% Triton, 0.2mg/mL cycloheximide, 4mM EDTA) and 

passed 10x through a 26-guage needle to shear genomic DNA. Lysate was cleared at 

20,000xg for 10 min at 4°C. Puromycin treated samples were resuspended in puromycin 

lysis buffer (20mM Tris-HCl pH 7.5, 5 mM MgCl2, 200mM KCl, 1% Triton, 4mM 

EDTA), passed through a 26-guage needle, and cleared at 20,000xg for 10 min at 4°C. 

Puromycin was added to 2mM, and incubated on ice for 20 min, and then at 37°C for 20 

min. MgCl2 was added up to 10mM8,72,77.  

After puromycin treatment, samples were mixed equally to a final volume of 

1mL. This was centrifuged through a 10-50% sucrose gradient7. Fractions were collected 

into phenol:chloroform:isoamyl alcohol. In total, two phenol extractions were performed, 

and then one additional chloroform extraction. RNA was ethanol precipitated, and DNA 

removed with TurboDNase. Finally, RNA was TimeLapse treated and libraries were 

prepared using the Clontech SMARTer Stranded Total RNA-seq v2 library prep kit.  

Transcription inhibition with flavopiridol 

Cells were grown in 6-wells plates to ~80% confluency. They were treated with 

500nM flavopiridol and 100uM of either s4U or s6G for 2 hours. They were immediately 

washed in cold PBS and scraped into pre-chilled lo-bind Eppendorf tubes. TILAC 

samples were mixed during this step. Samples were pelleted at 1800xg at 4 °C and 
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resuspended in 500uL of Trizol. Protocol was developed in the Simon Lab by Joshua 

Zimmer (in submission, 2021).  

Puromycin incorporation to examine active translation 

 Cells were split into 10cm plates so that they were 50-70% confluent at the start 

of the experiment. Cells were treated with 100uM sodium arsenite for the indicated time, 

or water control, by adding straight into the plate’s media. For recovery experiments, 

media with sodium arsenite was replaced with fresh media at 37°C. During the last 15 

minutes of treatment, cells were fed 7uM puromycin. Cells were washed with ice-cold 

PBS and harvested by scraping. Cells were pelleted at 750xg at 4°C for 5 minutes and 

washed once more with ice-cold PBS, and then flash frozen for storange at -20°C 

overnight.  

Pellets were thawed and lysed in 100uL RIPA buffer, plus protease inhibitor 

(Roche Complete, EDTA-free), passing 10x through a 26 gauge needle. Protein 

concentration was determined using a BCA assay (ThermoFisher Pierce BCA Protein 

Assay Kit). Between 9 and 15 ug of protein was loaded onto a NuPAGE Novex 4-12% 

BisTris gel and run for 50 minutes at 200V in MOPS buffer, then transferred onto a 

PVDF membrane. Loading was assessed by Ponceau S staining, then destained with 1x 

TBST. Membrane was blocked in 5% milk/1x TBST for 1 hour at room temperature. 

Membrane was stained with primary antibody (Kerafast anti-puromycin, 3RH11, 1:1000) 

overnight at 4°C in 1% milk/1xTBST. The next day, the membrane was washed 3x 5min 

in 1xTBST. It was then stained in secondary antibody (goat anti-mouse peroxidase, 

Sigma-Aldrich A9917, 1:2000) at RT for 1 hour in 1% milk/1x TBST. It was washed 3x 

5 min in 1x TBST and developed with SuperSignal West Femto Maximum Sensitivity 
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Substrate (ThermoFisher Scientific). It was visualized using chemiluminescent setting for 

between 5 and 10 minutes on an LAS 4000.  

Studying translation during stress 

 293t cells were grown in 15 cm plates according to cell culture procedure (pg 80). 

Cells were fed with 100uM nucleotide from 4 hours before starting the sodium arsenite 

portion of the experiment. For cells undergoing stress treatment, they were treated with 

100uM sodium arsenite for 30 minutes. For nucleotide chase experiments, the media was 

replaced with fresh media plus 100uM sodium arsenite84, without nucleotide. For 

recovery experiments, the media was replaced with fresh media with the appropriate 

nucleotide feed. Puromycin treatments on stressed cells were performed as described 

above (pg 82). 

Plates were washed in ice-cold PBS.  Plates were scraped under 1mL of ice-cold 

PBS. Suspended cells were aliquoted into lo-bind tubes so that 500uL of each plate was 

mixed with it corresponding TILAC partner for ribosome isolation, 100uL was mixed 

with its corresponding TILAC partner for input sequencing analysis, and the final 400uL 

was saved separately in case it might be needed in the future. Samples for ribosome 

purification were lysed in cycloheximide lysis buffer (20mM Tris-HCl pH 7.5, 10mM 

MgCl2, 200mM KCl, 1% Triton, 0.2mg/mL cycloheximide, 4mM EDTA) and passed 10x 

through a 26-guage needle to shear genomic DNA. Lysate was cleared at 20,000xg for 10 

min at 4°C, and then flash frozen for transportation to collaborator for sucrose 

sedimentation. Samples for input sequencing were resuspended in TRIzol and 

downstream processing according to pg 88. The extra 400uL was also lysed in 

cycloheximide lysis buffer and clarified, then flash frozen.  
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Sucrose sedimentation 

 Sucrose sedimentation was performed by Rachel Neiderer in the Gilbert lab. 

Briefly, lysate was layered onto a 10%-50% (w/v) sucrose gradient (20mM HEPES pH 

7.6, 100mM KCl, 5mM MgCl2, 1mM DTT, and 100ug/mL cycloheximide). 

Sedimentaiton gradients were centrifuged for 2 hours at 36,000 RPM.  

 

 

4.2. Cryo electron microscopy methods  

In vitro RNA transcription  

 To in vitro transcribe the c-di-GMP riboswitch, a 1mL reaction was set up with 75 

mM Tris-HCl (pH7.5), 40mM MgCl2, 2mM spermidine, 5mM DTT, 5mM each of ATP, 

UTP, CTP, GTP, 150pmol of DNA template, and 40 units of T7 RNA polymerase. In 

addition, 5uL of SuperasIN (RNase Inhibitor, Invitrogen). Reactions were incubated for 

4-16 hours at 37°C. After that time, 20uL of Turbo DNase is added to a 1mL reaction, 

and it is incubated for another 1 hour at 37°C. Then, 20 uL of ProK is added and the 

reaction is incubated for another 1 hour at 37°C.  

 To isolate RNA, the reaction is run on a 8% denaturing polyacrylamide gel. The 

RNA band is visualized by UV shadowing and cut out, crushed, and covered with 

300mM sodium acetate, andn incubated overnight at 4°C or at room temperature for 1 

hour. The RNA is then ethanol precipitate and resuspended in DEPC-treated water.  
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Folding the c-di-GMP riboswitch 

In a 50uL reaction, 2uM riboswitch is mixed with 5uM c-di-GMP, in a buffer containing 

10mM MgCl2, 10mM KCl, 10mM sodium cacodylate at pH 6.8. Heat to 70 deg C for 5 

minutes and slow cool to fold.  

Loading c-di-GMP riboswitch into the DNA origami frame 

Combine 150nM folded c-di-GMP riboswitch, 10nM DNA origami frame, in 30mM 

HEPES (pH 7.5), 20mM MgCl2, and 100mM KCl. Incubate overnight at room 

temperature. 

Grid preparation, imaging and analysis 

DNA origami frame loaded with c-di-GMP riboswitch was frozen at a concentration of 

10nM. C-Flat Holey Carbon Grids (CF-2/2-3C-Thick, 300 mesh, Copper) were coated 

with an amorphous carbon film. Before freezing, grids were glow-discharged for 30 

seconds at 30mA. Freezing was performed on an FEI VitroBot with 3uL of 10nM DNA 

origami sample at 100% humidity for 5 seconds of blotting, with not blot offset. Negative 

stain images were taken on either a FEI Technica T-12 or on a FEI Talos L120C. Cryo 

images were take on the FEI TEchnica T-12, the FEI Talos L120C, and the Krios. Image 

processing and classification were performed using Relion124.  

 

4.1. hnRNP-U and chromatin associated RNAs  
Metabolic labeling and cell culture 

 For metabolic labeling, 10cm plates of MEF cells were fed with s4U for 1 hour. 

To evaluate the role of hnRNP-U knock out on chromatin-retained RNAs, WT MEFs 

were compared to CRISPR KO lines generated by Alec Sexton.  
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Chromatin fractionation protocol 
To harvest, plates were washed 1x with ice cold PBS, then scraped under 1mL of 

ice cold PBS into Lo-bind microcentrifuge tubes. 10% of the suspension was taken as 

input. Cells were collected by centrifugation and washed with 1X PBS/1mM EDTA. 

Cells were resuspended in 200uL of ice-cold NP-40 lysis buffer (10mM Tris-HCl 

[pH7.5], 0.2% NP-40, 150mM NaCl, 1mM DTT), flicked to resuspend into a 

homogenous suspension, and left on ice for 5 minutes to lyse the plasma membranes. 

Lysate was aspirated with a P200 tip, but with the tip cut off to make a bigger opening, 

and avoid lysing the nuclei. It was layered on top of 500uL of sucrose cushion (24% 

sucrose in NP-40 lysis buffer) and centrifuged for 10 minutes at 4°C and 14,000xg. After 

centrifuging, there should be an opaque/white band of cytoplasmic content at the top of 

the supernatant. The supernatant was collected and saved as the cytoplasmic fraction.  

 Nuclei were washed with ice-cold 1xPBS/1mM EDTA, and resuspended in 

100uL pre-chilled glycerol buffer (20 mM Trips-HCl [pH7.9], 75mM NaCl, 0.5mM 

EDTA, 1 mM DTT, 0.125mM PMSF, 50% glycerol) by flicking. An equal volume of 

ice-cold nuclei lysis buffer (10mM HEPES [pH 7.6], 1mM DTT, 7.5mM MgCl2, 0.2mM 

EDTA, 0.3 M NaCl, 1M UREA, 1% NP-40) was added and tubes were vortexed for 2 x 2 

sec, incubated for 2 min on ice, and then centrifuged for 2 min at 4°C and 14,000xg. The 

supernatant was collected as the nuclear fraction. Chromatin was gently rinsed with 

1xPBS/1mM EDTA and resuspended into TRIzol, according the the TimeLapse RNA 

extraction protocol.  

Western blot validation  
 To validate clean chromatin, each fraction was validated by Western Blot. 

Cytoplasm was marked with actin (sc-47778, 1:500), nucleoplasm by U1-70k (05-1588, 
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1:500) and chromatin by histone H3 (ab1791, 1:2000). HnRNP-U knock out was 

validated using the antibody sc-32315. Western blots run as described in puromycin 

incorporation protocol.  

4.2. RNA Sequencing and Analysis  
RNA sequencing 

RNA extraction and TimeLapse chemistry were peformed as previously reported, 

with slight variations52,53, described below.  

RNA was isolated from TRIzol, and precipitated using isopropanol supplemented 

with 1mM DTT to prevent oxidation of the thiolated-bases. DNA was removed using 

TurboDNase, and RNA was purified using Agencour RNAClean XP beads. TimeLapse 

chemistry was performed by mixing RNA with TFEA (600 mM), EDTA (1 mM) and 

sodium acetate (pH 5.2, 100 mM) in water. A solution of NaIO4 (10 mM) was then 

added dropwise, and the reaction mixture was incubated for 1.5 hours at 50°C. RNA was 

isolated using RNAClean beads. RNA then went through reducing treatment to remove 

any excess oxidant (100uM DTT, 100uM Tris pH 7.4, 10uM EDTA, 1M NaCl) and was 

cleaned up using RNAClean beads. The modifications to the protocol will be reported by 

Kiefer, Zimmer, and Schofield, manuscripts in preparation.  

Libraries were prepared using the Clontech SMARTer Stranded Total RNA-seq 

v2 library prep kit. Sequencing was performed on a NovaSeq using paired-end 100bp 

reads.    

Sequencing Analysis:  

Reads were filtered for unqiue reads using FastUniq141, and adapators were 

removed using Cutadapt142. Sequencing samples were aligned to both the genome and 

transcriptome annotations using HISAT2143 using default parameters and -mp4,2. Human 
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samples were aligned to GRCh38 genome, while Drosophila reads were aligned to the 

Dm6 genome. Reads were further processed with Picard tools 

(http://broadinstitute.github.io/picard/) including FixMateInformation, SortSam, and 

BuildBamIndex. Reads were filtered using samtools144 to retain only those that mapped 

uniquely (flag: 83/163, 99/147), with MAPQ >= 2. Reads over genes were counted using 

HTSeq. The number of T’s, G’s, and associated mutations in each read were counted 

using Rsamtools (http://bioconductor.org/packages/release/bioc/html/Rsamtools.html)  

and a custom R script. Snp’s were identified using bcftools145 and samtools mpileup, and 

then filtered out of mutational analysis. Tracks were made using the STAR aligner146 

(inputAlignmentsFromBam mode, outWigType bedGraph). Tracks were converted to 

binary format (toTDF, IGVtools) and viewed in IGV147.  

Downstream data analysis was performed using custom R-scripts.  

 

 

 

 

 

 

 

 

 

 

 



90 

References:  

 
1. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. 

Genome Biology 1–19 (2016). doi:10.1186/s13059-016-0881-8 
2. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. 

Nat Rev Genet 1–26 (2019). doi:10.1038/s41576-019-0150-2 
3. Hendrickson, D., Kelley, D. R., Tenen, D., Bernstein, B. & Rinn, J. L. 

Widespread RNA binding by chromatin- associated proteins. Genome 
Biology 1–18 (2016). doi:10.1186/s13059-016-0878-3 

4. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-
binding protein binding sites with enhanced CLIP (eCLIP). Nat Meth 13, 
508–514 (2016). 

5. Baghirova, S., Hughes, B. G., Hendzel, M. J. & Schulz, R. Sequential 
fractionation and isolation of subcellular proteins from tissue or cultured 
cells. MethodsX 2, 440–445 (2015). 

6. Pandya-Jones, A. & Black, D. L. Co-transcriptional splicing of constitutive 
and alternative exons. RNA 15, 1896–1908 (2009). 

7. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript 
isoforms in human cells. eLife 5, 1–25 (2016). 

8. Clark, I. E., Wyckoff, D. & Gavis, E. R. Synthesis of the posterior 
determinant Nanos is spatially restricted by a novel cotranslational 
regulatory mechanism. Current Biology 1–4 (2000). 

9. Wilhelm, B. T. & Landry, J.-R. RNA-Seq—quantitative measurement of 
expression through massively parallel RNA-sequencing. Methods 48, 249–
257 (2009). 

10. O'Neil, D., Glowatz, H. & Schlumpberger, M. Ribosomal RNA Depletion 
for Efficient Use of RNA-Seq Capacity. Current Protocols in Molecular 
Biology 103, 4.19.1–4.19.8 (2013). 

11. Zhao, S., Zhang, Y., Gamini, R., Zhang, B. & Schack, von, D. Evaluation of 
two main RNA-seq approaches for gene quantification in clinical RNA 
sequencing: polyA+ selection versus rRNA depletion. Scientific Reports 8, 
4781–12 (2018). 

12. Zhao, W. et al. Comparison of RNA-Seq by poly (A) capture, ribosomal 
RNA depletion, and DNA microarray for expression profiling. BMC 
Genomics 15, 1–11 (2014). 

13. Herbert, Z. T. et al. Cross-site comparison of ribosomal depletion kits for 
Illumina RNAseq library construction. BMC Genomics 19, 199–10 (2018). 

14. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. 
Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Meth 
5, 613–619 (2008). 

15. Soukup, G. A. & Breaker, R. R. Relationship between internucleotide 
linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999). 

16. Hansen, K. D., Brenner, S. E. & Dudoit, S. Biases in Illumina transcriptome 
sequencing caused by random hexamer priming. Nucleic Acids Research 38, 
e131–e131 (2010). 



91 

17. Li, X., Nair, A., Wang, S. & Wang, L. in RNA Bioinformatics 1269, 137–146 
(Humana Press, New York, NY, 2015). 

18. Levin, J. Z. et al. Comprehensive comparative analysis of strand-specific 
RNA sequencing methods. Nat Meth 7, 709–715 (2010). 

19. Bansal, V. A computational method for estimating the PCR duplication rate 
in DNA and RNA-seq experiments. BMC Bioinformatics 18, 43–123 (2017). 

20. Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins 
after cell lysis: Implications for the interpretation of immunoprecipitation 
analyses. RNA 10, 1692–1694 (2004). 

21. Riley, K. J., Yario, T. A. & Steitz, J. A. Association of Argonaute proteins 
and microRNAs can occur after cell lysis. RNA 18, 1581–1585 (2012). 

22. Wheeler, E. C., Van Nostrand, E. L. & Yeo, G. W. Advances and challenges 
in the detection of transcriptome-wide protein-RNA interactions. WIREs 
RNA 9, e1436–11 (2017). 

23. Nicholson, C. O., Friedersdorf, M. & Keene, J. D. Quantifying RNA binding 
sites transcriptome-wide using DO-RIP-seq. RNA 23, 32–46 (2016). 

24. Hafner, M. et al. Transcriptome-wide Identification of RNA-Binding Protein 
and MicroRNA Target Sites by PAR-CLIP. Cell 141, 129–141 (2010). 

25. Ule, J. et al. CLIP Identifies Nova-Regulated RNA Networks in the Brain. 
1–5 (2003). 

26. Holden, P. & Horton, W. A. Crude subcellular fractionation of cultured 
mammalian cell lines. BMC Res Notes 2, 243–10 (2009). 

27. Oesterreich, F. C., Preibisch, S. & Neugebauer, K. M. Global Analysis of 
Nascent RNA Reveals Transcriptional Pausing in Terminal Exons. 
Molecular Cell 40, 571–581 (2010). 

28. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 31–21 
(2014). 

29. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of 
statistical methods for normalization and differential expression in mRNA-
Seq experiments. BMC Bioinformatics 11, 94–13 (2010). 

30. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. in Statistical Analysis of Next 
Generation Sequencing Data 11, 169–190 (Springer, Cham, 2014). 

31. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor 
package for differential expression analysis of digital gene expression data. 
Bioinformatics 26, 139–140 (2009). 

32. Anders, S. & Huber, W. Differential expression analysis for sequence count 
data. Nat Prec 1–1 (2010). doi:10.1038/npre.2010.4282.1 

33. Lin, C. Y. et al. Transcriptional Amplification in Tumor Cells with Elevated 
c-Myc. Cell 151, 56–67 (2012). 

34. Nie, Z. et al. c-Myc Is a Universal Amplifier of Expressed Genes in 
Lymphocytes and Embryonic Stem Cells. Cell 151, 68–79 (2012). 

35. Chao, S. H. & Price, D. H. Flavopiridol inactivates P-TEFb and blocks most 
RNA polymerase II transcription in vivo. Journal of Biological Chemistry 
276, 31793–31799 (2001). 



92 

36. Yu, H. et al. Normalization of human RNA-seq experiments using 
chimpanzee RNA as a spike-in standard. Scientific Reports 1–10 (2016). 
doi:10.1038/srep31923 

37. Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA 
sequencing experiments. Nat Meth 13, 792–798 (2016). 

38. The External RNA Controls Consortium. The External RNA Controls 
Consortium: a progress report. Nat Meth 2, 731–734 (2005). 

39. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. 
Genome Research 21, 1543–1551 (2011). 

40. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq 
data using factor analysis of control genes or samples. Nature Biotechnology 
32, 896–902 (2014). 

41. Ong, S.-E., Mann, M., Blagoev, B. & Kratchmarova, I. Stable Isotope 
Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate 
Approach to Expression Proteomics*. 1–11 (2002). 

42. Deng, J., Erdjument-Bromage, H. & Neubert, T. A. Quantitative Comparison 
of Proteomes Using SILAC. Current Protocols in Protein Science 95, e74–
14 (2018). 

43. Ong, S.-E. & Mann, M. A practical recipe for stable isotope labeling by 
amino acids in cell culture (SILAC). Nat Protoc 1, 2650–2660 (2007). 

44. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, 
individualized p.p.b.-range mass accuracies and proteome-wide protein 
quantification. Nature Biotechnology 26, 1367–1372 (2008). 

45. Cox, J. et al. A practical guide to the MaxQuant computational platform for 
SILAC-based quantitative proteomics. Nat Protoc 4, 698–705 (2009). 

46. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-
protein interactions applied to EGF signaling. Nature Biotechnology 21, 
315–318 (2003). 

47. Boldt, K., Gloeckner, C. J., Texier, Y., Zweydorf, von, F. & Ueffing, M. in 
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 1188, 177–
190 (Humana Press, New York, NY, 2014). 

48. Zhang, G. et al. In-Depth Quantitative Proteomic Analysis of de Novo 
Protein Synthesis Induced by Brain-Derived Neurotrophic Factor. J. 
Proteome Res. 13, 5707–5714 (2014). 

49. Zhang, G., Deinhardt, K., Chao, M. V. & Neubert, T. A. Study of 
Neurotrophin-3 Signaling in Primary Cultured Neurons using Multiplex 
Stable Isotope Labeling with Amino Acids in Cell Culture. J. Proteome Res. 
10, 2546–2554 (2011). 

50. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA 
production and degradation dynamics in mammalian cells. Nature 
Biotechnology 29, 436–442 (2011). 

51. Duffy, E. E. et al. Tracking Distinct RNA Populations Using Efficient and 
Reversible Covalent Chemistry. Molecular Cell 59, 858–866 (2015). 

52. Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. 
TimeLapse-seq: adding a temporal dimension to RNA sequencing through 
nucleoside recoding. Nature Publishing Group 15, 221–225 (2018). 



93 

53. Kiefer, L., Schofield, J. A. & Simon, M. D. Expanding the Nucleoside 
Recoding Toolkit: Revealing RNA Population Dynamics with 6-
Thioguanosine. J. Am. Chem. Soc. 140, 14567–14570 (2018). 

54. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression 
dynamics. Nat Meth 14, 1198–1204 (2017). 

55. Moss, T., Langlois, F., Gagnon-Kugler, T. & Stefanovsky, V. A housekeeper 
with power of attorney: the rRNA genes in ribosome biogenesis. Cell. Mol. 
Life Sci. 64, 29–49 (2007). 

56. Dieci, G., Conti, A., Pagano, A. & Carnevali, D. Identification of RNA 
polymerase III-transcribed genes in eukaryotic genomes. BBA - Gene 
Regulatory Mechanisms 1829, 296–305 (2013). 

57. Vannini, A. & Cramer, P. Conservation between the RNA polymerase I, II, 
and III transcription initiation machineries. Molecular Cell 45, 439–446 
(2012). 

58. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: 
emerging roles in metazoans. Nat Rev Genet 1–12 (2012). 
doi:10.1038/nrg3293 

59. Price, D. H. P-TEFb, a Cyclin-Dependent Kinase Controlling Elongation by 
RNA Polymerase II. Molecular and Cellular Biology 20, 2629–2634 (2000). 

60. Xiao, H. & Lis, J. T. Germline transformation used to define key features of 
heat-shock response elements. Science 239, 1139–1142 (1988). 

61. Guertin, M. J., Petesch, S. J., Zobeck, K. L., Min, I. M. & Lis, J. T. 
Drosophila Heat Shock System as a General Model to Investigate 
Transcriptional Regulation. Cold Spring Harb Symp Quant Biol 75, 1–9 
(2010). 

62. DiDomenico, B., Bugaisky, G. & Lindquist, S. The Heat Shock Response Is 
Self-Regulated at Both the Transcriptional and Posttranscriptional Levels. 1–
11 (2004). 

63. Sorger, P. K. Heat Shock Factor and the Heat Shock Response. Cell 65, 363–
366 (1991). 

64. O'Brien, T. & Lis, J. T. Changes in Drosophila Transcription after an 
Instantaneous Heat Shock. Molecular and Cellular Biology 13, 3456–3463 
(1993). 

65. Sorensen, J., Nielsen, M. M., Kruhoffer, M., Justesen, J. & Loeschcke, V. 
Full genome gene expression analysis of the heat stress response in 
Drosophila melanogaster. 10, 312–328 (2005). 

66. Leemans, R. et al. Quantitative transcript imaging in normal and heat-
shocked Drosophila embryos by using high-density oligonucleotide arrays. 
Proc Natl Acad Sci USA 97, 12138–12143 (2000). 

67. Duarte, F. M. et al. Transcription factors GAF and HSF act at distinct 
regulatory steps to modulate stress-induced gene activation. Genes & 
Development 30, 1731–1746 (2016). 

68. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise Maps of RNA 
Polymerase Reveal How Promoters Direct Initiation and Pausing. Science 
339, 950–953 (2013). 



94 

69. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA Sequencing Reveals 
Widespread Pausing and Divergent Initiation at Human Promoters. Science 
322, 1845–1848 (2008). 

70. Teves, S. S. & Henikoff, S. Heat shock reduces stalled RNA polymerase II 
and nucleosome turnover genome-wide. Genes & Development 25, 2387–
2397 (2011). 

71. Spirin, A. S., Belitsina, N. V., letters, E. L. F.1972. On some artifacts of 
sucrose gradient sedimentation of ribosomes. core.ac.uk 

72. Kronja, I. et al. Widespread Changes in the Posttranscriptional Landscape at 
the Drosophila Oocyte-to-Embryo Transition. 1–46 (2014). 
doi:10.1016/j.celrep.2014.05.002 

73. Clarke, B. D., Roby, J. A., Slonchak, A. & Khromykh, A. A. Functional non-
coding RNAs derived from the flavivirus 3′ untranslated region. Virus 
Research 206, 53–61 (2015). 

74. Tercero, J. A., Espinosa, J. C., Lacalle, R. A. & Jiménez, A. The 
Biosynthetic Pathway of the Aminonucleoside Antibiotic Puromycin, as 
Deduced from the Molecular Analysis of the pur Cluster of Streptomyces 
alboniger(âˆ—). Journal of Biological Chemistry 271, 1579–1590 (1996). 

75. Aviner, R. The science of puromycin: From studies of ribosome function to 
applications in biotechnology. Computational and Structural Biotechnology 
18, 1074–1083 (2020). 

76. Kedersha, N. et al. Dynamic Shuttling of TIA-1 Accompanies the 
Recruitment of mRNA to Mammalian Stress Granules. 1–12 (2000). 

77. Blobel, G. & Sabatini, D. Dissociation of Mammalian Polyribosomes into 
Subunits by Puromycin. Proc Natl Acad Sci USA 68, 390–394 (1971). 

78. Buchan, J. R. & Parker, R. Eukaryotic Stress Granules: The Ins and Outs of 
Translation. Molecular Cell 36, 932–941 (2009). 

79. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding 
Proteins TIA-1 and TIAR Link the Phosphylation of eIF-2a to the Assembly 
of Mammalian Stress Granules. 1–11 (1999). 

80. Aulas, A. et al. Stress-specific differences in assembly and composition of 
stress granules and related foci. Journal of Cell Science 130, 927–937 
(2017). 

81. Yoon, J.-H., Choi, E.-J. & Parker, R. Dcp2 phosphorylation by Ste20 
modulates stress granule assembly and mRNA decay in Saccharomyces 
cerevisiae. Journal of Cell Biology 189, 813–827 (2010). 

82. Hilgers, V., Teixeira, D. & Parker, R. Translation-independent inhibition of 
mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12, 
1835–1845 (2006). 

83. Bley, N. et al. Stress granules are dispensable for mRNA stabilization during 
cellular stress. Nucleic Acids Research 43, e26–e26 (2014). 

84. Wilbertz, J. H. et al. Single-Molecule Imaging of mRNA Localization and 
Regulation during the Integrated Stress Response. Molecular Cell 73, 946–
958.e7 (2019). 



95 

85. Mateju, D., Eichenberger, B., Eglinger, J., Roth, G. & Chao, J. A. Single-
molecule imaging reveals translation of mRNAs localized to stress granules. 
bioRxiv 6, 43927–29 (2020). 

86. Jain, S. et al. ATPase-Modulated Stress Granules Contain a Diverse 
Proteome and Substructure. Cell 164, 487–498 (2016). 

87. Hilliker, A., Gao, Z., Jankowsky, E. & Parker, R. The DEAD-Box Protein 
Ded1 Modulates Translation by the Formation and Resolution of an eIF4F-
mRNA Complex. Molecular Cell 43, 962–972 (2011). 

88. Andreev, D. E. et al. Translation of 5′ leaders is pervasive in genes resistant 
to eIF2 repression. eLife 4, 1–21 (2015). 

89. Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J. R. & Mann, M. Super-
SILAC mix for quantitative proteomics of human tumor tissue. Nat Meth 7, 
383–385 (2010). 

90. Carpenter, B. et al. Stan: A Probabilistic Programming Language. Grantee 
Submission 76, 1–32 (2017). 

91. Jamrich, M., Greenleaf, A. L. & Bautz, E. K. Localization of RNA 
polymerase in polytene chromosomes of Drosophila melanogaster. Proc Natl 
Acad Sci USA 74, 2079–2083 (1977). 

92. Machyna, M., Kiefer, L. & Simon, M. D. Enhanced nucleotide chemistry 
and toehold nanotechnology reveals lncRNA spreading on chromatin. Nature 
Structural & Molecular Biology 2010 17:7 1–25 (2020). 
doi:10.1038/s41594-020-0390-z 

93. Spradling, A., Penman, S. & Pardue, M. L. Analysis of drosophila mRNA by 
in situ hybridization: Sequences transcribed in normal and heat shocked 
cultured cells. Cell 4, 395–404 (1975). 

94. Wang, Y. J. et al. Lso2 is a conserved ribosome-bound protein required for 
translational recovery in yeast. PLoS Biol 16, e2005903–39 (2018). 

95. Tauber, D. et al. Modulation of RNA Condensation by the DEAD-Box 
Protein eIF4A. Cell 1–33 (2020). doi:10.1016/j.cell.2019.12.031 

96. Pires Da Silva, J. et al. SIRT1 Protects the Heart from ER Stress-Induced 
Injury by Promoting eEF2K/eEF2-Dependent Autophagy. Cells 9, 426 
(2020). 

97. Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative 
open reading frames regulates gene expression in an integrated stress 
response. Journal of Cell Biology 167, 27–33 (2004). 

98. Moon, S. L., Morisaki, T., Stasevich, T. J. & Parker, R. Coupling of 
translation quality control and mRNA targeting to stress granules. Journal of 
Cell Biology 219, 803–23 (2020). 

99. Alekseyenko, A. A. et al. BioTAP-XL: Cross-linking/Tandem Affinity 
Purification to Study DNA Targets, RNA, and Protein Components of 
Chromatin-Associated Complexes. 21.30.1–21.30.32 (John Wiley & Sons, 
Inc., 2001). doi:10.1002/0471142727.mb2130s109 

100. Brockdorff, N. et al. Conservation of position and exclusive expression of 
mouse Xist from the inactive X chromosome. 1–3 (1991). 

101. Heard, E. Dosage compensation in mammals: fine-tuning the expression of 
the X chromosome. Genes & Development 20, 1848–1867 (2006). 



96 

102. Plath, K. et al. Developmentally regulated alterations in Polycomb repressive 
complex 1 proteins on the inactive X chromosome. Journal of Cell Biology 
167, 1025–1035 (2004). 

103. Engreitz, J. M. et al. The Xist lncRNA Exploits Three-Dimensional Genome 
Architecture to Spread Across the X Chromosome. Science 341, 1237973–
1237973 (2013). 

104. Hasegawa, Y. et al. The Matrix Protein hnRNP U Is Required for 
Chromosomal Localization of Xist RNA. DEVCEL 19, 469–476 (2010). 

105. Simon, M. D. et al. High-resolution Xist binding maps reveal two-step 
spreading during X-chromosome inactivation. Nature 504, 465–469 (2013). 

106. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and 
localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 
167–174 (2002). 

107. Chu, C. et al. Systematic Discovery of Xist RNA Binding Proteins. Cell 161, 
404–416 (2015). 

108. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to 
silence transcription through HDAC3. Nature 521, 232–236 (2015). 

109. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin 
repulsion and an RNA- directed chromosome conformation. Science 349, 1–
14 (2015). 

110. Fang, R., Moss, W. N., Rutenberg-Schoenberg, M. & Simon, M. D. Probing 
Xist RNA Structure in Cells Using Targeted Structure-Seq. PLoS Genet 11, 
e1005668–29 (2015). 

111. Liu, F., Somarowthu, S. & Pyle, A. M. Visualizing the secondary and tertiary 
architectural domains of lncRNA RepA. Nat Chem Biol 13, 282–289 (2017). 

112. Maenner, S. et al. 2-D Structure of the A Region of Xist RNA and Its 
Implication for PRC2 Association. PLoS Biol 8, e1000276–16 (2010). 

113. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. 
Selective 2′-hydroxyl acylation analyzed by primer extension and mutational 
profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure 
analysis. Nat Protoc 10, 1643–1669 (2015). 

114. Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Structural 
architecture of the human long non-coding RNA, steroid receptor RNA 
activator. Nucleic Acids Research 40, 5034–5051 (2012). 

115. Somarowthu, S. et al. HOTAIR Forms an Intricate and Modular Secondary 
Structure. Molecular Cell 58, 353–361 (2015). 

116. Chigi, Y., Sasaki, H. & Sado, T.  The 5’ region of Xist  RNA has the 
potential to associate with chromatin through the 

A-repeat. 1–27 (2017). 
117. Beletskii, A., Hong, Y.-K., Pehrson, J., Egholm, M. & Strauss, W. PNA 

interference mapping demonstrates functional domains in the noncoding 
RNA Xist. 1–6 (2001). 

118. Sarma, K., Levasseur, P., Aristarkhov, A. & Lee, J. T. Locked nucleic acids 
(LNAs) reveal sequence requirements and kinetics of Xist RNA localization 
to the X chromosome. 1–8 (2010). doi:10.1073/pnas.1009785107/-
/DCSupplemental/pnas.201009785SI.pdf 



97 

119. Kato, T., Goodman, R. P., Erben, C. M., Turberfield, A. J. & Namba, K. 
High-Resolution Structural Analysis of a DNA Nanostructure by cryoEM. 
Nano Lett. 9, 2747–2750 (2009). 

120. Khoshouei, M., Radjainia, M., Baumeister, W. & Danev, R. Cryo-EM 
structure of haemoglobin at 3.2 &Aring; determined with the Volta phase 
plate. Nature Communications 8, 1–6 (2017). 

121. Merk, A. et al. Breaking Cryo-EM Resolution Barriers to Facilitate Drug 
Discovery. Cell 1–16 (2016). doi:10.1016/j.cell.2016.05.040 

122. Martin, T. G. et al. Design of a molecular support for cryo-EM structure 
determination. Proc Natl Acad Sci USA 113, E7456–E7463 (2016). 

123. Smith, K. D. et al. Structural basis of ligand binding by a c-di-GMP 
riboswitch. Nature Publishing Group 16, 1218–1223 (2009). 

124. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-
EM structure determination. Journal of Structural Biology 180, 519–530 
(2012). 

125. Fernandez-Leiro, R., Scheres, S. H. W.IUCr. A pipeline approach to single-
particle processing in RELION. Acta Crystallogr Sect D Struct Biol 73, 496–
502 (2017). 

126. Bonilla, S., Sherlock, M. E., MacFadden, A. & Kieft, J. S. A structured viral 
RNA uses molecular mimicry and conformational dynamics to coordinate 
multiple functions. bioRxiv 558, 75–40 (2020). 

127. Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 
3.7Å resolution. Nature Communications 1–6 (2019). doi:10.1038/s41467-
019-13494-7 

128. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-
dimensional RNA-only structures. Nat Meth 17, 699–707 (2020). 

129. Wu, M. & Lander, G. C. How low can we go? Structure determination of 
small biological complexes using single-particle cryo-EM. Current Opinion 
in Structural Biology 64, 9–16 (2020). 

130. Fackelmayer, F., Dahm, K., Renz, A. & Richter, A. Nucleic-acid-binding 
properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA 
and RNA in vivo and in vitro. European Journal Biochemistry 749–757 
(1994). 

131. Nozawa, R.-S. et al. SAF-A Regulates Interphase Chromosome Structure 
through Oligomerization with Chromatin- Associated RNAs. Cell 169, 
1214–1227.e18 (2017). 

132. Xiao, R. et al. Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global 
Control of Alternative Splicing by Regulating U2 snRNP Maturation. 
Molecular Cell 45, 656–668 (2012). 

133. Hall, L. L. et al. Stable C0T-1 Repeat RNA Is Abundant and Is Associated 
with Euchromatic Interphase Chromosomes. Cell 156, 907–919 (2014). 

134. Yugami, M., Kabe, Y., Yamaguchi, Y., Wada, T. & Handa, H. hnRNP-U 
enhances the expression of specific genes by stabilizing mRNA. FEBS 
Letters 581, 1–7 (2006). 

135. Vizlin-Hodzic, D., Runnberg, R., Ryme, J., Simonsson, S. & Simonsson, T. 
SAF-A Forms a Complex with BRG1 and Both Components Are Required 



98 

for RNA Polymerase II Mediated Transcription. PLoS ONE 6, e28049–9 
(2011). 

136. Kiledjian, M. & Dreyfuss, G. Primary structure and binding activity of the 
hnRNP U protein: binding RNA through RGG box. The EMBO Journal 11, 
2655–2664 (1992). 

137. Fackelmayer, F. O. & Richter, A. Purification of Two Isoforms of hnRNP-U 
and Characterization of Their Nucleic Acid Binding Activity. 1–7 (1994). 

138. Kolpa, H. J., Fackelmayer, F. O. & Lawrence, J. B. SAF-A Requirement in 
Anchoring XIST RNA to Chromatin Varies in Transformed and Primary 
Cells. DEVCEL 39, 9–10 (2016). 

139. Sakaguchi, T. et al. Control of Chromosomal Localization of Xist by hnRNP 
U Family Molecules. DEVCEL 39, 11–12 (2016). 

140. Ongena, K., Das, C., Smith, J. L., Gil, S. & Johnston, G. Determining Cell 
Number During Cell Culture using the Scepter Cell Counter. JoVE 1–5 
(2010). doi:10.3791/2204 

141. Xu, H. et al. FastUniq: A Fast De Novo Duplicates Removal Tool for Paired 
Short Reads. PLoS ONE 7, e52249–6 (2012). 

142. Martin, M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet.journal 17, 10–12 (2011). 

143. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with 
low memory requirements. Nat Meth 12, 357–360 (2015). 

144. Li, H. et al. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009). 

145. Danecek, P. & McCarthy, S. A. BCFtools/csq: haplotype-aware variant 
consequences. Bioinformatics 33, 2037–2039 (2017). 

146. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 
29, 15–21 (2013). 

147. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics 
Viewer (IGV): high-performance genomics data visualization and 
exploration. Briefings in Bioinformatics 14, 178–192 (2013). 

148.             Keskin, H. et al. Complex effects of flavopiridol on the expression of 
primary response genes. Cell Division 7, 11, 1-13 (2012).   

 


