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The dynamic life cycle of an RNA begins with transcription initiation and concludes when

the mature transcript is degraded to monomer nucleotides. The early steps of RNA poly-

merase II (RNAPII) transcription, initiation and promoter-proximal pausing in metazoans,

are the most complex and tightly orchestrated steps. To synthesize a single mature tran-

script, dozens of individual proteins must be assembled around a promoter to initiate tran-

scription. In a reliable fashion, the initiated polymerase is halted only 20 to 60 base pairs

downstream of the transcription start site (TSS) in a phenomenon called promoter-proximal

pausing. Pausing is induced by a small number of additional factors, but is known to fa-

cilitate the assembly of important transcription elongation and RNA processing factors on

RNAPII before entering productive elongation. RNAPII then synthesizes a nascent tran-

script that can be of more than a megabase in length. The transcript is processed, and, in

most cases, the mature transcript is then exported from the nucleus to the cytoplasm where

it is eventually degraded. Probing the dynamics of RNA synthesis and degradation can be

challenging because standard RNA sequencing (RNA-seq) methods provide only a steady-

state snapshot of gene expression. Metabolic labeling and nucleotide-recoding chemistry

with RNA-seq (NR-seq) has proven to be a powerful tool to dissect the intricacies of the

RNA synthesis pathway because it provides an extra temporal dimension to RNA-seq data.

Here I describe my work demonstrating incremental improvements in the handling of

metabolically labeled RNA and analysis of RNA-seq data containing chemically induced

mutations. I show that newly synthesized RNA can be specifically lost during RNA extrac-

tion, biasing NR-seq data against mutation-containing reads. In addition, I improved data

analysis by demonstrating that implementation of a three-base alignment strategy improves

alignment of mutation-containing reads. Furthermore, I apply these improved protocols in



several collaborative efforts using TimeLapse-seq and transient-transcriptome-TimeLapse-

seq (TT-TL-seq) to characterize the dynamics of mature RNA and transcribing RNAPII.

I describe the development of Start-TimeLapse-seq (STL-seq) as the first method to

directly measure the kinetics of promoter-proximal pausing in a non-perturbing, genome-

wide, and TSS-specific manner. I show that STL-seq reliably quantifies the turnover of

short, capped RNA transcripts associated with RNAPII at the pause site and this infor-

mation accurately captures the behavior of paused RNAPII. STL-seq detects changes in

paused RNAPII turnover upon a perturbation of steady-state conditions and can be used

to unambiguously assign these changes to effects on pause release or premature termina-

tion. This work revealed the distinct principles of regulation of release into elongation and

premature termination at the promoter-proximal pause site. Moving forward, STL-seq will

be a powerful tool to dissect the mechanism and regulation of promoter-proximal pausing.

Finally, I describe work pursuing my proposed model for the disease mechanism of a

rare genetic disorder, X-Linked Dystonia Parkinsonism (XDP). XDP is caused by a SINE-

VNTR-Alu (SVA) retrotransposon insertion in the TATA-box binding protein (TBP) as-

sociated factor 1 gene (TAF1 ) and I present evidence that the SVA insertion gives rise

to an alternative, truncated TAF1 transcript isoform (xTAF1 ) which encodes an xTAF1

protein lacking a functional second bromodomain. I demonstrate that xTAF1 associates

with promoters more strongly than canonical TAF1 (cTAF1) and induces a redistribution

of the RNAPII promoter-proximal pause site. I propose that these two effects confer a

dominant-negative phenotype that could ultimately lead to the neurodegenerative pheno-

types observed in patients.
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Abbreviation Definition

BD bromodomain

brdU bromodeoxyuridine

CDS coding sequence

ChIP-seq chromatin immunoprecipitation sequencing

ChRO-seq chromatin run-on sequencing

csRNA-seq capped, short RNA-seq

cTAF1 canonical TAF1

CTD C-terminal domain

DoG downstream-of-gene

DRB 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole

DSIF DRB sensitivity-inducing factor

EC elongation complex

eTSS enhancer TSS

FP flavopiridol

FRAP fluorescence recovery after photobleaching

GRO-seq global run-on sequencing

GTF general transcription factor

iPSC induced pluripotent stem cell

lncRNA long noncoding RNA

MCMC Markov Chain Monte Carlo

NDR nucleosome-depleted region

NELF negative elongation factor

NET-seq nascent elongation transcript sequencing

NPC neural progenitor cell

NR-seq nucleotide recoding with RNA-seq

NRO nuclear run-on

NSC neural stem cell

PAS polyadenylation signal

PIC preinitiation complex

PRO-seq precision run-on sequencing

P-TEFb positive transcription elongation factor b

RNA-seq RNA sequencing

RNAPII or Pol II RNA polymerase II

scaRNA-seq short, capped RNA-seq

scRNA short, capped RNA

SINE short interspersed nuclear element

STL-seq Start-TimeLapse-seq

SVA SINE-VNTR-Alu

s4U 4-thiouridine

s6G 6-Short interspersed nuclear elements

TAF TBP-associated factor

TAF1 TBP-associated factor 1

TBP TATA-box binding protein

TF transcription factor
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TL-seq TimeLapse-seq

Trp triptolide

TSS transcription start site

TT-TL-seq transient-transcriptome-TimeLapse-seq

TWI twister

VNTR variable number tandem repeats

XDP X-Linked Dystonia Parkinsonism

xTAF1 XDP-specific TAF1

3-nt 3-nucleotide

20E 20-hydroxyecdysone

Table 1: List of abbreviations used in this dissertation
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Chapter 1

Introduction

1.1 Regulation of gene expression through RNA synthesis

Distinct gene expression patterns allow living cells to appear entirely different in form and

function despite containing identical genomes; however, cells must also have the plasticity

to respond and adapt to environmental changes. This demonstrates that regulation of gene

expression must be strict enough to maintain cell type fidelity and functional specialization

while also allowing for some flexibility in response to stimuli. The first major step of gene

expression is the transcription of DNA into RNA by an RNA polymerase. In eukaryotes,

the products of genes transcribed by RNA polymerase II (RNAPII) are important for cell

type diversity. Therefore, regulation RNAPII activity must be tightly controlled. The

RNAPII RNA synthesis pathway is a complex series of highly regulated steps which pro-

ceeds through transcription and processing of the transcript (Figure 1.1). Regulatory input

is often incorporated at early steps of transcription, making initiation and pause release

important regulatory steps in gene expression. However, the complexities of these steps

and their regulation are an active field of investigation.

1.2 Early steps in RNAPII transcription

Transcription begins with initiation at a transcription start site (TSS), the single base pair

position encoding the first nucleotide of an RNA transcript. Canonically, initiation was
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Figure 1.1: The RNA synthesis pathway is a complex series of regulated steps

thought to define sites of active promoters, but it is now appreciated that transcription ini-

tiation by RNAPII is also a hallmark of active enhancers [1,2]. In many eukaryotes RNAPII

initiates and immediately proceeds into productive elongation, but, in metazoans, RNAPII

only transcribes a short distance before completely arresting while remaining transcrip-

tionally engaged with the DNA. This step in early transcription, called promoter-proximal

pausing, occurs at the vast majority of genes and enhancers transcribed by RNAPII [3–6].

Except for modulating the stability of the mature transcript, little opportunity exists to

change transcript copy number after RNAPII enters productive elongation. Therefore, early

transcription is important in regulating gene expression by tuning the RNA synthesis rates.

These early steps of transcription are thought to occur on rapid timescales of just sec-

onds to minutes [6]. This presents a challenge in furthering the mechanistic understanding

of transcription and its regulation because it is difficult to experimentally observe and quan-

tify these kinetics. Furthermore, a large number of transcription factors (TFs) and other

complexes are involved in initiation and promoter-proximal pausing. While some important

functions for certain factors are well-characterized and understood, such as the general tran-

scription factors (GTFs), there is still ongoing research to fully understand the transcription

machinery. It is also possible that factors known to be essential for one purpose may have

other functions which are equally important but are currently undescribed, particularly in

the more complex systems of higher eukaryotes. Together, these barriers leave the field with

an incomplete understanding of how early transcription is regulated.

4



1.2.1 Initiation

Transcription initiation culminates in RNAPII incorporating the first nucleotide of a nascent

RNA transcript, but requires assembly of the entire multi-subunit preinitiation complex

(PIC) which includes GTFs (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH) and Me-

diator. The first regulatory opportunity for initiation is through promoter activation or

silencing via modification of the local chromatin environment. DNA methylation is effective

at repressing a promoter and specific sets of histone tail modifications on the nucleosomes

near initiation sites are installed depending on whether the region is to be transcriptionally

active or silent [7–9]. An active region is typically marked by histone tail lysine acetylation

(Kac), trimethylation of histone H3 at lysine 4 (H3K4me3), and a nucleosome depleted

region (NDR) that acts as a landing pad for TFs and RNAPII [9, 10].

TFIID, a megadalton-sized complex composed of the TATA-box binding protein and

thirteen TBP-associated factors (TAFs) [11, 12], is the first GTF to associate with DNA

during assembly of the PIC [13, 14]. The major described function of TFIID in PIC as-

sembly is to deliver TBP to the promoter region. TBP then introduces a kink into the

promoter DNA and nucleates formation of the rest of the PIC. GTFs TFIIA and TFIIB

associate with TFIID, RNAPII is then recruited with TFIIF, followed by TFIIE, and finally

TFIIH consumes ATP to unwind promoter DNA and facilitate the incorporation of the first

nucleotides into a nascent RNA transcript [10,14]. Mediator is a large, multi-subunit com-

plex characterized as a component of the PIC which primarily associates with enhancers

rather than promoters [15–18]. Although Mediator is not canonically described as part of

the sequential assembly of the PIC, it is essential and is thought to transduce signals from

enhancer-bound TFs to promoters.

Most regulatory opportunity during PIC assembly is through recruitment of PIC sub-

units, particularly RNAPII and TFIID which recognizes specific DNA sequence motifs and

promoter-associated chromatin modifications and associates with other coactivating fac-

tors [10,19–23]. The presence of TFIID DNA motifs in the promoter region may strengthen

TFIID recruitment, and Mediator further facilitates assembly of the PIC. However, it has

been suggested that the rate of PIC assembly and RNAPII recruitment are not acutely

5



regulated, but rather fine-tuned over long developmental timescales to settle on a stable

expression profile [24,25].

After PIC assembly and RNAPII initiation from the TSS, transcription to the promoter-

proximal pause site only takes a few seconds, leaving a small temporal and spatial window

to incorporate regulatory signals during initiation. Despite this, initiation is suggested to

be a highly inefficient process where 80-90% of RNAPIIs abort transcription before reaching

the promoter-proximal pause site [26, 27]. Abortive initiation is not well characterized in

eukaryotic cells and it is unclear if this behavior represents a form of active regulation;

however, the efficiency of this process could reasonably be targeted as a manner to affect

gene expression.

1.2.2 Promoter-proximal pausing

In metazoans, RNAPII extends the nascent transcript to 20-60 nucleotides before reaching

the promoter-proximal pause site where transcription is temporarily arrested [28–31]. The

hallmark of RNAPII paused at the promoter-proximal site is the adoption of the “tilted

state” by the RNA-DNA hybrid in the active site of the polymerase [32]. In the tilted

state, DNA-RNA base pairing is maintained, but the RNA adopts and post-translocated

state while the DNA adopts a pre-translocated state. This results in a conformation in

which the DNA template base in the active site of RNAPII is bound to the last nascent

RNA base, ultimately making the addition of another nucleotide impossible without exiting

from this conformation. 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) sensitivity-

inducing factor (DSIF) and negative elongation factor (NELF) are complexes typically as-

sociated with paused RNAPII and may induce the paused conformation [33–36]. Structural

work revealed that NELF “tentacles” function as a clamp to maintain the tilted conforma-

tion [32], but interestingly, TFIID was recently shown to be sufficient to induce a similar

promoter-proximal pausing effect in vitro [37].

Entry into productive elongation from the pause site is promoted by the kinase activity of

the Cdk9 subunit of positive transcription elongation factor b (P-TEFb) [38–42]. P-TEFb

phosphorylates DSIF, NELF, and the C-terminal domain (CTD) of RNAPII, promoting

the dissociation of NELF from the paused complex, causing a conformational shift in the
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active site of RNAPII, and allowing RNAPII to be released into elongation. Being that

P-TEFb transitions RNAPII out of the paused state, direct modulation of P-TEFb activity

is a common mechanism for regulation of gene expression [6]. In addition, recent work

has shown that dephosphorylation of P-TEFb targets is an effective strategy to attenuate

expression [43, 44]. The PP2A phosphatase acts in opposition to P-TEFb by dephospory-

lating the RNAPII CTD and DSIF subunit Spt5, thereby preventing RNAPII from entering

productive elongation. PP2A phosphatase activity in the promoter-proximal region induces

endonucleolytic cleavage of the transcript by the Integrator complex and causes premature

termination of transcription [43–48].

Promoter-proximal pausing is the rate-limiting step of transcription at most genes and

is therefore a good target for regulatory signals to be incorporated into the gene expres-

sion pathway. In attempts to better understand the behavior of paused RNAPII, sev-

eral groups developed non-perturbing approaches to measure the duration of pausing in

cells [26, 27, 49, 50]. This work demonstrated that Pol II waits at the pause site for about

five minutes and 80-90% of paused complexes prematurely terminate transcription rather

than enter productive elongation. It was also shown that rates of pause release are pre-

ferred targets of regulation rather than those of premature termination, suggesting that

while premature termination is ubiquitous, it is not a major effector of gene expression in

cells [24,49,50]. Instead, premature termination is thought to contribute to the maintenance

of active promoters and prevent incompetent elongation complexes from synthesizing a mis-

processed transcript. Paused RNAPII occupies the promoter-proximal region and prevents

nucleosomes from occluding the TSS where TFs and the PIC must associate with DNA [51].

A continuous initiation/termination cycle helps maintain an accessible promoter state even

if expression from a particular gene is not required. Premature termination at the pause site

also presents a final quality control opportunity to check if the paused complex has properly

matured into an competent elongation complex (EC) [46, 50]. If the EC is recognized as

incompetent and may produce a misprocessed transcript, it can be evicted to allow a new

complex to initiate.

These studies have made significant advances in our understanding of RNAPII kinetics

at the promoter-proximal pause site and will complement future work dissecting the role of
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known and unknown factors involved in the regulation of this step of early transcription.

1.2.3 Transition to productive elongation

Upon P-TEFb phosphorylation and release into elongation, the transcription complex rear-

ranges and RNAPII is further phosphorylated at Ser2 on the CTD by Cdk12 and Cdk13 [52].

This phosphorylation and dissociation of NELF recruits elongation factors important for

processivity, splicing, and 3´ end formation which mature the paused complex into a com-

petent elongation complex (EC) [53]. The transition of a paused complex to a mature EC

in the first 5 kb of elongation is the final opportunity for modulation of expression. When

RNAPII stalls in the early gene body as a result of non-productive elongation, transcrip-

tion is prematurely terminated either by TFIIS or the Integrator complex [54–56]. It is

unknown if this trimming of ECs early in the gene body is responsive to stimuli or is just

a final fail-safe for transcriptional quality control, but it seems to be the last critical stage

of transcription before RNAPII is committed to synthesizing a full-length transcript.

1.2.4 Early steps of transcription are neither discrete nor independent

While early transcription can be described as distinct stages, the reality is that the bound-

aries between each are not so clear. Significant overlap exists between the sets of factors

involved in each step, suggesting that one factor can play important roles at more than one

step in the process. This presents a challenge in distinguishing a factor’s role at each stage

and contributes to why investigation into the mechanism and regulation of initiation and

pausing is still ongoing.

Transcription initiation could be described as the series of events leading up to incorpo-

ration of the first nucleotide by RNAPII, yet the definition of abortive initiation necessitates

that the incorporation of the first few nucleotides is part of initiation. To this end, it may

be better to define initiation as transcription up until the promoter-pause site, but this

varies by promoter because RNAPII does not always transcribe the same distance before

pausing [57]. Furthermore, defining the beginning of promoter-proximal pausing is not nec-

essarily trivial. NELF locks RNAPII in the tilted conformation at the pause site but the

mechanism of promoter-proximal pausing is unknown. With existing data, we cannot dis-
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tinguish between several possible models of pausing induction. The moment NELF binds

may define the position of pausing or NELF could bind earlier during initiation and only

lock the tilted conformation upon another signal. Alternatively, the function of a completely

different factor may be more appropriate to define as the beginning of promoter-proximal

pausing. TFIID is sufficient to cause pausing in vitro [37], and it could be that NELF only

acts to reinforce the pause afterwards. The fact that TFIID can influence pausing behav-

ior suggests that there may even be cross-talk between initiation and pausing that would

further complicate the regulation of these steps [37,50,58,59].

The end of promoter-proximal pausing is similarly challenging to define. Release into

elongation and pause release are common terms to describe the transition from pausing

to elongation which accurately suggest that another factor actively promotes RNAPII to

restart transcription. Typically, P-TEFb kinase activity is described as the signal to tran-

sition to elongation. Perhaps phosphorylation of all CDK9 targets in the pause complex is

a sufficient definition; however, NELF dissociation is required to release RNAPII from the

paused complex and it is unknown how quickly this occurs after phosphorylation. Further

complicating the matter, PP2A is known to dephosphorylate CDK9 targets [43, 44], pre-

senting the possibility that multiple rounds of phosphorylation and dephosphorylation of

pausing factors could occur before RNAPII is released into elongation.

Finally, it is clear that behavior of RNAPII in early elongation is demonstrably distinct

from that during late elongation, yet the boundary between these two phases of transcription

is the fuzziest. After release into elongation, RNAPII is much more likely to prematurely

terminate transcription within the first 5 kb [55,56], but the features that define the window

of early transcription are not well characterized. Integrator is proposed to function as a

terminating factor in early elongation and promoter-proximal pausing [43–48, 56, 60]. The

past few years have significantly advanced our understanding of Integrator-based premature

transcription termination, but there are many outstanding questions about its regulation.

For example, what signals Integrator to cleave the nascent transcript, are these signals the

same at the pause site and in early elongation, and why would this apparent inefficiency

be beneficial? The models for transcriptional quality control ultimately explains premature

termination as a resource-saving phenomenon but would require identification of additional
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surveillance machinery/function.

Together, early transcriptional steps require an incredibly high temporal and spatial

density of functions and factors to accomplish the singular goal of beginning the RNA

synthesis process. Early transcription must be tightly controlled to orchestrate the complex

pathway, but surprisingly, this process is highly inefficient. Current evidence suggests that

only ∼1% of all RNAPII that begin transcription will produce a full-length transcript. The

paradox of a tightly-regulated but highly inefficient process will require further work to

be fully reconciled. Fortunately, many recent technological advances have the potential to

expand our understanding of the fundamentals of early transcription regulation.

1.3 Existing methods and associated challenges to study early

transcription

The complex and dynamic nature of early transcriptional events presents a major challenge

in studying the precise behavior of RNAPII and associated factors. Early work was limited

to studying a single locus in a simple model system or with in vitro purified factors [28–

30, 61]. While these studies are foundational in the initial characterization of initiation

and promoter-proximal pausing, their narrow scope inherently lacks the ability to capture

important biological variability that provides insight into regulation at the promoter. In

addition, simple model systems may lead to conclusions which do not hold true in higher

eukaryotes. For example, TBP is an essential initiation factor in yeast, but accumulating

evidence suggests that it is dispensable for RNAPII transcription in higher eukaryotes [62–

67].

The explosion of high-throughput techniques in the past decade have brought about an

era of genome- and transcriptome-wide studies that have revolutionized the way in which

the field approaches transcriptionology. Even more recently, improvements in structural

methods provide atomic resolution of massive RNAPII complexes. Nonetheless, there are

still many challenges to overcome in studying early transcription. Here, I discuss the ad-

vantages and important limitations of modern methods.
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1.3.1 Structural works gives insight into transcription machinery

Remarkable insights into early transcription have been gleaned from recent structural work

of the preinitiation complex and RNAPII [12, 16, 17, 32, 48, 68–73]. This collection of work

made some exceptional breakthroughs with unprecedented resolution of high-order PIC and

RNAPII complexes, for example, by revealing the dynamic and flexible nature of the PIC

and explaining why a paused RNAPII is physically incapable of elongation. It was shown

that TFIID and the PIC adopt multiple conformations depending on the stage of assembly

and the promoter DNA sequence, and the NELF tentacles restrict the conformation of the

paused RNAPII. In many cases, the structural work complemented existing biochemical

data, demonstrating the validity of the approach to visualize transcription.

On the other hand, structural work can suffer from in vitro artifacts and resolution

limitations. Cryo-EM studies can capture multiple states of the same structure in one

experiment, but highly transient and unstable states are difficult to observe and the tran-

sition between states cannot necessarily be inferred. Furthermore, the observed structures

are constrained to the set of purified factors mixed in the experiment, and it is difficult to

know if the set is complete or how many alternative forms of the complex exist in vivo.

Finally, the structures are not always complete due to the inability to assign density for

pieces of the complex. Indicative of this is TAF1, the largest subunit of TFIID at 250 kDa.

In all published TFIID/PIC structures to date, no more than 50% of the TAF1 primary

sequence is represented. Several explanations could be provided for this result; these regions

are too flexible, these are regions not important for initiation and therefore do no need to

be ordered in the PIC, or these regions require a more biologically-relevant context, such as

chromatin, to be resolved. Nevertheless, these structures have provided invaluable insight

which will undoubtedly only be improved upon as more sophisticated structural methods

are developed.

1.3.2 Genomics approaches capture chromatin-bound factors

An important question to answer in probing the function of a particular factor in transcrip-

tion is where it is localized across the genome. Whether studying histone tail modifications
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or a TF, genomic studies provide clues as to whether a target is ubiquitous or locus-specific

and where in the genome it is functional. With the advent of chromatin immunoprecipi-

tation (ChIP, [74]) and subsequent high-throughput versions ChIP with DNA microarray

(ChIP-chip [75]) and ChIP with next generation sequencing (ChIP-seq [76,77]), we can now

identify the genome-wide binding pattern of individual proteins. ChIP-seq is heavily favored

in the field for high-throughput studies, but it was ChIP-chip that first revealed the ubiquity

of promoter-proximal pausing at nearly all genes transcribed by RNAPII [3,78]. Additional

treatment of immunoprecipitated DNA with a nuclease [79–81] or transposase [82] provides

near single base pair resolution while also improving signal-to-noise and lowering required in-

puts for protein-DNA interaction-mapping experiments. Performing in situ versions of these

experiments further minimizes required inputs, even facilitating single-cell profiling [83,84].

While the data produced by these methods are extremely valuable, interpretation of

them can be nuanced. It is difficult to know if signal is attributable to direct or indirect

binding. Furthermore, signal intensity can vary with binding strength and frequency, where

more signal could be due to strong protein-DNA interactions or high interaction frequency.

Single-molecule footprinting is capable of measuring the fractional occupancy of promoters

genome-wide, but cannot definitively identify the DNA-bound proteins nor infer kinetics of

association and dissociation [85]. Importantly, the genomic localization and binding pattern

of a specific protein does not directly inform about the regulatory effect on transcription.

RNAPII density as measured by ChIP is sometimes used as a proxy for transcriptional

activity. This is a reasonable approximation as more RNAPII complexes generally implies

more RNA synthesis, but is not absolutely true because RNA synthesis rates also depend

on elongation velocity. In addition, these methods are blind to the state of the polymerase

and cannot distinguish between a complex which is initiating, paused, or elongating.

1.3.3 Short, capped RNA are observations of paused RNAPII

A strategy to pinpoint the single base pair position of initiation and promoter-proximal

pausing is to sequence the short, capped RNA (scRNA) associated with RNAPII at the

pause site. Start-seq, developed by the Adelman lab, selects for nuclear, short transcripts

of less than 80 nts and depletes uncapped species [57]. The Adelman lab showed that
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these transcripts are almost entirely chromatin-associated, and therefore can be used as

a one-to-one observation of a paused polymerase [86]. Start-seq generates single-molecule

data because 5´ and 3´ ends of each read represent the site of initiation and pausing for a

single polymerase, respectively. The relative strength of signal in these data is correlated

with the fractional occupancy of the pause site, which is a function of the initiation rate

and how quickly RNAPII vacates the pause site either through termination or release into

elongation. Alternative versions of the Start-seq protocol which provide similar information

have since been published: short, capped RNA-seq (scaRNA-seq) and capped, short RNA-

seq (csRNA-seq) [25, 87]. csRNA-seq demonstrated that data similar to Start-seq can be

collected without the nuclear isolation step and scaRNA-seq selects for transcripts up to

300 nts to capture information about RNAPII recently released from the pause site.

While powerful as a targeted way to study promoter-proximal pausing, these methods

are not designed to probe the behavior of RNAPII in early elongation, with the exception

of scaRNA-seq which is limited to the first 300 bp of the gene. Moreover, signal intensity

is challenging to interpret. How often the pause site is occupied by an RNAPII molecule

depends on the rates of initiation, pause-release, and termination. Without additional

information, these rates are impossible to deconvolute. Therefore, changes in signal intensity

cannot be assigned to a particular effect. While scaRNA-seq is reported to estimate relative

pause-release and initiation rates, the quality of those estimations is not well established

and the method does not account for termination at the pause site.

1.3.4 RNAPII-associated nascent RNAs identify transcriptionally engaged

RNAPII

Nuclear run-on (NRO) assays probe the location of RNA polymerases transcriptionally en-

gaged with DNA. In these experiments, transcription is halted, nuclei are isolated, nearly

all chromatin-associated factors except polymerases are washed away, and transcription is

restarted in the presence of nucleotide analogues. RNA labeled with an analogue is then

enriched and used as an observation for the position of an engaged polymerase. High

throughput versions of nuclear run-on assays, global run-on sequencing (GRO-seq) and pre-

cision run-on sequencing (PRO-seq), are effective in profiling the genome-wide distribution
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of active RNA polymerase [4, 58]. GRO-seq labels nascent RNA with bromodeoxyuridine

(brdU) and allows nascent transcripts to be elongated for the entirety of the run-on time.

PRO-seq, on the other hand, labels nascent RNA with biotinylated NTPs which prevent

additional NTPs from being added to the transcript. Therefore, PRO-seq provides single

base pair resolution as to the positions of the polymerase active site and is generally the

preferred NRO-based assay because of this. A major advantage to PRO-seq is that the

position of the promoter-proximal pause site can be determined with extremely high preci-

sion while also capturing the density of the polymerase over the gene body. Consequently,

PRO-seq is commonly used to simultaneously study the regulation of initiation, promoter-

proximal pausing, and elongation. Simpler versions of PRO-seq, such as chromatin run-on

sequencing (ChRO-seq), have also been developed to facilitate the implementation of the

approach [88].

A similar approach is nascent elongation transcript sequencing (NET-seq) which involves

the immunoprecipitation of RNAPII and sequencing of the associated RNA [89,90]. While

similar in principle to PRO-seq, NET-seq presents two additional benefits. First, antibody

choice in NET-seq allows for selection of specific phosphorylation states of the RNAPII CTD

which can reveal information about different stages of RNAPII transcription. Second, NET-

seq does not depend on a competent polymerase to incorporate an additional nucleotide

and therefore captures nonproductive RNAPII.

While highly useful, both PRO-seq and NET-seq are not without their drawbacks. First,

PRO-seq has been criticized for potential creeping of RNAPII during nuclei isolation [91].

If this is the case, it is possible that NET-seq would suffer from the same artifact during

chromatin isolation and DNA digestion. The largest impact this could have is on the

interpretation of the position of promoter-proximal pausing. This is important because

the single base pair position of the pause site is often highly scrutinized and compared

to the position of the +1 nucleosome. Secondly, similar to ChIP-seq, both methods are

strictly polymerase density assays and not direct measurements of transcriptional activity

or RNA synthesis. In order to measure transcriptional activity genome-wide, a different

RNA sequencing-based approach is required.
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1.3.5 Fluorescence microscopy visualizes transcription dynamics in cells

Single-molecule and bulk fluorescence microscopy experiments have proven to be valuable

approaches to visualize the dynamics of TFs and RNAPII in living cells. Residence times

of PIC components and other TFs at promoters have been quantified using single-molecule

tracking approaches, although much of this work is in budding yeast which lack promoter-

proximal pausing [92–95]. Bulk measurements of RNAPII diffusion with fluorescence re-

covery after photobleaching (FRAP) make population-averaged measurements for rates of

initiation, pausing, and elongation [26,27,49]. These FRAP measurements provided some of

the first estimates for the steady-state kinetics of early transcription without a drugged per-

turbation. Finally, single-molecule RNA fluorescence in-situ hybridization (smFISH) with

probes targeting intronic sequences in combination with RNAPII ChIP unambiguously lead

to the conclusions that transcriptional bursting and pause release, and not RNAPII recruit-

ment, are actively regulated upon BET inhibitor treatment [24]. This work demonstrated

the power of combinatorial approaches to studying the regulation of early transcription.

A major limitation of fluorescence microscopy approaches is the inherent limit of scope.

Current technology restricts experimental setups to one or two labels in live cells. Conse-

quently, published studies have chosen between making bulk population measurements or

focusing on a single locus per measurement. In both cases, it is difficult to capture the

biological diversity of the measured parameters (eg. PIC residency time or pause duration)

in a promoter-specific manner.

1.3.6 Metabolic labeling measures transcription and RNA dynamics

Metabolically labeling RNA with a nucleotide analogue in living cells is a way to gather

information about transcription dynamics. A commonly used nucleotide analogue is 4-

thiouridine (s4U) because it is readily incorporated into an RNA transcript by RNAPII

in living cells within seconds or minutes [50, 96, 97]. As the polymerase transcribes, it

continuously incorporates s4U into the nascent RNA chain. Therefore, the labeling depends

on the position and behavior of polymerase, in contrast to previously described methods

that only depend on RNAPII position.
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Metabolic labeling followed by nucleotide recoding was developed as an enrichment-

free approach to study RNA synthesis and stability (TimeLapse-seq, SLAM-seq, TUC-

seq, AMUC-seq [97–102]). Cells are treated with s4U or 6-thioguanosine (s6G) for an

extended period (2+ h) such that a large proportion of mRNA transcripts are labeled. Upon

isolating total RNA, performing nucleotide-recoding chemistry converts the hydrogen bond

donor/acceptor pattern of the analogue to the equivalent of another base (s4U to C or s6G

to A). This allows for computational identification of which reads were newly synthesized

during the labeling period. While powerful for studying mRNA synthesis as a complete

pathway, these methods are incapable of specifically probing the early transcriptional steps.

A short s4U pulse (5 min) followed by biotinylation and enrichment of labeled RNA

selects for newly synthesized transcripts [96, 97, 103]. Because unstable RNA species (in-

trons, antisense transcripts, etc.) are not substantially degraded within five minutes, se-

quencing the enriched material provides a readout of the transient transcriptome (TT-seq,

TT-TimeLapse-seq). This quantifies the RNA synthesis rate from every position over a

transcribed region and provides insight into polymerase dynamics. Application of these

methods have been effective in studying the behaviour of RNAPII during early elonga-

tion [56, 103, 104]; however, as metabolic labeling depends on the polymerase’s enzymatic

activity, the accumulation of RNAPII at the promoter-proximal pause site is invisible to

these methods.

Recently, we developed Start-TimeLapse-seq (STL-seq, “stall”-seq) as a combination of

existing methods, Start-seq and TimeLapse-seq, to directly quantify the kinetics of RNAPII

promoter-proximal pausing [50, 57, 97]. STL-seq enriches scRNAs as in Start-seq and com-

bines it with metabolic labeling and nucleotide-recoding chemistry as in TimeLapse-seq.

The proportion of labeled scRNA at each TSS is modeled as the fraction of RNAPII initiated

during the labeling time, making it possible to estimate the residence time of RNAPII at the

pause site. Therefore, STL-seq is the first method to quantify steady-state turnover rates

of promoter-proximal paused RNAPII in a genome-wide, TSS-specific, and non-perturbing

manner.

Collectively, metabolic labeling-based RNA sequencing methods are the only approaches

designed to probe the behavior of transcribing RNAPII and the transcript itself. Unlike
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all other approaches which only capture a snapshot of the polymerase or RNA popula-

tion, labeling of endogenous transcripts over a window of time inherently captures the

transcriptome-wide kinetics of transcription, processing, and RNA stability as data points.

While no single method on its own is sufficient to follow an RNA from initiation through

degradation of the mature form, the toolkit available tiles kinetic information across the

entire life cycle of an RNA. To take full advantage of metabolic labeling data, additional

computational challenges must be overcome; for example, additional tools are required to

accurately identify chemically induced T-to-C or G-to-A mutations and model kinetic pa-

rameters [50, 97, 105–107]. As these tools advance and new ones are developed, the utility

of metabolic labeling to further our understanding of the regulation of gene expression,

particularly in early transcription, will continue to improve.

1.4 Early transcription in human disease

Human genetics is a powerful tool in understanding our biology. A disease-causing mutation

in a patient can lead to discoveries of previously unknown proteins or functions. Due to

the essential nature of factors globally involved in transcription, complete loss-of-function

mutations would generally be fatal. When mutations in PIC components and pausing factors

have been identified, they are typically associated with rare disease, and neurological and

developmental disorders [108,109].

When these disorders are found, they are often identified as transcriptomopathies be-

cause they are likely to affect transcription at all or a vast majority of genes in the patient.

For example, mutations in several Mediator subunits MED12, MED23, and MED25 are

linked to disorders associated with intellectual disability [110–114]. Mutations in TFIIH

and TFIIE are similarly associated with rare diseases of intellectual disability and neurode-

generation [115, 116]. Interestingly, existing literature establishes TFIID as a hot spot for

mutations associated with neurodevelopmental disorders, both in TBP and TAFs [117–129].

The mutations described by this body of work are heterogeneous varying from coding se-

quence point mutations to a ∼3 kb retrotransposon intronic insertion. Unfortunately, the

disease mechanism of nearly all of these disorders are poorly understood, and in many cases
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a causal-link is only weakly established.

This family of transcriptomopathies are understudied when considering the potential

insight into the complex details of early transcriptional events they can provide. These

disorders represent massive unrealized potential to reveal fundamental properties of tran-

scription. In some cases the questions to be answered by focusing on transcriptomopathies

are ones the field is already asking, but it is likely that this line of investigation will uncover

information we never knew to look for.

1.5 Overview of goals

The overarching goals of my dissertation work were to improve our understanding of the

regulation of gene expression at the transcriptional level through application of cutting-

edge techniques developed in the Simon lab and development my own method to address

the unfilled need of a method to directly observe promoter-proximal pausing behavior. My

first major aim was to develop a new metabolic labeling and RNA-seq based technique called

Start-TimeLapse-seq (STL-seq) to measure the kinetics of promoter-proximal pausing. The

details of the development of STL-seq and what it reveals are described in Chapter 4, and a

detailed protocol is provided in Appendix A. STL-seq revealed how release into elongation

and premature termination at the pause site are differentially regulated and play distinct

roles in gene expression. My second major aim was to understand a rare neurodegenerative

disorder called X-Linked Dystonia Parkinsonism (XDP) which is caused by a mutation in

the TAF1 gene. I developed the working hypothesis that the mutation causes a premature

cleavage and polyadenylation event for up to 50% of transcribing RNAPII, giving rise to a

truncated mRNA transcript and protein. The work investigating the XDP mutation and its

functional consequences are described in Chapter 5. A minor aim of my dissertation work,

described in Chapter 2, was to optimize and improve TimeLapse chemistry and analysis

of RNA sequencing data with nucleotide-recoding chemistry. Finally, my second minor

aim was to apply the full suite of metabolic labeling techniques developed in the Simon

lab in collaboration with other scientists to reveal as much as possible about regulation

of gene expression, transcription, and RNA dynamics. Described in Chapter 3 are four of
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my collaborative efforts where TT-TL-seq and/or TimeLapse-seq were applied to study the

RNA lifecycle.
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Chapter 2

Improving the study of RNA

dynamics with advances in

RNA-seq with nucleotide-recoding

chemistry

This chapter is adapted from:

Zimmer, J.T., Schofield, J.A., Kiefer, L., Vock, I.W., Moon, M.H., Simon, M.D. (In prep)

Improving the study of RNA dynamics with advances in RNA-seq with nucleotide-recoding

chemistry.

2.1 Author contributions

I performed all experiments and data analysis described in this section. All authors con-

tributed to the conception of the work and experimental design.

2.2 Summary

RNA metabolic labeling with nucleotide recoding and RNA sequencing (NR-seq) is a power-

ful tool to capture the steady-state dynamics of RNA synthesis and decay without the need
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for biochemical enrichment. Common to all NR-seq methods is the use of 4-thiouridine (s4U)

as a nucleotide analogue and presence of chemically induced T-to-C mutations in sequencing

data. NR chemistry converts s4U from a uridine analogue to a cytidine analogue, and the

apparent T-to-C mutations are then used to identify the population of newly synthesized

RNA. Here we show that NR-seq experiments require careful treatment to avoid specific loss

of s4U-labelled RNA during experimental handling and computational processing, an effect

referred to as dropout. Experimental dropout is caused by s4U-containing RNA adhering to

plastic surfaces and computational dropout is caused by misalignment of reads containing

T-to-C mutations. Importantly, kinetic parameters estimates from all NR-seq methods are

equally affected by dropout and all methods are essentially indistinguishable downstream

of the s4U chemical conversion.

2.3 Introduction

RNA-sequencing (RNA-seq) is standard for characterizing the expression profile of cells and

quantifying changes in expression upon some treatment. Unfortunately, traditional RNA-

seq experiments are not sufficient to capture the difference between upregulation/downregulation

in expression via a change in mRNA stability or synthesis rate. Early approaches to

distinguish RNA stability from synthesis used transcriptional inhibitors in combination

with metabolic labeling and enrichment of labeled RNA [130–133]. This approach requires

perturbing steady state conditions with inhibitors, multiple labeling times per condition,

and additional handling during enrichment which can inadvertently introduce bias and

make analyses more complicated. To address these issues several enrichment-free RNA

sequencing-based approaches have been developed to quantify RNA stability while main-

taining information about steady state RNA levels [97–102].

These methods (SLAM-seq, TUC-seq, TimeLapse-seq, and AMUC-seq) can generally

be classified as a family of nucleotide-recoding RNA-seq (NR-seq) technologies. All four use

4-thiouridine (s4U) and/or 6-thioguanosine (s6G) to metabolically label newly synthesized

RNA for an extended period of time (typically 1-3 h). Upon purifying RNA, the s4U is

converted from a uridine analogue to a cytidine analogue in terms of its hydrogen bond
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donor-acceptor pattern (guanosine to adenosine in the case of s6G). In TimeLapse, s4U is

oxidized with sodium periodate (NaIO4) to a reactive intermediate and undergoes nucle-

ophilic attack with an amine, 2,2,2-trifluoroethylamine (TFEA). TUC chemistry is very

similar but employs osmium tetroxide (OsO4) as the oxidant and ammonia (NH3) as the

amine. Both TimeLapse and TUC chemistry completely recode the H-bonding pattern of

s4U from that of uridine analogue to that of a cytidine analogue. In SLAM chemistry, s4U

is alkylated with iodoacetamide (IAA) which only partially recodes the H-bonding pattern.

When sequenced on an Illumina platform and aligned to the appropriate genome, sites of

label incorporation manifest as an apparent mutation. T-to-C or G-to-A mutations are

then used to infer the population of newly synthesized RNA and the proportion of newly

synthesized RNA can be used to estimate the half-life of the transcript [97,106].

NR-seq has proven to be a powerful tool in elucidating mechanisms regulating RNA

stability and synthesis [134–138]. Unlike biochemical purification approaches to enrich

newly synthesized transcripts [96, 103, 132], NR-seq captures valuable information about

RNA kinetics without loss of information measured by traditional RNA-seq; however, NR-

seq experiments are not widely adopted as a replacement for standard RNA-seq. This

may be a result of hesitation to employ a new method which presents a set of challenges

that are unknown to or unaddressable by the user without further developmental work.

Here, we demonstrate that handling s4U-containing RNA and processing raw NR-seq data

benefit from slightly modified protocols which can be easily implemented by any user of

standard RNA-seq, independent of the nucleotide-recoding chemistry. RNA labeled with

s4U can be specifically lost during handling or during alignment to a reference genome, a

phenomenon referred to as dropout. Handling dropout occurs because s4U-containing RNA

adheres to surfaces of cell culture dishes and untreated test tubes more than unlabeled RNA.

This is addressed by avoiding cell lysis in cell culture dishes and using test tubes designed

to minimize nucleotide surface adherence. Computational dropout in NR-seq data occurs

because standard aligner softwares assume all mismatches should penalize alignment scores.

These penalties force highly mutated reads to drop below filter cutoffs and artificially lower

the proportion of mutation-containing reads in processed data. Computational dropout can

be addressed using a 3-base alignment strategy and has been demonstrated to be essential
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when aligning very short reads containing T-to-C chemically induced mutations [50]. These

two solutions increase the yield of label-containing reads and should make challenges of NR-

seq data more approachable for users. We also demonstrate that reaction conditions can

affect conversion efficiency of s4U to a cytidine analogue, but overall, all nucleotide-recoding

chemistries achieve similar efficiencies and strongly agree with respect to the estimates of

RNA degradation rates. Generally, the guidelines presented here for NR-seq data are vital to

producing high-quality datasets and taking advantage of the temporal dimension of NR-seq

data.

2.4 Results

2.4.1 Additional care must be taken when handling s4U-labeled RNA to

avoid dropout

4-thiouridine (s4U) is a common reagent to metabolically label newly synthesized RNA and

many methods have been developed to take advantage of its chemical properties [50,96–99,

102, 131, 132]. Despite this, we are not aware of any studies characterizing the behavior of

s4U-containing RNA compared to unlabeled RNA. We found that different RNA handling

methods improves the recovery of s4U-containing transcripts, apparent in sequencing tracks

for DHX9 (Figure 2.1A,B). Adherent cells are commonly lysed directly in cell culture dishes;

however, this method is susceptible to specific dropout of s4U-containing RNA. We found

that an improved protocol to handle s4U-containing RNA involves scraping cells from the

cell culture dish and lysing in low nucleotide-binding sample tubes (Figure 2.1A).

We treated adherent cells with s4U for 2 hours and collected RNA with both proto-

cols. We performed chemistry developed for TimeLapse-seq, SLAM-seq, or TUC-seq on

s4U-labelled RNA from the same samples to demonstrate that dropout is a general effect

caused by s4U and not a specific chemistry. Upon examining the data, we found that

NR-seq data correlate well with other data collected with the same handling but not with

data collected with the other conditions, both in terms of total reads and T-to-C mutation-

containing reads (Figure 2.2A,B). In addition, highly-labeled RNA and nascent transcripts

containing introns are visibly depleted from samples collected under dropout conditions
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Figure 2.1: s4U-labeled RNA is specifically lost during handling (A) Schematic
of the dropout-vulnerable RNA isolation approach to one that improves s4U-labeled RNA
yield. (B) Example NR-seq tracks of coverage over a highly intronic gene collected with
both handling approaches and treated with TimeLapse, SLAM, or TUC chemistry. (C and
D) Cumulative distribution plots of the proportion of reads aligning to an intronic region
(C) or proportion of reads containing a T-to-C mutation (D) for all genes in NR-seq data.
(E) Example NR-seq tracks of coverage over the gene of a high-turnover (TXNIP) and slow-
turnover (RPL5) transcript. (F) Genes were grouped by the proportion of reads containing
a mutation in TimeLapse-seq data and compared to the log2 fold change of non-intronic
reads per million in NR-seq data

when compared to data collected with the improved handling (Figure 2.1B). To test the

loss of highly-labeled transcripts we calculated the proportion of intronic reads aligning to

each gene as we expect these to be essentially 100% labeled due to their short lifetimes rela-

tive to the 2 hour labeling period. This analysis demonstrates that nascent RNA is globally

underrepresented in the dropout dataset compared to the improved handling dataset inde-

pendent of the conversion chemistry (Figure 2.1C). To test the effect on all s4U-containing

RNA, we calculated the proportion of all reads aligning to each gene which contain a T-to-C

mutation (Figure 2.1D). We found that sequencing data from improved handling conditions

contain a higher proportion of mutation-containing reads, suggesting that these conditions

significantly reduce dropout compared to standard protocols.

Next, we reasoned that s4U-specific dropout should differentially affect high-turnover

and slow-turnover transcripts. Fast-turnover transcripts will be highly labeled because

most of their population will have been synthesized during the two hour labeling time,

whereas slow turnover transcripts should be mostly unlabeled. Exemplified by TXNIP

(fast-turnover) and RPL5 (slow-turnover), we found that coverage over a fast-turnover

transcripts is strikingly improved with the improved handling protocol and a slow-turnover

transcript is relatively unaffected (Figure 2.1E). We examined the change in coverage in

reads per million (RPM) of mature, mutation-containing reads aligning to genes grouped

by the proportion of reads containing a T-to-C mutation to test if this trend holds true across

the entire dataset (Figure 2.1F). This analysis shows that coverage over genes with a low

proportion of labeled reads is unaffected by handling, but coverage is increased over genes

with a higher proportion of mutation-containing reads. This shows that specific dropout of
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Figure 2.2: NR-seq data prepared with different handling conditions do not cor-
relate well with each other (A,B) Correlation plot of the log2 counts of all (A) or T-to-C
mutation containing (B) reads aligning to genes in NR-seq data with both dropout (DO)
and improved handling (IH) conditions and aligned with HISAT2.

s4U-labeled RNA biases NR-seq data, leading to an overrepresentation of previously existing

RNA. Ultimately, this will shift estimates of transcript half-lives and turnover kinetics, the

major advantage to employing NR-seq approaches. Our improvements to NR-seq protocols

reduce bias in estimates for kinetic parameters and show that dropout is an issue with s4U,

not with any NR-seq chemistries.

2.4.2 3-nt alignment minimizes computational dropout in NR-seq data

Most traditional sequencing aligners incur an alignment score penalty when a mismatch

is identified within a read. Therefore, NR-induced mutations inadvertently decrease the

chance a read will be properly aligned. Most alignment softwares are customizable to allow

for mismatch penalty minimization, but this would also reduce the penalty for mismatches

not caused by chemical conversion of the nucleotide analogue. Furthermore, we previously

demonstrated that a single chemically induced T-to-C mutation in small RNAs is sufficient

to cause misalignment [50]. We reasoned that the same effect may be observed in longer

sequencing reads of NR-seq data.

Recently, HISAT-3N was developed as a 3-nucleotide (3-nt) version of the splice-aware
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aligner HISAT2 which is commonly used to align RNA-seq data [107, 139]. 3-nt alignment

approaches intentionally converts all instances of one nucleotide to another. In the case

of NR-seq data using T-to-C chemistry, all T’s in the genome and in sequencing data are

converted to C’s, thereby masking chemically induced T-to-C conversions. HISAT-3N is the

first 3-nt aligner specifically developed for NR-seq data and while the authors previously

validated its accuracy and efficiency, the recovery of mutation-containing reads in NR-seq

data was not tested. We aligned our improved handling NR-seq data using HISAT2 with
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slightly relaxed mismatch penalties (--mp 4,2) or HISAT-3N with default settings and

found that HISAT-3N does not improve read count disagreement between data collected

with each handling condition but does generally agree with HISAT2 alignments (Figure

2.4A-D). To assess HISAT-3N’s ability to align mutation-containing reads, we calculated

the log2 fold change in reads aligning to each gene grouped by the number of observed

T-to-C mutations (Figure 2.3A-D). HISAT-3N tends to align more reads than HISAT2 as

the number of mutations in the read increases. This effect is particularly evident for reads

with five or more T-to-C mutations, whose numbers for nearly all genes upon employment

of HISAT-3N.

Similarly to handling dropout, the biases introduced by computational dropout will

artificially lower the total proportion of mutation-containing reads, and more strongly af-

fect reads derived from high-turnover transcripts. In addition, computational dropout is

not specific to any NR-seq chemistry as it only depends on the presence of NR-induced

mutations. Therefore, we recommend that all NR-seq data be aligned using a 3-nt ap-

proach. HISAT-3N is currently the only validated, splice-aware 3-nt software available, but

other software such as Bismark in combination with Bowtie 2 can be used when splicing

information is not required [50,140,141].

2.4.3 Alternative reaction conditions optimize TimeLapse chemistry with

s4U

Improvements in handling s4U-containing RNA and NR-seq data analysis should allow us

to be more confident that we are observing all chemically converted s4U incorporation

sites. We took advantage of these improvements to determine optimal TimeLapse reaction

conditions with biological samples. Standard TimeLapse chemistry is performed under

slightly acidic conditions (pH 5.2) to avoid basic conditions which would promote RNA

hydrolysis. Sodium periodate (NaIO4) is used as the oxidant and 2,2,2-trifluorethylamine

(TFEA) as the nucleophilic amine because our in vitro restriction endonuclease assay and

NMR experiments suggested this is the most efficient oxidant-amine combination under

conditions which do not promote RNA hydrolysis [97]. In addition, NaIO4 is a commonly

used oxidant and the low pKa leads to TFEA remaining mostly deprotonated in slightly
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Figure 2.4: Handling and computational dropout are independent (A,B) Correlation
plot of the log2 counts of all (A) or T-to-C mutation containing (B) reads aligning to genes
in NR-seq data with both dropout (DO) and improved handling (IH) conditions and aligned
with HISAT-3N. (C,D) Correlation plot of the log2 counts of all (A) or T-to-C mutation
containing (B) reads aligning to genes in NR-seq data with improved handling conditions
and aligned either with HISAT2 or HISAT-3N.

acidic to neutral buffers.

First, we performed TimeLapse-seq in duplicate with labeled RNA purfied using im-

proved handling, only varying the reaction pH to compare standard conditions to a near-

neutral buffer in which TFEA should be close to 100% deprotonated. We examined the
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Figure 2.5: Buffer conditions and reagents affect efficiency of TimeLapse chem-
istry (A-C) The proportion of intron-aligning reads which contain T-to-C mutations when
comparing buffer pH (A), oxidant (B), or amine (C). Color indicates the number of muta-
tions in the reads.

mutational content of all reads aligning to intronic regions as they are expected to be entirely

labeled after a two hour treatment. The total proportion of mutation-containing intronic

reads and average mutations per U were higher under more acidic conditions, demonstrating

that the reaction is more efficient under slightly acidic conditions despite a higher fraction

of deprotonated TFEA (Figures 2.5A & 2.6A).

Next, we sought to directly compare the performance of two oxidants which have both

been previously employed for TimeLapse chemistry. NaIO4 is the most common TimeLapse

oxidant, but meta-chlorobenzoic acid (mCPBA) was also characterized to efficiently oxidize

s4U under TimeLapse conditions [97]. In addition, NaIO4 oxidizes 3´ diols, requiring the

use of mCPBA when a 3´ ligation to RNA is required as part of downstream library prep,

as is the case in Start-TimeLapse-seq (STL-seq, [50]). When comparing TimeLapse-seq

data generated with both oxidants, we found that the proportion of total intronic reads

containing at least one T-to-C mutation is similar with the two oxidants (Figure 2.5B).

However, mCPBA leads to an increase in reads with five or more mutations and a notable
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increase in the average number of mutations per U (Figures 2.5B & 2.6A). We also tested

mCPBA under near-neutral conditions and found that conversion efficiency was not as high

as under acidic conditions (Figures 2.5B & 2.6A). Therefore, while mCPBA and NaIO4

both efficiently convert s4U to a cytidine analogue, mCPBA is slightly more efficient under

TimeLapse conditions.
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mCPBA + TFEA pH 7.4
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B
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Figure 2.6: Comparison of mutational content in TimeLapse-seq data using dif-
ferent reaction conditions (A) The per U mutation rate in all intron-aligning reads with
different TimeLapse conditions (B) The proportion of intron-aligning reads which contain
T-to-C mutations with different TimeLapse conditions. Color indicates the number of mu-
tations in the reads.

Next, we tested if ammonia could be used as an the amine in TimeLapse-seq as it is

expected to convert s4U directly to a C instead of a C analogue and is used in similar

chemistry developed as part of TUC-seq [99]. Again, we performed NR chemistry on the

same RNA using ammonia as the amine, both TimeLapse oxidants, and a basic pH due

to the high pKa of ammonia. We found that only NaIO4 produced elevated T-to-C mu-

tation rates with ammonia (Figure 2.5C). When holding the oxidant constant as NaIO4,

we found that ammonia results in a slightly lower proportion of intronic reads containing a

mutation, but the average per U mutation rates are slightly higher than with TFEA as the

amine. However, mCPBA with TFEA remains the most efficient combination under these

conditions (Figures 2.5B & 2.6A).
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2.4.4 Estimates for RNA degradation rate constants agree between all

NR-seq methods and are similarly affected by dropout
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Figure 2.7: Comparison of RNA degradation rates measured by NR-seq methods
and the impact of dropout (A-C) Scatter plots comparing kdeg estimates made with
bakR using three NR-seq methods. The Pearson correlation coefficient is shown for each.
(D) The distribution of the log2 fold change in kdeg estimates when comparing the improved
handling and 3-nt alignment (IH) to dropout-vulnerable handling and 4-nt alignment (DO).

Finally, we asked if any NR chemistry used in TimeLapse-seq (mCPBA + TFEA),

SLAM-seq (IAA), and TUC-seq (OsO4 + NH3) provides a significant benefit and should be

preferred in all NR-seq experiments. Previously, TimeLapse-seq, SLAM-seq, and TUC-seq

were determined to perform similarly in estimating mRNA degradation rates, and the au-

thors report to have scraped cells from plates prior to lysing cells but did not employ a 3-nt

alignment strategy [142]. We used HISAT-3n-aligned data collected with improved han-

dling conditions to compare transcript-specific degradation rate constant estimates (kdeg)

obtained with the statistical package bakR between all three NR-seq methods (Vock et

al., in prep). In agreement with the previously published comparison, kdeg estimates pro-

duced using data from all three methods strongly agree with each other (Figure 2.7A-C).
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We then compared the kdeg estimates made with data from improved processing strate-

gies to those made with data collected with dropout conditions and aligned with HISAT2.

The distributions of the log2 fold changes in kdeg estimates between the two conditions for

each NR-seq method is nearly identical, indicating that experimental and computational

dropout equally affects kdeg estimates, independent of NR chemistry (Figure 2.7D). On aver-

age, kdeg estimates are more than 2-fold larger with optimal conditions than with conditions

not optimized to minimize dropout of s4U-labeled RNA, demonstrating the importance in

minimizing dropout when making estimates for RNA kdeg.

2.5 Discussion

Here we have shown that NR-seq experiments cannot be treated identically to RNA-seq

experiments, both in terms of experimental handling and computational processing. Our

data demonstrate that RNA labeled with s4U is specifically lost during RNA isolation, an

effect we call handling dropout, most likely due to labeled RNA adhering more strongly to

plastic surfaces than unlabeled RNA. Dropout introduces a bias against transcripts with

short half-lives. Each fast-turnover RNA molecule is more likely to be labeled with s4U and

therefore more likely to be lost during handling. Ultimately, this leads to an overestimation

of transcript half-lives and a dampening of any changes in turnover rates caused by an

experimental treatment.

Furthermore, T-to-C mutation-containing reads in sequencing data are more difficult to

align due to mismatch penalties applied by standard RNA-seq aligner softwares. We showed

that reads with more T-to-C mutations, particularly five or more, are less likely to be aligned

with a standard RNA-seq aligner. This is at least partially attributable to standard aligners

requiring a seed sequence to perfectly match the reference genome. Typically the seed is

twenty base pairs long, but if a perfect twenty base pair long stretch does not exist, the read

will fail to be aligned. In addition, each mismatch between the read and reference genome

incurs an alignment penalty. If there are a sufficient number of mismatches, the read may fail

to align. Each of these parameters can be customized to a certain extent to allow for more

mismatches, however this also allows for mismatches of any N-to-N and not just T-to-C. To
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solve this issue, we took advantage of a new 3-nt RNA-seq aligner, HISAT-3N, which does

not penalize the induced T-to-C mismatches [107]. HISAT-3N follows a similar strategy as

aligners developed for bisulfite sequencing: all Ts in the reference genome and sequencing

data are converted to C’s. The 3-nt alignment prevents T-to-C mismatches from penalizing

alignments, and because HISAT-3N stores information about the original sequence, it can

be used to identify T-to-C mutations. HISAT-3N was previously demonstrated to be a fast

and accurate aligner, and is therefore highly recommended for all NR-seq experiments.

We showed that TimeLapse chemistry efficiently converts s4U to a cytidine analogue

with either NaIO4 or mCPBA and performed best under slightly acidic conditions. mCPBA

achieved a modestly higher conversion rate than NaIO4, but, more importantly, preserves

3´ ends of RNAs which can be important for downstream processing steps of a sequencing

experiment [50]. Therefore, the difference between NaIO4 and mCPBA is inconsequential

unless a 3´ adapter ligation is required. Likewise, TFEA and ammonia can be used as the

nucleophilic amine with NaIO4, but ammonia should not be used with mCPBA.

Finally, s4U conversion chemistries developed as part of TUC-seq, SLAM-seq, and

TimeLapse-seq tend to provide comparable estimates of the steady-state kinetics of cel-

lular RNA, unless material availability or safety is a concern. Independent of chemistry

selection, additional consideration must be taken when preparing samples and analyzing

data NR-seq data. s4U has long been used as a chemical tool for RNA metabolic labeling,

but was never previously characterized as a challenging molecule to handle. On the other

hand, NR-seq is a quickly evolving technique and methods to analyze the data are still

being developed. With the work presented here, we established new guidelines to address

previously unappreciated challenges of performing NR-seq which will improve the power of

NR-seq methods as tools to study RNA dynamics.
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Chapter 3

Case studies using RNA metabolic

labeling to study transcription and

RNA dynamics

3.1 Introduction

As part of my dissertation work in the Simon lab, I have sought out opportunities to col-

laborate with other scientists seeking to better understand trancsriptional behavior and/or

RNA dynamics by using the Simon lab’s toolkit of transcriptomic techniques. These col-

laborations have exposed me to dozens of brilliant scientists across more than ten different

projects at Yale and other institutions. Each collaboration brought with it new challenges

and pushed me to be a better scientist by expanding my knowledge, improving my com-

munication skills, and refining my techniques. I consider my collaborations to be a genuine

privilege and some of the most important experiences during my time in the Simon lab.

The following are summaries of my contributions to four published studies, presented in

chronological order of publication date.

3.2 The role on lncRNA transcription in tumorigenesis

This section is adapted from:
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Olivero, C.E., Mart́ınez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, N.,

Schofield, J.A., Bendor, J., Fang, D., Simon, M.D., Zamudio, J.R., Dimitrova, N. (2020).

p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis.

Mol. Cell, 77(4), 761-774. doi: 10.1016/j.molcel.2019.12.014

In collaboration with the Dimotrova lab, we applied metabolic labeling- and TimeLapse-

based techniques to determine the function of a novel lncRNA isoform, Pvt1b. TT-TL-seq

and TimeLapse-seq revealed the induction of the Pvt1b isoform and its repressive effect on

the Myc gene upon p53 activation.

The tumor suppressor p53 transcriptionally activates target genes to suppress cellular

proliferation during stress. p53 has also been implicated in the repression of the proto-

oncogene Myc, but the mechanism has remained unclear. Here, we identified Pvt1b, a p53-

dependent isoform of the long noncoding RNA (lncRNA) Pvt1, expressed 50 kb downstream

of Myc, which becomes induced by DNA damage or oncogenic signaling and accumulates

near its site of transcription. We showed that production of the Pvt1b RNA is necessary and

sufficient to suppressMyc transcription in cis without altering the chromatin organization of

the locus. Inhibition of Pvt1b increasedMyc levels and transcriptional activity and promotes

cellular proliferation. Furthermore, Pvt1b loss accelerates tumor growth, but not tumor

progression, in an autochthonous mouse model of lung cancer. These findings demonstrated

that Pvt1b acts at the intersection of the p53 and Myc transcriptional networks to reinforce

the anti-proliferative activities of p53.

3.2.1 Activation of a p53-Dependent Pvt1 Isoform, Pvt1b

To characterize the transcripts produced from the Pvt1 locus, we performed TimeLapse-seq.

We found evidence for extensive alternative splicing and confirmed that variants contain-

ing exon 1b were induced by p53, while exon 1a-containing variants were constitutively

expressed (Figure 3.1). Despite the splicing heterogeneity, TimeLapse-seq revealed that

stress-induced Pvt1b differed from constitutively expressed Pvt1a solely by the use of exon

1b versus exon 1a and exhibited comparable splicing patterns to downstream exons (Figure

2F). We concluded that p53 activation during genotoxic and oncogenic stress initiated tran-
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Figure 3.1: The Pvt1b isoform is upregulated by p53 activation Genome browser
tracks and Sashimi plots from TimeLapse-seq data in KPR cells, treated as indicated.
Average number of splice junctions from two biological replicates from exon 1a to exon 2
(blue) and from exon 1b to exon 2 (orange) are indicated.

scription in the Pvt1 locus from exon 1b, leading to the production of the p53-dependent

isoform Pvt1b, whereas Pvt1a represented a largely constitutively expressed isoform.

3.2.2 Pvt1b Suppresses Myc Transcriptional Activity In Vitro

To test whether Pvt1b acted at the transcriptional or post-transcriptional level, we se-

quenced nascent RNA from untreated and Tam-treated ∆RE and Con KPR cells ( [97]).

We found that nascent Myc transcripts were significantly upregulated in ∆RE+Tam com-

pared with Con+Tam KPR cells, indicative of transcriptional regulation (Figure 3.2A,B).

These data revealed that Pvt1b production promotes transcriptional suppression of Myc.

Next, we queried how the changes in Myc RNA levels affected the Myc transcriptional

program by examining the consequence of Pvt1b loss on a curated set of 196 Myc target genes

(gene set enrichment analysis, HALLMARK MYC TARGETS V1; [143]). We plotted the

cumulative frequency distribution of the fold change (FC) of Myc target genes in ∆RE cells

relative to Con cells in the presence of stress (log FC [∆RERE/Con+stress]). Compared

with a randomly generated set of control genes expressed at comparable levels, we found

a significant increase in the levels of Myc targets in MEFs and KPR cells (Figure 3.2C).

We concluded that Myc derepression by ∆RE mutagenesis led to a small but significant
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Figure 3.2: Myc and Myc target genes are downregulated following p53 acti-
vation (A) Top: Genome Browser tracks depicting the Myc-Pvt1 locus from transient-
transcriptome (TT) TimeLapse-seq. Bottom: detail of the Myc locus. (B) Butterfly plot
depicting the fold change (log FC) in gene expression of indicated samples relative to sta-
tistical significance (-log10[p value]; KPR, n = 2 biological replicates). Gene expression
profiling was performed by TimeLapse-seq of ribosomal cDNA-depleted s4U-labeled RNA
isolated from Con or ∆RE gRNA-expressing KPR cells, untreated or treated with Tam for
16 h. Total Pvt1 (blue) and Myc (red) are labeled. (C) Cumulative frequency distribution
plot of differential expression for a set of curated Myc target genes and a matched set of
control genes.

increase in the transcriptional activity of Myc.

3.3 Measuring readthrough transcription in the downstream

of gene region

This section is adapted from:

Rosa-Mercado, N.A., Zimmer J.T., Apostolidi, M., Rinehart, J., Simon, M.D., and Steitz,

J.A. (2021). Hyperosmotic stress alters the RNA polymerase II interactome and induces

readthrough transcription despite widespread transcriptional repression. Mol. Cell, 81(3),

502-513.e4. doi: 10.1016/j.molcel.2020.12.002
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In collaboration with the Steitz lab, we sought to characterize readthrough transcription

in the downstream-of-gene region using transient-transcriptome-TimeLapse-seq to measure

transcriptional activity upon hyperosmotic stress and Integrator knockdown.

Stress-induced readthrough transcription results in the synthesis of downstream-of-gene

(DoG)-containing transcripts. The mechanisms underlying DoG formation during cellular

stress remain unknown. Nascent transcription profiles during DoG induction in human

cell lines using TT-TimeLapse sequencing revealed widespread transcriptional repression

upon hyperosmotic stress. Yet, DoGs are produced regardless of the transcriptional level

of their upstream genes. ChIP sequencing confirmed that stress-induced redistribution

of RNA polymerase (Pol) II correlates with the transcriptional output of genes. Stress-

induced alterations in the Pol II interactome are observed by mass spectrometry. While

certain cleavage and polyadenylation factors remain Pol II associated, Integrator complex

subunits dissociate from Pol II under stress leading to a genome-wide loss of Integrator

on DNA. Depleting the catalytic subunit of Integrator using siRNAs induces hundreds

of readthrough transcripts, whose parental genes partially overlap those of stress-induced

DoGs. Our results provide insights into the mechanisms underlying DoG production and

how Integrator activity influences DoG transcription.

3.3.1 Hyperosmotic stress causes widespread transcriptional repression

We established the nascent transcriptional profiles accompanying DoG induction by per-

forming TT-TL-seq [97] of untreated HEK293T cells and cells exposed to hyperosmotic

stress (Figure 3.3A). Specifically, we exposed cells to 80mM KCl for 60 min but added

the nucleoside analog 4-thiouridine (s4U) during the last 5 min to label RNAs being ac-

tively transcribed [96]. After extracting RNA from HEK293T cells, RNA from Drosophila

S2 cells was added to each sample as a normalization control to ensure accurate differ-

ential expression analysis [144, 145]. RNAs containing s4U were then biotinylated using

methanethiosulfonate (MTS) chemistry and enriched on streptavidin beads [132]. Finally,

U-to-C mutations were induced using TL chemistry to assess the nascent nature of the

enriched RNAs [97]. TT-TL-seq experiments were performed using conditions previously

found to induce DoGs [146].
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Figure 3.3: TT-TL-seq reveals transcriptional profiles that accompany DoG in-
duction after hyperosmotic stress (A) Setup for TT-TimeLapse sequencing (TT-TL-
seq) experiments in HEK293T cells. An arrow indicating directionality marks the beginning
of each transcription unit. Exons are shown as rectangles, and Pol II molecules are light-
purple ovals with attached nascent RNAs. Genome browser views of TT-TL-seq data for
ENAH provide an example of results from untreated (UT) and KCl treated (KCl) cells after
normalization to the spike in control. (B) Browser image of TT-TL-seq data exemplifying a
clean gene (HELLS ) and a gene that does not meet the criteria for a clean gene (CYP2C18 ).
The DoG produced from HELLS reads into CYP2C18, making the latter appear to be tran-
scriptionally activated by hyperosmotic stress (log2 FC = 5.39). (C) The DoG produced
from NUCKS1 is assigned to SLC45A3 because of extensive read-in transcription, which
also complicates accurate differential expression analysis for SLC45A3 (log2 FC = 4.13).
In the browser images, ∼4–5 kb upstream of HELLS and NUCKS1 are shown.

It was previously observed that read-in transcription of DoGs into neighboring genes

leads to the mis-characterization of overlapping transcripts as being activated by stress

( [147–150] Figure 3.3B). Moreover, read-in transcription confounds the assignment of

DoGs to the corresponding parent gene (Figure 3.3C). Our analyses suggest that ∼55%

of expressed genes experience read-in transcription after hyperosmotic stress. Therefore,

to ensure accurate differential expression analyses and DoG characterization, we generated
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a sub-list of genes (referred to as “clean genes” throughout the article). The term “clean

genes” describes genes that are expressed, do not overlap with readthrough regions that

correspond to neighboring genes on either strand, and have higher expression within the

gene body than the region 1 kb upstream of the gene’s transcription start site (TSS) ( [150];

Figure 3.3B and C). We identified 4,584 clean genes in HEK293T cells after hyperosmotic

stress and analyzed their transcriptional regulation.

Consistent with previous reports analyzing steady-state RNAs in human cells [151], we

identified changes in transcriptional responses after hyperosmotic stress. Our results reveal

predominantly decreases in nascent transcript levels after stress (Figure 3.4A–C). Specifi-

cally, the number of normalized read counts corresponding to clean genes decreases 3-fold

after KCl treatment. Yet, we find that a subset of clean genes bypasses this transcriptional

repression (Figure 3.4B,C), including GADD45B (Figure 3.4D), which is known to be in-

duced by hyperosmotic stress [152]. More than 88% of clean genes were repressed after

hyperosmotic stress, while only 3% were upregulated (Figure 3.4C).

3.3.2 Stress-induced readthrough transcripts arise independent of gene-

transcription levels

Consistent with widespread transcriptional repression, normalized TT-TL-seq read counts

within the bodies of DoG-producing clean genes decreased after hyperosmotic stress, while

read counts corresponding to DoG regions increased (Figure 3.5A). However, log2 fold

changes in nascent RNAs of DoG-producing clean genes show that DoGs are produced from

genes that experience all three types of transcriptional responses (Figure 3.5B,C). Specif-

ically, 2.9% of DoGs arise from activated clean genes, 87.8% arise from repressed clean

genes, and 9.3% arise from clean genes that retain comparable expression in stressed and

unstressed HEK293T cells (Figure 3.5B). We then asked whether DoGs preferentially arise

from genes that are transcriptionally repressed upon hyperosmotic stress. Interestingly, the

percentage of DoG-producing genes within each class of transcriptional regulation is consis-

tent, comprising 12%–14% (Figure 3.5C). We conclude that DoGs are produced regardless

of the transcriptional level of their upstream genes (Figure 3.5D).
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Figure 3.4: Hyperosmotic stress leads to widespread transcriptional repression
(A) Whole-genome view of TT-TL-seq normalized reads for forward (F) and reverse (R)
strands in UT and KCl samples. (B) Minus average plot showing the log2 fold change for
clean genes on the y axis and the mean of normalized counts on the x axis. Activated genes
are shown in purple, genes retaining comparable expression are gray, and repressed genes
are blue (n = 4584). (C) Pie chart illustrating the percentage of clean genes within each of
the 3 categories of transcriptional regulation (activated gene, log2 FC > 0.58; comparable
gene, log2 FC < 0.58 but > -0.58; repressed gene, log2 FC < -0.58). (D) Browser shots of
TT-TL-seq tracks from HEK293T cells for VANGL1, which is transcriptionally repressed
by hyperosmotic stress (log2 FC = -4.97), PIM2, which retains comparable expression after
KCl treatment (log2 FC = 0.28), and GADD45B, which is activated by hyperosmotic stress
(log2 FC = 3.72).

3.3.3 Clean DoG-producing genes are functionally enriched for transcrip-

tional repression

Previous analyses of DoG-producing genes did not reveal any functional enrichment [146].

We suspected that the challenge of assigning DoGs to the correct gene of origin because of

their extension into neighboring genes may have complicated previous efforts (Figure 3.3C).
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Figure 3.5: DoGs arise regardless of the transcriptional levels of their upstream
genes upon hyperosmotic stress (A) Interleaved scatterplot showing the sum of normal-
ized TT-TL-seq read counts of DoG-producing clean genes and corresponding DoG regions
(n = 590) in untreated and KCl-treated HEK293T cells for two biological replicates. (B)
Scatterplot showing clean gene log2 fold change (FC) for the gene body on the x axis and the
log2 FC for the DoG region on the y axis. DoGproducing genes that are transcriptionally
activated upon stress are represented in purple, genes retaining comparable levels of expres-
sion are gray, and genes that are repressed are blue. (C) Bar graph showing the percentage
of DoG-producing clean genes (black) within each category of transcriptional regulation.
(D) Browser image showing UT and KCl TT-TL-seq reads for OPA1, a transcriptionally
repressed DoG-producing clean gene (gene log2 FC = -3.22), for SERBP1, which retains
comparable expression after stress (gene log2 FC = -0.45), and for a transcriptionally acti-
vated DoG-producing clean gene, SERTAD1 (gene log2 FC = 1.23). (E and F) Bar graphs
show gene ontology combined scores for the 10 most significantly enriched biological pro-
cesses in order of increasing p value for (E) DoG-producing clean genes and for (F) non-
DoG clean genes. Combined scores are the product of the p value and the Z score as calcu-
lated by Enrichr [153].
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Therefore, we revisited the question of whether DoG-producing genes are enriched for cer-

tain biological processes using only clean genes. We performed gene ontology analysis of

DoG-producing clean genes and clean genes that fail to generate DoGs (non-DoG genes) us-

ing Enrichr [153,154]. Interestingly, 5 out of the 10 enriched terms with the most significant

p values for DoG-producing genes are related to transcriptional repression (Figure 3.5E).

The remaining 5 terms are related to transcriptional regulation and protein modifications.

Non-DoG genes do not show such a striking enrichment for terms related to transcriptional

repression compared to other terms (Figure 3.5F). Instead, these genes are strongly enriched

for general processes related to RNA processing.

3.3.4 Depletion of Integrator endonuclease leads to DoG production

The Integrator complex regulates transcription termination at many noncoding RNA loci

and has been shown to bind the 3´ end of certain protein-coding genes [155, 156]. We

investigated whether knocking down the catalytic subunit of the complex, Int11, using siR-

NAs is sufficient to induce DoGs. We transfected HEK293T cells with an siRNA against

Int11 (siInt11) or with a non-targeting siRNA control (siC). HEK293T cells stably express-

ing FLAG-tagged, siRNA-resistant wild-type (WT), or catalytically inactive Int11 (E203Q)

were also transfected with siInt11 [155,157] for 72 h.

We assessed the extent to which knockdown of endogenous Int11 induces DoGs genome-

wide. To increase cell viability, we performed TT-TL-seq on HEK293T cells transfected

with an siRNA against Int11 for 48 h. Results obtained from cells lacking functional Int11

reveal hundreds of readthrough sites across the genome that are induced by more than 1.5-

fold compared to the siC-transfected sample (Figure 3.6A). According to TT-TLseq data,

induction of readthrough transcription after depletion of endogenous Int11 was most evident

upon expression of the E203Q mutant (Figure 3.6A and B). Yet, readthrough transcripts

observed in siInt11-transfected cells expressing no rescue and in cells expressing the E203Q

mutant Int11 were highly correlated (Figure 3.7A). As expected, the most highly induced

sites of readthrough transcription corresponded to snRNA genes [155,158]. We also detected

readthrough downstream of lncRNA and histone genes as previously described [159, 160].

However, most identified readthrough sites were downstream of protein-coding genes. Of the
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Figure 3.6: Depletion of Integrator nuclease subunit leads to readthrough tran-
scription (A) Bar graph showing the number of DoGs induced after siRNA knockdown of
endogenous Int11. (B) Browser image of TT-TL-seq data for two genes that produce DoGs
upon depletion of functional Int11. (C) Scatterplot showing gene expression log2 fold change
(FC) for siInt11+E203Q HEK293T cells on the x axis and the log2 FC of the corresponding
readthrough transcripts on the y axis. Genes that are activated in siInt11+E203Q cells
compared to siC-transfected cells are purple, unaffected genes are gray and repressed genes
are blue. All readthrough sites identified in the siInt11+E203Q sample are represented in
this plot (n = 840). (D) Venn diagram displaying overlap between the identities of clean
genes that produce readthrough transcripts in siInt11+E203Q cells (dark blue) and those
of DoG-producing clean genes in KCl-treated samples (white).

840 readthrough transcripts induced by knockdown of functional Int11 (E203Q sample), 489

exhibited greater than 80% read coverage in the region 5 kb downstream of the annotated

termination site of the gene of origin and, therefore, met all criteria to be classified as DoG

RNAs (Figure 3.6A and B).

Depletion of Integrator subunits has been shown to alter the transcriptional levels of

certain genes [45, 46, 60, 156]. Consistently, we found that depletion of functional Int11
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in HEK293T cells differentially affects more than a thousand genes (Figure 3.7B). Exam-

ination of the expression levels of the parent genes revealed that readthrough transcripts

predominantly arise from upregulated genes or from genes that retain comparable expres-

sion after knockdown, while very few arise from genes that are transcriptionally repressed

(Figure 3.6C).

Given our observation that the interaction between Integrator subunits and Pol II is dis-

rupted by hyperosmotic stress, we asked how the identities of genes producing readthrough

transcripts upon depletion of functional Int11 compare to genes that produce DoGs af-

ter hyperosmotic stress. We identified 232 clean genes producing readthrough transcripts

in siInt11-transfected cells and 351 clean genes producing readthrough transcripts in the

siInt11+E203Q mutant sample. Comparison with the 590 DoG-producing clean genes iden-

tified in stressed cells showed that up to 25% of KCl-induced DoGs are detected at loci

that also produce readthrough transcripts after depletion of functional Int11 (Figures 3.6D

and 3.7C). These readthrough transcripts are generally more robustly induced after KCl

treatment than upon depletion of functional Int11 (Figure 3.7D), suggesting that, although

Int11 knockdown is sufficient to produce readthrough transcription, decreased interactions

between Integrator and Pol II are not solely responsible for DoG induction upon hyperos-

motic stress.

3.4 Probing the effect of a splicing factor mutant on RNA

stability

This section is adapted from:

Biancon, G., Joshi, P., Zimmer, J.T., Hunck, T., Gao, Y., Lessard, M.D., Courchaine,

E., Barentine, A.E.S., Machyna, M., Botti, V., Qin, A., Gbyli, R., Patel, A., Song, Y.,

Kiefer, L., Viero, G., Neuenkirchen, N., Lin, H., Bewersdorf, J., Simon, M.D., Neugebauer,

K.M., Tebaldi, T., Halene, S. (2022). Precision analysis of mutant U2AF1 activity reveals

deployment of stress granules in myeloid malignancies. Molecular Cell, 82(6), 1107-1122.e7.

In collaboration with the Halene lab, we applied TimeLapse-seq to ask how stress granule
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Figure 3.7: Int11 knockdown leads to readthrough transcription (A) Scatter plot
showing correlation between readthrough transcripts detected in siInt11-transfected cells
expressing no rescue and cells expressing the E203Q mutant Int11 (n=576). (B) Mean
average plot showing read counts for expressed genes on the x-axis and their log2 FC after
depletion of functional Int11 (E203Q sample) on the y-axis (n=14,640). Activated genes are
shown in purple and repressed genes in blue. (C) Venn diagram showing the overlap between
the identities of clean genes that produce readthrough transcripts in siInt11-transfected
cells (teal) and DoGproducing genes in KCl-treated samples (white). (D) Scatter plot
demonstrating a correlation between the log2 FC of overlapping genes in KCl-treated cells
(y-axis) and siInt11+E203Q cells (x-axis) (n=148).

formation in response to two U2AF1 splicing factor mutants affects RNA stability in an

cancer-relevant system.

Splicing factor mutations are common among cancers, recently emerging as drivers of

myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; how-

ever, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2

heterodimer is critical for 3´ splice site (3´SS) definition. To specifically unmask changes

in U2AF1 function in vivo, we developed a crosslinking and ‘precipitation procedure that

detects contacts between U2AF1 and the 3´SS AG at single-nucleotide resolution. Our data

reveal that the U2AF1 S34F and Q157R mutants establish new 3´SS contacts at -3 and

+1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting

predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing,

and turnover data, we predicted that U2AF1 mutations directly affect stress granule com-
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ponents, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1- mutant cell

lines and patient-derived MDS/AML blasts displayed a heightened stress granule response,

pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.

3.4.1 U2AF1 mutations enhance stress granule formation improving cell

fitness under stress
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Figure 3.8: Mutant U2AF1 cells show differential RNA dynamics related to stress
granule content (A and C) Scatter plot of gene expression changes (x axis) and relative
stability/degradation contributions (y axis) in S34F (A) or Q157R (C) versus WT, measured
by TL-seq (two replicates per condition). Transcripts enriched (left panel) or depleted
(right panel) in stress granules are highlighted. N, number of transcripts in each TL-seq
class (stabilized, induced, destabilized, and shutdown). (B and D) Fraction of SG-enriched
versus depleted transcripts in each TL-seq class in S34F (B) or Q157R (D) versus WT.
Differences in fractions within each class were tested with a proportion test.

To understand how mutant U2AF1-induced aberrant binding to pre-mRNA and splicing

would result in enhanced SG formation at the RNA level, we analyzed RNA transcript

dynamics by TimeLapse-seq (TL-seq) [97]. This technique allows us to disentangle the

contributions of RNA synthesis versus stability on total RNA levels. When comparing

mutant versus WT U2AF1 cells with TL-seq, transcripts were sorted into four classes:

upregulated transcripts with increased stability (“stabilized”) versus increased synthesis
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rate (“induced”), and downregulated transcripts with reduced stability (“destabilized”)

versus reduced synthesis rate (“shutdown”) (Figure 3.8A). Integration of TL-seq variations

with the aforementioned experimental datasets characterizing SG-enriched and SG-depleted

transcripts yielded significant over-representation of SG-enriched RNAs among transcripts

with increased stability (S34F, Figure 3.8A and B) and synthesis (Q157R, Figure 3.8C

and D). Conversely, SG-depleted transcripts were mainly in the destabilized and shutdown

classes for both mutants (Figure 3.8A-D).

3.5 Dissecting regulatory function of lincRNA-p21

This section is adapted from:

Winkler L., Jimenez M., Zimmer J.T., Williams A., Simon M.D., and Dimitrova N.

(2022). Functional elements of the cis-regulatory lincRNA-p21. Cell Rep., 39(3). doi:

10.1016/j.celrep.2022.110687

In collaboration with the Dimitrova lab, we applied transient-transcriptome RT-qPCR

to a genetic construct to probe whether transcription of the full lncRNA-p21 locus or a

portion of it is required for regulation of p21.

The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in

cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21.

The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus

activates p21 expression remains poorly understood. To elucidate the functional elements

of cis-regulation, we generated a series of genetic models that disrupt DNA regulatory el-

ements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21.

Unexpectedly, we determined that full-length transcription, splicing, and accumulation

of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-

regulation. Instead, we found that production of lincRNA-p21 through conserved regions

in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the

activation of nascent transcription from this lncRNA locus, but not the generation or ac-

cumulation of a mature lncRNA transcript, is necessary to enact local gene expression
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control.

3.5.1 Development of genetic models to query the role of lincRNA-p21

transcription and transcript accumulation

Figure 3.9: Development of genetic tools to probe the contribution of lincRNA-
p21 transcription and accumulation to p21 regulation Transient transcriptome (TT)
qRT-PCR analysis of normalized lincRNA-p21 levels in s4U-labeled RNA from Doxo-treated
MEFs. Data are represented as mean ± SEM of indicated biological replicates; n.s. not
significant, ***p < 0.001; paired t test.

To investigate RNA-dependent contributions of the lincRNA-p21 locus to p21 regula-

tion, we generated two independent genetic models. To determine whether transcription

through the lincRNA-p21 locus is required for p21 activation, we used CRISPR-Cas9-

mediated genetic engineering to insert the 49-nucleotide synthetic polyadenylation signal

(PAS) [161] into exon 1 of the endogenous lincRNA-p21 locus in murine blastocysts (Figure

2A). In parallel, to determine the contribution of the lincRNA-p21 RNA to p21 regula-

tion, we introduced the 74-nucleotide Twister (TWI) self-cleaving ribozyme [162] at the

same site in exon 1 of endogenous murine lincRNA-p21 (Figure 2A). We anticipated that

while the PAS element would lead to premature termination, TWI would allow transcrip-

tion of lincRNA-p21 but lead to transcript cleavageand degradation. LincRNA-p21PAS and

lincRNA-p21TWI founder animals were crossed to C57BL/6J mice to obtain germline trans-

mission (Figures S2A and S2B). Next, heterozygous crosses revealed that mice harboring

homozygous PAS and TWI lincRNA-p21 alleles are viable, born at Mendelian ratios, and

do not display any apparent abnormalities.

To distinguish whether the TWI insertion led to post-transcriptional degradation of

lincRNA-p21 or affected lincRNA-p21 biogenesis, we performed transient transcriptome

(TT) analysis of s4U-labeled RNA. Primers located in exon 1 both upstream and down-
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stream of the TWI insertion site revealed that TWI led to the degradation of 60%–80%

of newly transcribed lincRNAp21, while primers located in exon 2 approximately 20 kb

downstream of the TWI insertion pointed to a 90% reduction in transcription near the tran-

scription termination site (Figure 3.9). These results indicated that the PAS led to efficient

transcription termination, while TWI mediated co-transcriptional transcript degradation

and only allowed approximately 10% of full-length transcript production.

3.6 Discussion

In principle, metabolic-labeling-based approaches are useful tools to ask targeted questions

about transcription, nascent RNA, and RNA stability. In practice, this body of collabo-

rative work exemplifies the utility of TT-TL-seq and TimeLapse-seq to uncover behavior

of RNAPII and and RNA which would otherwise be difficult to study. My collaborative

work with Christiane Olivero in Nadya Dimitrova’s lab demonstrates that TimeLapse-seq

can be used in the same manner as RNA-seq to observe alternative splicing events and

that TT-TL-seq can be used to detect changes in transcriptional activity at a single lo-

cus or across specific genesets [163]. As shown by my collaboration with Lauren Winkler

in Nadya Dimitrova’s lab, TT-TL-seq can also be used to query transcriptional activity

at different positions along the gene body, and not just across the gene as a whole [164].

Extending beyond the gene body, I worked with Nicolle Rosa-Mercado in Joan Stetiz’s

lab to capture nascent transcripts past the cleavage and polyadenylation site with TT-TL-

seq [165]. Finally, working with Giulia Biancon in Stephanie Halene’s lab, we were able

to integrate TimeLapse-seq-derived kinetic information of RNA transcripts to show that

differential RNA stability and synthesis are related to the formation of stress granules as

a result of U2AF1 splicing factor mutants [137]. Together, these stories, and others which

remain unpublished, are demonstrations that metabolic-labeling based technologies present

a unique opportunity to reveal new principles of biology.

51



Chapter 4

STL-seq reveals pause-release and

termination kinetics for

promoter-proximal paused RNA

polymerase II transcripts

This chapter is adapted from:

Zimmer, J.T., Rosa-Mercado, N.A., Canzio, D., Steitz, J.A., and Simon, M.D. (2021).

STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA

polymerase II transcripts. Mol Cell, 81(21), 4398-4412. doi: 10.1016/j.molcel.2021.08.019.

4.1 Summary

Despite the critical regulatory function of promoter-proximal pausing, the influence of paus-

ing kinetics on transcriptional control remains an active area of investigation. Here, we

present Start-TimeLapse-seq (STL-seq), a method that captures the genome-wide kinetics

of short, capped RNA turnover and reveals principles of regulation at the pause site. By

measuring the rates of release into elongation and premature termination through inhibi-

tion of pause release, we determine that pause-release rates are highly variable and most
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promoter-proximal paused RNA Polymerase II molecules prematurely terminate (∼80%).

The preferred regulatory mechanism upon a hormonal stimulus (20-hydroxyecdysone) is

to influence pause-release rather than termination rates. Transcriptional shutdown occurs

concurrently with induction of promoter-proximal termination under hyperosmotic stress

but paused transcripts from TATA box-containing promoters remain stable, demonstrating

an important role for cis-acting DNA elements in pausing. STL-seq dissects the kinet-

ics of pause release and termination, providing an opportunity to identify mechanisms of

transcriptional regulation.

4.2 Introduction

Promoter-proximal pausing is a dynamic step in transcription that occurs at most RNA

polymerase II (Pol II)-transcribed genes in metazoans and is an important point of reg-

ulatory input controlling gene expression [3, 6]. Promoter-proximal pausing is the pro-

cess by which Pol II stalls 20-60 bp downstream of the transcription start site (TSS),

forming a stable complex engaged on chromatin with a short nascent transcript [28–32].

To proceed through pausing and synthesize a full-length transcript, Pol II must be re-

leased into elongation, a step promoted by the kinase activity of positive transcription

elongation factor b (P-TEFb) [34, 38]. Several studies, however, have demonstrated that

not all paused Pol II molecules are released into elongation and some prematurely ter-

minate through eviction from the DNA and rapid degradation of the nascent transcript

[27, 43, 45, 46, 49, 60, 86, 166, 167]. Pause release and termination are in kinetic competi-

tion and determine the fate of paused Pol II; changing the rate of either can regulate gene

expression.

The pause site represents a major node of regulatory input but how pause release and ter-

mination respond to regulatory signals genome-wide remains unclear [24,86,167,168]. While

nascent RNA sequencing can reveal an increase in the number of Pol II molecules released

into elongation, it remains ambiguous whether such observations are due to the distinct

biochemical activities of increasing the pause-release rate or of decreasing the premature-

termination rate. In addition, measuring premature termination is challenging because
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terminated transcripts are rapidly degraded and thus difficult to directly observe. These

obstacles limit our understanding of pausing regulation and prompt a more systematic anal-

ysis of pausing dynamics that includes determining the rates of release into elongation and

premature termination and the regulation of each.

Conventional RNA-seq experiments do not robustly capture the short transcripts as-

sociated with paused Pol II and therefore are poorly suited to study pausing. However,

an RNA sequencing-based method, Start-seq [57], specifically enriches short, capped RNA

transcripts (scRNA) associated with paused Pol II such that each read represents a single

engaged Pol II molecule paused at the promoter-proximal site. While Start-seq has pro-

vided important insights into steady-state levels of paused RNA Pol II [5, 168], analyzing

the dynamics and turnover of these paused transcripts has proven more challenging. Thus,

many questions about pausing kinetics remain unanswered, including the fraction of Pol II

molecules that are released into elongation from the pause site.

Previous studies estimated paused Pol II half-lives by blocking initiation of new tran-

scripts using triptolide (Trp), an inhibitor of TFIIH helicase activity [59, 85, 86, 169–171].

Yet kinetics upon Trp inhibition may not be reflective of kinetics of the uninhibited state,

making these estimates unreliable [167, 170, 172]. Efforts to estimate half-lives of paused

Pol II in a Trp-independent manner have been performed by integrating information from

multiple nascent RNA-seq methods but require the assumption that premature termination

occurs rarely [104, 173]. To our knowledge, these are the only two strategies applied to

study paused Pol II behavior in a genome-wide and TSS-specific manner.

We sought to develop an approach that focuses on short nascent transcripts with the

specificity of Start-seq and also captures the dynamics of RNA transcripts using RNA

metabolic labeling and nucleotide-recoding [97]. Here we present Start-TimeLapse-seq

(STL-seq), which measures steady-state kinetics of paused Pol II genome-wide without

blocking transcription initiation. We apply STL-seq to fly and human cells and find very

similar half-lives of paused Pol II in both systems. We demonstrate that STL-seq, when

combined with P-TEFb inhibition, allows deconstruction of Pol II turnover into components

of premature termination and release into elongation. We find that Pol II prematurely ter-

minates at a similar rate at nearly all promoter-proximal pause sites. While release into
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elongation is infrequent when compared to termination, it is highly variable across the

genome and is the primary target of regulation in response to hormonal stimulus by 20-

hydroxyecdysone treatment in Drosophila. On the other hand, termination is largely unaf-

fected by the stimulus but is induced upon hyperosmotic stress. Our work provides the first

direct, global measurements of pausing dynamics using non-perturbing methods and sup-

ports a model in which release into elongation regulates expression levels while premature

termination functions as a quality control mechanism to ensure competent elongation.

4.3 Results

4.3.1 Short, capped transcripts can be metabolically labeled using s4U

We sought to develop a method that directly measures the steady-state kinetics of Pol

II pausing. We were inspired by Start-seq, which enriches for the short, capped RNA

(scRNA) associated with the paused complex [57]. While Start-seq does not inherently

capture transcript dynamics, we reasoned that if we could combine it with TimeLapse-

seq, an enrichment-free method capable of capturing transcriptional dynamics, we could

distinguish newly synthesized and preexisting scRNA through 4-thiouridine (s4U) metabolic

labeling. The fraction of scRNA synthesized during labeling can be revealed by chemically

converting s4U to a cytidine analogue which manifests as an apparent T-to-C mutation

in sequencing data [97]. Start-TimeLapse-seq (STL-seq) therefore combines the power of

metabolic labeling with the specificity of scRNA enrichment to reveal dynamics of promoter-

proximal Pol II pausing.

We treated D. melanogaster S2 cells with s4U for 5 min (Figure 4.1A), a time well vali-

dated for studying transient transcripts using other s4U-based methods [96,97] and generally

in line with previous pause duration estimates [6]. We found that s4U-treated samples, but

not controls, were enriched for TimeLapse-dependent T-to-C mutations (Figure 1B). Use of

an alignment strategy that does not penalize T-to-C mismatches improved mapping of STL-

seq reads, particularly shorter reads with two or more T-to-C mutations, while maintaining

low background mutations (Figure 4.2A-C, Bismark, [140]).

We found that STL-seq reads provide similar profiles from s4U-labeled and unlabeled
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Figure 4.1: STL-seq captures turnover dynamics of transcripts from promoter-
proximal paused polymerase (A) Scheme of STL-seq. Native RNA is metabolically
labeled with s4U for a short time before isolating RNA. TimeLapse chemistry is performed
prior to enriching for short, capped RNA transcripts which are then sequenced. (B) Example
STL-seq tracks demonstrating typical Start-seq coverage with elevated T-to-C TimeLapse
mutations only in s4U-labeled samples. The entire Act5C locus is shown (right) with an
expanded view of the major TSS (left). (C and D) Metaplots of STL-seq 5´ and 3´ read ends
identify the TSS and promoter-proximal pause site relative to the observed TSS location.
The single nucleotide location of the TSS (blue, 5´ end of read) and pausing position (grey
and red, 3´ end of read) are depicted separately. The 3´ ends are colored by the read’s
mutational content while the 5´ ends are not. Read ends at each distance from the TSS for
the unlabeled (C) and labeled (D) samples are shown as a proportion of the total number
of reads. The proportion of 5´ ends corresponds to the left y-axis scale and the proportion
of 3´ ends corresponds to the right y-axis scale.

samples, demonstrating that the metabolic labeling and chemical treatment do not interfere

with measurements of scRNAs (Figures 4.1C & 4.1D). STL-seq signals at each TSS are

highly reproducible, both at the level of total reads (Pearson’s r = 0.94, Figure 4.2D)

and T-to-C mutation-containing reads in the labeled samples (Pearson’s r = 0.91, Figure

4.2E). Correlation between total read counts of labeled and unlabeled samples is also high

(Figure 4.2D). Together, these results demonstrate that s4U can be introduced to label

newly synthesized scRNA transcripts without adversely altering the scRNA levels.
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Figure 4.2: Caption on next page.

To verify that mutated reads are synthesized only by newly initiated Pol II, we inhibited

initiation by treating cells with Trp prior to metabolic labeling. We did not observe accumu-

lation of STL-seq reads containing T-to-C mutations, indicating that Trp efficiently blocks

new initiation and that scRNAs recently released into elongation are not a significant source

of signal (Figures 4.2F & 4.2G). Furthermore, previous work has demonstrated scRNA re-

leased from chromatin are rare, suggesting that most scRNA are degraded rapidly upon

dissociation from chromatin [86]. We conclude that the mutations derived from labeled

scRNAs in STL-seq are a result of the transcription of new scRNAs and therefore reflective

of newly initiated Pol II which have not yet been released into elongation or terminated.
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Figure 4.2: STL-seq captures mutation information of newly synthesized short,
capped transcripts (A, B, C) The proportion of reads with varying numbers of mutations
at each length. Reads are considered by absolute length, and each mutation level includes
reads with the same or greater number of mutations. Reads were aligned with Bowtie 2
combined with Bismark (A, C) or Bowtie 2 alone (B) and either labeled (A, B) or unlabeled
(C) with s4U. The total proportion of reads is colored by number of mutations and shown
on the right. (D) Pairs plots of total TSS read counts from STL-seq unlabeled and labeled
samples. Read counts are plotted on the log10 scale and the Pearson correlation coefficient
of each comparison is shown. (E) Pairs plots of mutation-containing TSS read counts from
STL-seq unlabeled and labeled samples. Read counts are plotted on the log10 scale and the
Pearson correlation coefficient of each comparison is shown. (F) Same as A-C but labeled
under triptolide inhibition and aligned with Bismark. (G) Metaplot of STL-seq read ends
relative to the TSS location under triptolide inhibition. The single nucleotide location of
the TSS (blue, 5´ end of read) and pausing position (grey and red, 3´ end of read) are
depicted separately. The 3´ ends are colored by the read’s mutational content while the 5´
ends are not. Read ends at each distance from the TSS for the labeled samples are shown
as a proportion of the total number of reads. The proportion of 5´ ends corresponds to the
left y-axis scale and the proportion of 3´ ends corresponds to the right y-axis scale.

4.3.2 STL-seq data can be used to quantify scRNA turnover accurately

and robustly

Data from our single timepoint STL-seq experiment suggested diverse kinetics of scRNA

turnover at different TSSs. To further explore scRNA dynamics, we performed an indepen-

dent STL-seq time series (1.5, 3, 5, 7.5, 10, and 120 min of s4U labeling) such that nearly all

scRNAs across all TSSs were predicted to turn over within the longest labeling period. We

observed the expected time-dependent accumulation of T-to-C mutations and found that

the rate of accumulation varied at different TSSs, illustrating the capability of STL-seq to

reveal a range of pausing kinetics across the genome (Figures 4.3A & 4.4A).

To use the mutational content of STL-seq reads to study scRNA dynamics, we developed

statistical methods to robustly quantify turnover. Determining the fraction of newly made

transcripts (θ) allows estimation of turnover using a first-order observed rate constant (k̂obs,

min-1) for transcripts initiated from each TSS. It is important to use a statistical model to

infer the fraction of scRNA that are newly made because some newly made reads will not

contain any mutations (Figure 4.4B). The lack of mutations in some newly synthesized reads

could lead to a global underestimation of scRNA turnover rates if only mutation-containing

reads were considered newly made. Instead we use a binomial mixture model. We define θ
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Figure 4.3: Caption on next page.

in relation to k̂obs with an exponential model such that

θ = 1− e(−k̂obst) (4.1)

where t is the labeling time. Similar to our previous analyses [97], we estimated the fraction

of newly made transcripts using a binomial model of the number of mutations observed

(tc) and uridines (nu) present in each read (Figure 2C), thereby accounting for variable

uridine content across TSSs. The model also depends on the TSS-specific background

(po) mutation rate, which is determined from the unlabeled controls, and the TSS-specific
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Figure 4.3: Estimation of scRNA transcript turnover from STL-seq (A) STL-seq
tracks of the fz2 and CR43650 TSSs labeled with s4U for the indicated times. Tracks
are autoscaled to show relative proportion of mutated reads. (B) Metaplots of STL-seq
5´ (blue) and 3´ (grey and red) read ends relative to the TSS labeled with s4U for the
indicated times with similar presentation to Figures 4.1C & 4.1D. (C) The fraction of new
scRNA (θ) is estimated with a mixed binomial model. The model estimates the back-
ground mutation rate (pold) with the unlabeled control and uses the number of U’s in each
read (nU) and the distribution of T-to-C mutations in the labeled samples to estimate the
TimeLapse-dependent mutation rate (pnew). In this simulated example, each read derives
from a TSS with a 5 min half-life and average read length of 35 nt with a uridine every 4
nts. Newly synthesized transcripts (red) are synthesized with (pnew) = 10% and preexisting
reads (grey) are synthesized with (pold) = 0.25%. See STAR methods for more details. (D)
Histogram of scRNA half-life estimates made with STL-seq from S2 cells. The inset boxplot
separates scRNA half-lives into those aligned to regions with and without STARR-seq en-
hancer activity. Significance was assessed by a two-sided Wilcoxon rank sum test. (E) The
distribution of either STL-seq reads (left) or promoter-proximal PRO-seq reads (right, [45])
grouped into even quartiles by observed scRNA turnover. Significance was assessed by a
two-sided Wilcoxon rank sum test. (F) Distribution of the total observed turnover rate
constant at promoters grouped by motif content. All motifs are known TFIID binding el-
ements except the polypyrimidine initiator (TCT) and the degenerate initiator (Inr). The
pause button (PB), downstream promoter element (DPE), and motif ten element (MTE)
were grouped together such that promoters may have one or a combination of these within
50 bp downstream.

TimeLapse mutation rate (pn). The probability mass function is

f (tc|nu, pn, po) = θBinomialLogit (tc|nu, pn) + (1− θ) BinomialLogit (tc|nu, po) (4.2)

which is parameterized on the logit scale to avoid hard upper and lower bounds.

We used a Bayesian hierarchical modeling approach to estimate these parameters using

RStan software (Version 2.19.3, [174]) that implements no-U-turn Markov Chain Monte

Carlo (MCMC) sampling. We defined hierarchical parameters for the global background

(p̄o) and TimeLapse (p̄n) mutation rates to account for local variability while allowing for

information sharing between TSSs to benefit those with lower coverage. The local mutation

rates for the sth TSS were defined with a non-centered parameterization as follows

po[s] = p̄o + σozo[s] (4.3)

pn[s] = p̄n + σnzn[s] (4.4)
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where σn and σo are the standard deviations of the global TimeLapse and background

mutations rates, respectively, and zn and zo are TSS-specific z-scores for the TimeLapse

and background mutations rates, respectively. For the complete parameterization and prior

definition, see methods. Simulations of scRNA with variable kinetics and uridine content

supported the feasibility of using mutational content from STL-seq data to infer scRNA

half-lives with this model (Figures 4.4B & 4.4C, see methods).
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Figure 4.4: Binomial modeling of STL-seq mutation data (A) The proportion of reads
with varying numbers of mutations at each length when labeled for varying times with s4U.
Reads are considered by absolute length and each mutation level includes reads with the
same or greater number of mutations. The total proportion of reads is colored by number
of mutations and shown on the right of the plot for each label time. (B) Simulated STL-seq
mutational content of TSSs with various pausing half-lives (hl) and uridine content. Reads
are colored by whether they are considered new (red) and synthesized during the label
time or old (grey) and synthesized prior to labeling. See methods for details of simulated
data. (C) Using the model to estimate the rate constant of simulated data generated as
in B in addition to varying degrees of coverage. The true rate constant is indicated with
a cross. The median value of the posterior estimate is indicated with a solid circle and
the 80% credible interval is indicated by red bars. See methods for details of simulated
data. (D) Correlation plot comparing estimates from single STL-seq replicates. Plotted
points represent the median value of the posterior estimate. The density of plotted points
is indicated by color (blue, high; yellow, low). The Pearson correlation coefficient is shown.
(E) Correlation plot comparing k̂obs estimates made with STL-seq and previously published
Start-seq data under Trp inhibition. The median value of the STL-seq posterior estimate
is plotted and the 1:1 line is shown. The density of plotted points is indicated as in D.
The Pearson correlation coefficient is shown. (F) Correlation plot comparing k̂obs estimates
made with STL-seq and previously published ChIP-nexus data under Trp inhibition. The
median value of the STL-seq posterior estimate is plotted and the 1:1 line is shown. The
density of plotted points is indicated as in D. The Pearson correlation coefficient is shown.
(G) Correlation plot comparing STL-seq k̂obs estimates and STL-seq read counts at each
TSS. The median value of the STL-seq posterior estimate is plotted. The density of plotted
points is indicated as in D. The Pearson correlation coefficient is shown. (H) As in G
but comparing STL-seq k̂obs estimates and PRO-seq read counts in the promoter-proximal
region of each TSS.

4.3.3 STL-seq reveals high turnover of scRNAs at most TSSs

We applied the binomial mixture model to our genome-wide STL-seq data and found that

median k̂obs estimates of high confidence TSSs (low uncertainty in parameter estimates, see

STAR Methods) agree well between replicates (Figure S2D). By combining both replicates

to estimate a single k̂obs for each TSS, we find the median half-life of scRNA to be about

five minutes with half-lives spanning from minutes to tens of minutes (inner 90% range

spanning 2.1 to 24 min, Figure 2D). In agreement with previous findings [5], scRNA initiated

from regions with enhancer activity as measured by STARR-seq turn over with half-lives

faster than those initiated from regions without enhancer activity. However, we do not find

evidence of scRNA with extremely long average half-lives (one hour or longer) that were

observed in previous Trp inhibition experiments [5,59,85,175]. More generally, STL-seq k̂obs
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estimates show moderate agreement with k̂obs estimates made with previously published

Trp inhibition data (Figures S2E & S2F); however, the slower estimates made with Trp

inhibition data [59] buttress previous concerns that Trp may stabilize paused Pol II. These

results demonstrate that the overall rate of paused scRNA turnover is fast regardless of

the TSS type and led us to investigate what TSS and promoter features associate with

variability in scRNA turnover.

We asked if the level of Pol II occupancy at the pause site influences pausing kinetics.

As Pol II spends little time loaded on the promoter in the preinitiation complex (PIC),

promoter-proximal pausing is a major rate-limiting step during early transcription [6,176].

Accordingly, pause sites should always be close to fully occupied so long as the promoter is

in an active state. We used STL-seq read counts from high confidence TSSs (see methods)

as an indicator of Pol II occupancy and found that slow turnover is not strongly correlated

with higher occupancy (Figures 4.3E & 4.4G). To further probe this relationship, we re-

analyzed available PRO-seq data [45] and counted reads in the promoter-proximal region.

This analysis showed a similar relationship where slow turnover is weakly associated with

higher read counts (Figures 4.3E & 4.4H). Thus, STL-seq data provide further evidence

that pausing is a principal rate-limiting step prior to elongation.

TFIID, a bridge-like PIC component, is sufficient to induce pausing in vitro [37]. Cis-

acting DNA elements, especially those related to TFIID binding, have been shown to in-

fluence Pol II pausing [59, 177]. TFIID contacts the TATA box through its TATA-binding

protein (TBP) subunit and makes additional DNA contacts downstream of the promoter at

the initiator motif (InrG), downstream promoter element (DPE), motif ten element (MTE),

and pause button (PB). Presence of these downstream motifs tends to extend pausing half-

lives while the TATA box tends to shorten them [59,177]. Our data recapitulate these results

at high confidence TSSs and demonstrate the destabilizing effect of the degenerate, G-less

initiator motif (Inr, [178]) (Figure 4.3F). The polypyrimidine initiator (TCT) motif, which

is similar to InrG but does not bind TFIID, appears to be associated with similar kinetics

as InrG. Our robust and reproducible measurements of k̂obs support previous observations

and provide the foundation to further examine the principles underlying promoter-proximal

pausing.
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4.3.4 Termination is generally faster but less variable than release into

elongation

Next, we sought to determine the proportion of paused Pol II molecules that are prematurely

terminated at each TSS prior to entering productive elongation. Previous work established

that premature termination is an important fate of the paused complex, but the relative

contributions of pause release and premature termination were not determined for TSSs

genome-wide [27, 45, 49, 60, 86, 166, 167, 169]. We used flavopiridol (FP) treatment (prior

to s4U labeling) to inhibit release into elongation and allow for measurement of premature

termination (Figure 4.5A). FP increases STL-seq reads at the majority of TSSs, except

those with the most scRNA reads, perhaps because they are already fully saturated with

paused Pol II (Figure 4.6A). This increase in STL-seq reads indicates a stabilization of the

paused complex due to inhibition of release into elongation by FP.

We further developed the model described above to assume that the observed turnover

rate constant (k̂obs) at steady state is the sum of termination and pause-release rate con-

stants (Figure 4.5A, see methods). Previous studies demonstrated that FP does not perturb

premature termination [49, 85]. Therefore, under FP inhibition, the observed turnover is

attributed only to premature termination (k̂ term). We calculate the pause-release rate con-

stant (k̂ rel) as the difference between k̂obs and k̂ term. We find that pause-release constants on

average are slow but vary widely (median 0.027 min-1; inner 90% range 0.0015-0.31 min-1),

while termination constants are fast and more tightly distributed (median 0.11 min-1; inner

90% range 0.027-0.23 min-1) (Figure 4.5B).

Because polymerases must be released from the pause site to transcribe the rest of the

gene body, we expected that transcriptional activity in the gene body should be a function of

how quickly scRNA are released into elongation. Transient-Transcriptome-TimeLapse-seq

(TT-TL-seq) enriches for nascent RNA and is therefore a good measure of transcriptional

activity. We performed TT-TL-seq and compared coverage to STL-seq k̂ estimates at TSSs

where we could make high confidence estimates of k̂ rel (n = 2865; see methods). As expected,

we found that k̂ rel is the best predictor of TT-TL-seq signal when compared to k̂ term and k̂obs

(Figures 4.5C & 4.6B-E). We also assessed this relationship using an orthogonal measure
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Figure 4.5: Termination is fast while release into elongation explains variability
of Pol II turnover at pause sites (A) Representation of pausing kinetics under steady-
state and flavopiridol-inhibited conditions. The steady-state observed turnover (k̂obs) is the
sum of the rates of release into elongation (k̂ rel) and premature termination (k̂ term). Upon
flavopiridol inhibition, observed turnover is caused only by premature termination. (B) The
distribution of the first-order rate constants for total turnover, release into elongation, and
premature termination. (C) Metaplots of TT-TL-seq signal grouped into even quartiles by
release and termination of the respective high confidence TSS (n = 2422 genes). Coverage
is determined over 50 nt bins. (D) Total observed rate constant plotted versus the log2 ratio
of the release rate and termination rate. Points are colored if the 80% credible interval of
the log2 ratio does not overlap zero and the median value is greater than 1 (blue) or less
than -1 (red).

of elongating Pol II activity (gene-body PRO-seq reads; [45]; Figure 4.6F), which further

supported our conclusion that STL-seq pause-release rates are more tightly linked to gene

body transcription.

To provide additional validation of our approach to estimate k̂ rel and k̂ term we reasoned

that genes with significant levels of paused polymerase at the TSS but very low transcrip-

tional activity in their gene body must have low k̂ rel. Therefore, we expect k̂term ≈ k̂obs

at these TSSs and those rate constants should not be perturbed by FP. We used TT-TL-

seq data to identify genes with the lowest 10% of transcriptional activity where we expect
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k̂term ≈ k̂obs. We then identified confident TSSs at these genes and found k̂ term and k̂obs us-

ing a model designed to estimate differences (see methods). We found that turnover under

FP inhibition and in the uninhibited state were not substantially different at these TSSs,

further supporting our assumption that FP does not alter k̂ term (Figure 4.6G).
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Figure 4.6: Caption on next page.

To examine the relative amount of Pol II terminated or released into elongation at each

TSS, we took the log2-transformed ratio of the rates of pause release versus termination. We
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Figure 4.6: Release from the pause site predicts downstream transcriptional ac-
tivity (A) The change in normalized STL-seq reads at all TSS upon flavopiridol inhibition
plotted versus the average normalized STL-seq read count in untreated controls. The density
of plotted points is indicated by color (blue, high; yellow, low). (B) Metaplots of TT-TL-
seq signal grouped into even quartiles by total observed turnover of the respective TSS.
Coverage is determined over 50 nt bins. (C) The distribution of TT-TL-seq coverage over
the entire gene body by RPKM. Genes are grouped into even quartiles by total observed
turnover, release, or termination of the respective TSS. Significance was assessed by a two-
sided Wilcoxon rank sum test. (D) Correlation plot comparing k̂obs, k̂ rel, or k̂ term estimates
made with STL-seq and TT-TL-seq coverage in RPKM. The median value of the STL-seq
posterior estimate is plotted. The Pearson correlation coefficient is shown. (E) Heat maps
of TT-TL-seq data grouped as in C and ordered by the indicated rate constant. (F) The
distribution of PRO-seq ( [45] reads over the region from 0.5 kb to 1.5 kb downstream of the
TSS. Genes are grouped into even quartiles by total observed turnover, release, or termi-
nation of the respective TSS. Significance was assessed by a two-sided Wilcoxon rank sum
test. (G) Histogram of RPKM values for genes in TT-TL-seq data. The red highlighted
region represents the 10% of genes with the least coverage. The mean log2 fold change of
k̂obs upon FP treatment and standard error are shown for TSSs of the bottom 10% of genes
(red) or the entire genome (black). Statistical difference from zero was assessed with a one-
sample Wilcoxon signed rank test. (H) The distribution of the log2 ratio of the release rate
to termination rate at all TSSs grouped into even quartiles by the total observed turnover.
Significance was assessed by a two-sided Wilcoxon rank sum test. (I) The distribution of
the log2 fold change in normalized STL-seq read counts upon flavopiridol inhibition at all
TSSs grouped into even quartiles by the log2 ratio of the release rate to termination rate.
Significance was assessed by a two-sided Wilcoxon rank sum test.

found that termination is faster than pause release at most TSSs (62%) while the converse

is uncommon (9%) (Figures 4.5D & 4.6H). However, TSSs with the fastest total turnover

(k̂obs > 0.5min−1) are more likely to release scRNA into productive elongation than termi-

nate the transcript. We compared the change in scRNA read counts upon FP treatment

to the ratio of k̂ rel to k̂ term and found that more frequent pause release is associated with

the accumulation of more reads, as would be expected (Figure 4.6I). Taken together, these

results reveal that on average, termination is about four times faster than pause release and

therefore ∼80% of total turnover, while pause release is typically slower but has a larger

dynamic range.
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Figure 4.7: Caption on next page.

4.3.5 Certain histone tail modifications are associated with less permis-

sive pausing dynamics

The local chromatin environment around promoters is important for the regulation and

maintenance of transcriptional activity. To examine how the local chromatin landscape

around pause sites is related to scRNA dynamics revealed by STL-seq, we focused our

analysis on high confidence promoter TSSs. We found that pause sites with the least

stable scRNA are modestly enriched for chromatin marks typically associated with active

promoters. For example, low monomethylation and high trimethylation of histone 3 lysine
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Figure 4.7: Chromatin structure defines unique profiles of pausing kinetics
(A) Heat maps of ATAC-seq [45] and ChIP-seq H3K27ac, H3K4me1, H3K4me3 [5], and
H3K36me3 [179] around promoters grouped into even quartiles and ordered by total
turnover or log2 ratio of the release rate to the termination rate of the respective TSS.
Heatmaps are centered on the STL-seq TSS with a window of 0.5 kb upstream and 1 kb
downstream. (B) The log2 ratio of H3K4me1 to H3K4me3 ChIP-seq reads in the window
0.5 kb upstream and 1 kb downstream of the promoter TSS, grouped into even quartiles
by total turnover (n = 3270 promoters). Significance was assessed by a two-sided Wilcoxon
rank sum test. (C) Metaplot (left) and read count distribution (right) of H3K36me3 ChIP-
seq data around promoters with a window of 0.5 kb upstream and 1 kb downstream of the
TSS, grouped into even quartiles by total turnover. (D) Metaplot (left) and read count
distribution (right) of H3K4me3 ChIP-seq data around promoters with a window of 0.5 kb
upstream and 1 kb downstream of the TSS, grouped into even quartiles by the log2 ratio
of the release rate to the termination rate. (E) Metaplot (left) and read count distribution
(right) of H3K4me1 ChIP-seq data around promoters with a window of 0.5 kb upstream
and 1 kb downstream of the TSS, grouped into even quartiles by termination. (F) Same
as C but grouped into even quartiles by pause release. (G) Metaplot (left) and read count
distribution (right) of ATAC-seq data around promoters with a window of 0.5 kb upstream
and 1 kb downstream of the TSS grouped into even quartiles by termination. (H and
I) The distribution of the release rate (H) or termination rate constants (I) at promoters
grouped by motif content. The pause button (PB), downstream promoter element (DPE),
and motif ten element (MTE) were grouped together such that promoters may have one or
a combination of these in the downstream region.

4 (H3K4me1/me3) indicate high promoter activity [180]. We find that slower turnover of

scRNA is related to a larger ratio of mono-to-trimethylation at H3K4 (Figures 4.7A & 4.7B).

Additionally, trimethylated histone 3 lysine 36 (H3K36me3), whose deposition is signaled

by active elongation (reviewed in [9]), is enriched immediately downstream of fast turnover

sites (Figures 4.7A & 4.7C).

We found distinct H3K4 methylation profiles to be associated with promoters depending

on their relative rates of pause release and termination (Figures 4.8A & 4.7A). H3K4me3

promotes PIC assembly and transcription initiation [22]. We observe that relative rates of

pause release and termination are not significantly related to H3K4me3 levels (Figure 4.7D),

supporting the notion that H3K4me3 only behaves as a signal to activate promoters. On the

other hand, H3K4me1 is depleted at promoters that are the most likely to release Pol II into

elongation (Figure 4.8B). By examining the relationship of pause release and termination

with H3K4me1 separately, we find that the modification is more strongly related to pause

release (Figures 4.8C & 4.7E). This negative correlation suggests H3K4me1 could play a
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role in suppressing the release of Pol II into elongation, an idea consistent with the fact that

H3K4me1 is enriched at enhancers where productive elongation is rare (reviewed in [181]).

In further agreement, scRNA initiated from promoters with low H3K4me1/me3 ratios are

more likely to be released into elongation and behave the least similarly to scRNA initiated

from enhancer TSSs (eTSSs, Figure 4.8D).
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We examined the relationship between scRNA dynamics and H3K36me3 levels and found

the mark to exhibit a significant positive relationship with premature termination (Figure

4.8E). We also find that H3K36me3 is depleted from promoter-proximal regions at the

slowest releasing sites but has similar levels at the remaining promoters (Figure 4.7F). As

H3K36me3 suppresses cryptic initiation from weak downstream promoters [182], our data

raise the intriguing possibility that this suppression is supported by promoting premature
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Figure 4.8: Weak promoter architecture leads to rapid termination of paused Pol II (A)
Heat maps of ATAC-seq [45] and H3K27ac, H3K4me1, H3K4me3 [5], and H3K36me3 [179]
ChIP-seq around promoters grouped into even quartiles and order by pause release and
termination at the respective TSS. Heatmaps are centered on the STL-seq TSS with a
window of 0.5 kb upstream and 1 kb downstream. (B) Metaplot of H3K4me1 ChIP-seq
data around promoters with a window of 0.5 kb upstream and 1 kb downstream of the TSS
grouped into even quartiles by the log2 ratio of the pause-release rate to the termination
rate (n = 3270 promoters). (C) Metaplot of H3K4me1 ChIP-seq data around promoters
with a window of 0.5 kb upstream and 1 kb downstream of the TSS grouped into even
quartiles by pause release (n = 3270 promoters). (D) Distribution of the log2 ratio of the
release rate to the termination rate at promoters grouped by whether TSSs are of high
confidence promoters or enhancers (eTSSs, n = 21). Promoters are further grouped into
even quartiles by H3K4me1 enrichment determined by ChIP-seq. Significance was assessed
by a two-sided Wilcoxon rank sum test. (E) Metaplot of H3K36me3 ChIP-seq data around
promoters with a window of 0.5 kb upstream and 1 kb downstream of the TSS grouped
into even quartiles by termination (n = 3270 promoters). (F) Distribution of the log2 ratio
of the release rate to the termination rate at promoters grouped by motif content. The
pause button (PB), downstream promoter element (DPE), and motif ten element (MTE)
were grouped together such that promoters may have one or a combination of these in the
downstream region. Significance was assessed by a two-sided Wilcoxon rank sum test. (G)
Example STL-seq tracks where the single nucleotide location of the TSS (blue, 5´ end of
read) and pausing position (grey and red, 3´ end of read) are depicted separately. The 3´
ends are colored by the read’s mutational content while the 5´ ends are not. The maximum
percent of reads with the same 3´ end is shown above the read position. (H) Distribution of
the proportion of reads with 3´ ends located at the most frequent pause position. At each
promoter, the most common position of the 3´ read end was identified, and the proportion
of reads at this position was determined. Promoters are separated by promoter motif as
in F. (I) Distribution of the proportion of reads with 3´ ends located at the most frequent
pause position as in H but promoters are grouped into even quartiles by pause release (left)
or termination (right). Significance was assessed by a two-sided Wilcoxon rank sum test.

termination. Fast termination is also found at less accessible promoters as measured by

ATAC-seq, bolstering the association between premature termination and weak promoters

(Figure 4.7G).

In summary, H3K4me1 and H3K36me3 are enriched at pause sites that are less likely

to release Pol II into elongation. It is possible that histone tail modifications locally repress

gene expression by influencing dynamics at promoter-proximal pause sites. Our data sup-

port a model in which H3K4me1 blocks release into elongation, while H3K36me3 recruits

factors that promote premature termination.
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4.3.6 Promoter and pause-site architecture are associated with stability

of the paused complex

Together with previous work [37,59,177], our findings demonstrate the importance of TFIID

binding elements in pausing and led us to examine how promoter motif content relates to

both pause-release and termination kinetics. We find no evidence that downstream TFIID

binding motifs substantially alter the proportion of Pol II which is terminated or released

into elongation (Figure 4.8F). As would therefore be expected from our k̂obs estimates,

downstream TFIID motifs are associated with slow rates for both k̂ rel and k̂ term (Figures

4.7H & 4.7I). The TCT motif marks TSS with a high proportion of Pol II that is released

into elongation. The TCT motif is primarily found at promoters of ribosomal proteins which

are typically among the most highly expressed genes [183]. Therefore, it is unsurprising to

observe elevated pause-release rates at TSSs with the TCT motif (Figure 4.7H). Further

investigation of these TSSs will likely provide a deeper understanding of how cis-acting

DNA can promote release into elongation.

Strong downstream TFIID binding stabilizes the paused Pol II complex and coordinates

the focused pausing of Pol II molecules [58,59]. We reasoned that if the total scRNA turnover

and pause site dispersion is influenced by the organization of the PIC, relative rates of pause

release and termination could also be differentially affected. As a measure of focused versus

dispersed pausing, we determined the proportion of scRNA with the identical and most

common 3´ position at each TSS (Figure 4.8G). Consistent with previous findings [58],

focused pause sites are associated with downstream TFIID binding motifs (Figure 4.8H).

When comparing pause site dispersion with scRNA kinetics, the fastest terminating pause

sites are associated with less focused pausing profiles while dispersion had little bearing

on the pause-release rate (Figure 4.8I). These data demonstrate that cis-regulatory DNA

elements in the promoter-proximal region mark TSSs with distinct kinetic and physical

pausing profiles. In addition, premature termination is more likely to occur at TSSs that

do not reproducibly pause Pol II in the same position.
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4.3.7 Enhanced release into elongation is the major response to hormone

stimulus
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Figure 4.9: Hormonal stimulus by 20E preferably regulates release into elongation
(A) STL-seq tracks of the EcR gene TSS when treated with or without 20E and with
or without flavopiridol inhibition. (B) Total observed rate constants of high confidence
promoters plotted versus the log2 fold change when S2 cells are stimulated with 20E for
thirty minutes. Points are colored if the 80% credible interval is greater than log2(1.5) (dark
purple) or less than -log2(1.5) (light purple). The EcR TSS shown in A is highlighted in
green. (C) Distribution of the log2 ratio of the pause-release rate versus termination rate
at promoters grouped by the change in the total turnover as determined in B. Significance
was assessed by a two-sided Wilcoxon rank sum test. (D) The log2 fold change of promoters
plotted versus the difference of the magnitudes of the log2 fold change of the release and
termination constants upon 20E stimulus. Points are colored if the 80% credible interval of
L2FC k̂obs is entirely greater than log2(1.5) or less than -log2(1.5) and if the 80% credible
interval of the difference in magnitudes does not overlap zero. The EcR TSS shown in A is
highlighted in green. (E) TT-TL-seq tracks of EcR and skl +/- 20E stimulus as examples
of genes where 20E-induced changes in scRNA turnover are driven by faster or slower pause
release, respectively. (F) Metaplots of TT-TL-seq signal without (dashed) and with (solid)
20E stimulus separated by whether release from the TSS was faster (dark blue) or slower
(light blue) upon 20E stimulus as determined in D. Coverage is determined over 50 nt bins.

A major outstanding question which has not been broadly addressed is whether re-

lease into elongation, premature termination, or both are targets for the regulation of gene

expression. STL-seq presents an opportunity to quantify changes in pause release and ter-

mination in response to a regulatory stimulus. By treating cells with 20-hydroxyecdysone

73



(20E), a hormone known to both induce and repress expression of target genes [184, 185],

we can determine the preferred mechanism of regulation at the pause site. If altered ini-

tiation rates were solely responsible for the transcriptional response, we would expect to

see correlation between changes in STL-seq reads and TT-TL-seq reads, but this was not

the case (Figure 4.10A). To dissect the relative changes in pause-release and termination

rates, we pretreated 20E-stimulated cells with FP and performed STL-seq. In uninhibited

samples, 20E stimulus markedly increased the proportion of mutation-containing scRNA

from TSSs of genes well-characterized as 20E targets (e.g., Figure 4.9A). To quantify these

changes genome-wide, we used the same model as described above to estimate termination

and pause-release rates. At high confidence TSSs, we find that 20E stimulus generally

increases the total observed turnover of scRNA at many TSSs (Figure 4.9B).

Because 20E-stimulated TSSs tend to release Pol II into elongation slowly under normal

conditions, we expected upregulation of k̂ rel to be the more likely response (Figure 4.9C).

Indeed, the inflation of pause-release rates is more dramatic than the diminution of ter-

mination both in effect size and in the number of TSSs (Figures 4.10B & 4.10C). At each

TSS, we examined the difference in magnitude of the log2 fold change of k̂ rel and k̂ term in

the context of the change in k̂obs (Figures4.95D & 4.105D). The four possible regulatory

options of induction or suppression of either pause release or termination are separated into

the four quadrants. Independent of whether a TSS is repressed or induced, our data reveal

that most are regulated primarily at the level of release into elongation. Even at the fastest

terminating TSSs where suppression of premature termination has the most potential to

lead to increased expression, we see that pause release is preferably regulated (Figures 4.10E

& 4.10F). To confirm these findings, we performed TT-TL-seq with the same RNA as col-

lected for STL-seq (Figure 4.9E). We binned genes by the quadrant in which their TSSs

are found in Figure 4.9D. In support of the predicted transcriptional changes detected by

STL-seq, we observed that 20E treatment leads to increased transcriptional activity over

genes with induced pause release, as well as loss of transcription over genes with repressed

pause release (Figure 4.9F).

In summary, we observed that hormone treatment broadly elevates scRNA turnover at

many TSSs. STL-seq demonstrates that 20E-induced changes in the total turnover rate
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constants in most cases are driven by regulation of release into elongation while premature

termination contributes only minor regulatory effects.
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Figure 4.10: Termination is rarely regulated in response to hormone stimulus (A)
The log2 fold change in normalized STL-seq reads at all TSS upon 20E treatment versus
the log2 fold change in normalized TT-TL-seq read counts of the associated gene upon
hormonal treatment. The density of plotted points is indicated by color (blue, high; yellow,
low). The Pearson correlation coefficient is shown. (B and C) The total observed turnover
rate constants plotted versus the log2 fold change in termination (B) or release (C) upon
20E stimulus. Points are colored if the 80% credible interval of the log2 fold change does not
overlap zero and the median value is greater than 1 (dark red/blue) or less than -1 (light
red/blue). (D) The difference between the magnitudes of the log2 fold change of release and
termination grouped by the change in the total turnover as determined in Figure 4.9B. (E)
The difference between the magnitudes of the log2 fold change of release and termination
grouped by the change into even quartiles by termination. (F) The difference between the
magnitudes of the log2 fold change of release and termination grouped by the change into
even quartiles by the log2 ratio of the release rate to the termination rate.

4.3.8 Hyperosmotic stress induces premature termination

While hormone treatment primarily regulates k̂ rel, we wondered if other stimuli might influ-

ence k̂ term. Hyperosmotic stress alters the transcriptional landscape of human cells by in-

ducing readthrough transcription as well as widespread transcriptional repression [146,165].

Previous Pol II ChIP-seq experiments under the same conditions revealed loss of Pol II over

75



2782 18141279

D

GF

E

-1 kb TSS TES 1 kb

−2

−1

0

1

L2
FC

 T
T-

TL
-s

eq
 re

ad
s

(K
C

l/c
on

tro
l)

135719592

−2 0 2 4

48 

318

n =
148

210

920

1299

TATA TCT Initiator

All genes

Relative turnover
L2FC kobs (KCl/control)

p = 9.534e-10

Initiator +
DPE or MTE

DPE or
MTE

n = 130

-1 kb TSS TES 1 kb

−2

−1

0

1

L2
FC

 T
T-

TL
-s

eq
 re

ad
s

(K
C

l/c
on

tro
l)

Slower Unchanged Faster

Change in kobs
upon KCl treatment

n =
1001 160 

−4

−2

0

2

4

Down Unchanged Up

Change in TT−TL−seq reads
upon KCl treatment

L2
FC

 S
TL

−s
eq

 re
ad

s
(K

C
l/c

on
tro

l)

A
10750

−5

−2.5

0

2.5

5

0 0.2 0.4 0.6
Turnover (kobs, min−1)

R
el

at
iv

e 
tu

rn
ov

er
L2

FC
 k

ob
s (

KC
l/c

on
tro

l)

C

TBP

TAFs

Cellular signaling Transcription quality control

B

H

541 420n = 28

TATA

TCT

Initiator

All
 TSS

Initiator +
DPE or 

MTE

DPE or
MTE

n = 37 652 484
p = 

4.396e-6 n.s.

Faster
Unchanged

Slower

Change in kobs
upon KCl treatment

−5

−4

−3

−2

−1

0

Pr
op

or
tio

n 
of

 re
ad

s 
at

 to
p 

3´
 n

t (
lo

g2
)

Elongation competent Pol II

Elongation incompetent Pol II

Upregulated gene

Downregulated gene

0

100

200

300

400

500

0 10 20 30 40 50

Half−life (min)

# 
of

 T
SS

s

n =  6032

0 5 10 15 20 25

Figure 4.11: Caption on next page.

the body of repressed genes. This observation suggests that salt stress-induced transcrip-

tional repression is at least partially accomplished at or prior to promoter-proximal pausing.

Therefore, STL-seq is uniquely suited to provide insight into the mechanism accounting for

this transcriptional repression.

We treated human 293T cells with 80 mM KCl for one hour and performed STL-seq to

assess changes in initiation, termination, and pause release. We found that STL-seq signals

were highly reproducible for both total and mutation-containing reads (Figures 4.12A &

4.12B). If reduced initiation were solely responsible for transcriptional downregulation, we

would expect to see substantial loss of STL-seq reads at the promoters of downregulated
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Figure 4.11: Hyperosmotic stress induces premature termination at TATA-less
promoters (A) Change STL-seq reads at promoter TSSs grouped by the change in TT-
TL-seq signal over the gene body. (B) Histogram of scRNA half-life estimates made with
STL-seq from human 293T cells. The inset boxplot depicts the distribution of all TSSs.
(C) Total observed rate constants of TSSs plotted versus the log2 fold change when cells are
exposed to hyperosmotic stress for one hour. Points are colored if the 80% credible interval
is entirely greater than log2(1.5) (dark purple) or less than -log2(1.5) (light purple). (D)
Metaplots of the log2 fold change of TT-TL-seq signal upon hyperosmotic stress grouped by
the change in turnover of scRNA at the gene’s TSS as determined by STL-seq. Coverage was
determined over 50 nt bins before calculating the fold change of each bin. (E) Distribution
of the proportion of reads at promoters with 3´ ends located at the most frequent pause
position grouped by the change in scRNA turnover and colored as in D. At each TSS the
most common position of the 3´ read end was identified, and the proportion of reads at this
position was determined. (F) Metaplots of the log2 fold change of TT-TL-seq signal upon
hyperosmotic stress grouped by the motif content of the associated STL-seq TSS. Coverage
was determined over 50 nt bins before calculating the fold change of each bin. (G) The
distribution of the log2 fold change of scRNA turnover rate constants at promoters upon
hyperosmotic stress. TSSs are grouped by motif content and colored as in F. Significance
was assessed by a two-sided Wilcoxon rank sum test. (H) Proposed model for the distinct
roles of release into elongation and premature termination at the promoter-proximal pause
site. To alter gene expression, cells signal for either an increase or decrease in release into
elongation (left). Premature termination does not contribute greatly to the response to
cellular signaling but acts to evict paused Pol II whose elongation factors do not assemble
properly (right). Coordinated binding of TFIID subunits, TBP and TAFs, is important
for maturation of an elongation-competent Pol II and significantly stabilizes the mature
complex.

genes, but we did not (Figure 4.11A). Thus, hyperosmotic stress must induce transcriptional

repression via a reduction in the pause-release rate or an increase in the termination rate.

We applied the same model as described above to estimate k̂obs of scRNA genome wide.

Notably, the distribution of steady-state scRNA half-life estimates in human 293T cells is

very similar to that of fly S2 cells (Figure 4.11B). When comparing stressed and unstressed

cells, we found scRNA transcripts from many high confidence TSSs in untreated conditions

to be much less stable upon hyperosmotic stress (Figure 4.11C). This observation and the

loss of gene body transcription suggest that induction of Pol II premature termination at

the pause site is a major response to hyperosmotic stress. We then compared changes

in turnover to previously published TT-TL-seq data [165]. Supporting our model that

hyperosmotic stress induces premature termination, active transcription is more repressed

over genes with destabilized scRNA (Figures 4.11D & 4.12C). Promoters with decreased

turnover produce more focused pause sites than those with unchanged or induced turnover
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Figure 4.12: Increased termination at the pause site causes widespread tran-
scriptional repression upon hyperosmotic stress in human cells (A) Pairs plots
of total TSS read counts from STL-seq unlabeled and labeled samples under normal and
hyperosmotic stress conditions. Read counts are plotted on the log10 scale and the Pearson
correlation coefficient of each comparison is shown. (B) Pairs plots of mutation-containing
TSS read counts from STL-seq unlabeled and labeled samples under normal and hyper-
osmotic stress conditions. Read counts are plotted on the log10 scale and the Pearson
correlation coefficient of each comparison is shown. (C) Distribution of the log2 fold change
of TT-TL-seq signal upon hyperosmotic stress grouped by the change in turnover of the
TSS called to each gene. Significance was assessed by a two-sided Wilcoxon rank sum test.
(D) Distribution of the log2 fold change of the proportion of reads with 3´ ends located
at the most frequent pause position grouped by the change in turnover of the scRNA. At
each promoter, the most common position of the 3´ read end is identified, and all reads are
considered by their 3´ end relative to the most common. The change in the proportion of
reads at the most common position upon hyperosmotic stress is plotted. Significance was
assessed by a two-sided Wilcoxon rank sum test. (E) Distribution of the log2 fold change of
TT-TL-seq signal upon hyperosmotic stress grouped by the motif content of the associated
STL-seq TSS. Significance was assessed by a two-sided Wilcoxon rank sum test.
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(Figure 4.11E). Upon hyperosmotic stress, the induced TSSs become even less focused

(Figure 4.12D). Together, these results suggest that the promoters of genes downregulated

upon KCl treatment are prone to stress-induced termination at the pause site.

We hypothesized that TSSs prone to stress-induced termination may lack cis-acting

DNA elements that recruit components of the PIC or other pausing factors. We again

binned promoters by their motif content (using the consensus TATA box described by [186],

see methods). Strikingly, genes with promoters containing a TATA box were protected

from transcriptional repression (Figures 4.11F & 4.12E). The TSSs of these genes were also

protected from stress-induced termination at the pause site (Figure 4.11G). However, none

of the downstream TFIID motifs generally protected genes from transcriptional repression

or premature termination despite their ability to stabilize the paused Pol II complex. Taken

together, these results indicate that termination at the pause site is an important regulatory

process that is associated with cis-acting DNA elements at the promoter.

4.4 Discussion

STL-seq provides genome-wide insight into the dynamics of promoter-proximal pausing by

combining the time resolution of metabolic labeling [97] with the TSS specificity of Start-

seq [57]. Our results demonstrate that STL-seq reliably captures kinetic information of

scRNA, allowing inference of the kinetic behavior of the Pol II paused complex.

We found total observed turnover are similar between human and fly (Figures 2D and

6B), suggesting that pausing dynamics and regulation may be conserved across metazoans.

To better understand the complex behavior of Pol II at the pause site, we dissected total

observed turnover into rates of release into elongation and premature termination. This

revealed that while only a small fraction of paused Pol II enters productive elongation,

pause release is highly dynamic and responds to 20E stimulus in Drosophila. On the other

hand, premature termination does not determine gene expression and is insensitive to the

same hormonal stimulus. These findings provide detailed kinetic support for the concept

that active regulation at the pause site occurs by altering the rate of release into elongation

(Figure 6H).
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We also sought to identify a function for premature termination. Similar to Beckedorff

et al. (2020), we favor a model in which termination at the promoter-proximal pause site

occurs as a quality check mechanism to ensure that members of a mature elongation complex

(EC) correctly and completely assemble on Pol II (Figure 6H). In support of this model,

we found relatively fast termination rates at TSSs with features that we view as hallmarks

of inefficient EC assembly. These features include high H3K36me3, the lack of downstream

TFIID binding motifs, and less focused pause sites. H3K36me3 functions to repress cryptic

initiation and leads to the erasure of other activating histone tail modifications [20,22,182].

The absence of downstream TFIID binding motifs leads to less focused pausing, which we

suspect is a symptom of poorly assembled ECs.

Previous work [58] demonstrated that weaker contacts between the PIC and the paused

complex lead to less focused pause sites. Our data supports an extension of this model

in which weaker interactions between the PIC and the paused complex lead to faster pre-

mature termination. We hypothesized that stressing cells in a manner that disrupts the

transcriptional machinery may lead to increased premature termination at the pause site.

Hyperosmotic stress alters the Pol II interactome and leads to transcriptional silencing

genome-wide [165]. We showed that induction of premature termination is at least partly

responsible for the response to hyperosmotic stress that results in genome-wide transcrip-

tional repression. Therefore, we speculate that hyperosmotic stress disrupts elongation

factor assembly and results in a larger proportion of incompetent ECs reaching the pause

site. These incompetent ECs are then signaled for premature termination before they can

enter productive elongation. However, leaky pause release of ECs which lack critical pro-

cessing machinery may lead to production of downstream-of-gene containing transcripts

(DoGs), which are a product of readthrough transcription [146], and/or misspliced tran-

scripts [187]. In this manner, premature termination at the pause site may provide a form

of kinetic proofreading.

Recently, the Integrator complex has been the focus of studies examining premature

termination at the pause site [43, 45, 46, 60], and one study proposes that Integrator acts

in early elongation [56]. Interestingly, hyperosmotic stress causes dissociation of Integrator

from Pol II [165], suggesting that Integrator is not responsible for the induction of pre-
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mature termination observed under hyperosmotic stress. More generally, future STL-seq

experiments may help clarify the roles of Integrator at the promoter-proximal pause site.

Here, TFIID has emerged as a critical factor that acts beyond initiation to establish and

maintain proper kinetics of promoter-proximal pausing. Strikingly, we found that the pres-

ence of TATA box prevents stress-induced premature termination, highlighting the vital role

of TFIID through initiation and pause release. Our findings illustrate the unique capabili-

ties of STL-seq to reveal the dynamics and regulation of promoter-proximal pausing as well

as to identify essential pausing factors. This method will enable future studies investigating

the mechanism of promoter-proximal pausing which were not previously possible.

4.5 Limitations of the study

STL-seq is a powerful tool to study pausing kinetics and provide mechanistic insight into

promoter-proximal pausing at most TSSs. Accurate estimation of kinetic parameters using

STL-seq is limited by the read depth and mutational content of reads mapping to each TSS.

In practice, we have found that rate estimates at a TSS are less reliable when the mutational

content at the TSS is low. In this case, there may not be enough information to use our

Bayesian models to confidently determine rate constants, leading to large credible intervals

for our parameter estimates. Low numbers of observed mutations could result from low read

coverage, few uridines in a scRNA, or from a low s4U incorporation rate. We developed

criteria for identification and removal of unreliable TSSs from our analyses (see Methods),

allowing us to restrict analyses to the thousands of TSSs where kinetic parameters can be

confidently estimated.

To dissect the steady-state observed turnover of scRNA at the pause site, we took ad-

vantage of the rapid inhibition of P-TEFb activity by flavopiridol (FP) to block pause

release. We provide evidence that FP does not perturb premature-termination rate con-

stants, but the accuracy of our k̂ rel and k̂ term estimates would be reduced at some TSSs if

P-TEFb inhibition directly or indirectly influences premature-termination rates constants.

Nonetheless, our hyperosmotic stress experiments demonstrate that additional information

about transcription over the gene body (e.g., from TT-TimeLapse-seq data) is sufficient to
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identify changes in k̂ rel and k̂ term without the need for P-TEFb inhibition.
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Chapter 5

Probing the functional

consequences of an SVA insertion

in the TAF1 gene in XDP

5.1 Author contributions

Cris Bragg, Shivangi Shah, Christine Vaine, ShermanWeissman, and Anna Szekely provided

patient-derived cell lines and performed the s4U treatments and cell lysis for all TimeLapse-

seq and TT-TL-seq experiments using these cell lines. Michelle Moon helped perform

TimeLapse-seq for some of the experiments with patient-derived cell lines. Giselle Fisher

performed the in vitro pull-down experiments. I performed all other experiments and data

analyses described in this section. Matthew Simon, Jeremy Schofield, and I contributed the

the conception of the work and experimental design.

5.2 Summary

X-Linked Dystonia Parkinsonism is a rare, but severe, neurodegenerative genetic disorder

whose disease mechanism is not known. Here we provide evidence that the causally-linked

SINE-VNTR-Alu (SVA) retrotransposon insertion found in intron 32 of TAF1 causes a

premature transcription termination event of some actively transcribing RNA polymerase
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II (RNAPII) complexes. The resulting transcript (xTAF1 ) would be translated into a

truncated isoform which is predicted to differ from canonical TAF1 (cTAF1) in the binding

pocket of the second bromodomain. In cells expressing xTAF1, we find that this truncation

gives rise to changes in gene expression which are related to the binding pattern of TAF1 and

the local histone modification profile at the promoter. Expressing xTAF1 recapitulates the

same pausing phenotype observed in XDP patient-derived cells and gives credence for our

model that xTAF1 is pathogenic. Furthermore, this work provides previously unappreciated

biological relevance for the activity of the TAF1 bromodomain 2.

5.3 Introduction

X-Linked Dystonia Parkinsonism (XDP) is a rare neurodegenerative disorder endemic to

the island of Panay in the Philippines. XDP was first described in 1976 as a torsion dystonia

exclusively displaying in males with a relatively late average age at onset [188]. Since then,

XDP has been diagnosed in more than 500 patients and was recently causally linked to a

SINE-VNTR-Alu (SVA) retrotransposon insertion in intron 32 of the gene encoding TATA-

box binding protein (TBP) associated factor 1 (TAF1) on the X chromosome [124–126,189].

The SVA is inserted antisense relative to the direction of transcription of TAF1, and is com-

posed of five major sequence elements. Listed by their order in the direction of transcription

of TAF1, these elements are a poly T sequence, a short interspersed nuclear element (SINE),

a variable number tandem repeats (VNTR), an Alu element, and a (CCCTCT)n repeat se-

quence. The causal link derives from a hexanucleotide repeat sequence where the number

of repeats is negatively associated with the age at onset of XDP symptoms [124,189]. This

is the only direct connection between the XDP phenotype and the SVA insertion, and there

is no prevailing model for the disease mechanism. Unfortunately, challenges associated

with understanding XDP pathogenesis compound in the inability to develop a therapy to

treat XDP patients. Therefore, understanding the underlying molecular phenotypes are an

important step in improving patient quality of life.

The revelation of a causal link between the SVA and XDP lead to a concerted effort

to characterize transcripts originating from the TAF1 locus in patient-derived cells [125].
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TAF1 is about one megabase long with 38 exons in the canonical isoform (cTAF1 ) and

an additional six-base-pair microexon, which is spliced in as exon 34´in the neuron-specific

TAF1 isoform (nTAF1). nTAF1 was previously suggested to be repressed in XDP and

possibly important to XDP pathogenesis, but more recent work refutes these claims [125,

190–192]. TAF1 expression is moderately downregulated in patient samples and patient-

derived cells, and interestingly seems to be stronger for exons downstream of the SVA than

exons upstream of the SVA [125,189,191,193]. In addition, long-read sequencing identified

a rare XDP-specific and SVA-dependent isoform which lacks exons 33-38 and retains a

portion of intron 32 upstream of the SVA as the novel last exon (TAF1-32i) [125,194]. The

last notable XDP-specific change in the TAF1 transcriptome is a second SVA-dependent

intron retention event of nearly half of intron 32. PolyA-selected short-read RNA-seq from

patient-derived cells showed that the first half of intron 32 upstream of the SVA is retained

across multiple stages of development [125].

Several other mutations in TAF1 have already been linked to neurodevelopmental and

intellectual disability disorders, but unlike XDP, these disorders are associated with changes

in the TAF1 coding sequence (CDS) and typically display early in life or at birth [121,128,

195–198]. This suggests that TAF1 function is critical for proper neuronal development;

however, relatively little is known about TAF1 outside of its context as a TFIID subunit and

there is no defined, direct role for TAF1 or nTAF1 specific in neuronal health. TAF1 is the

largest subunit of the general transcription factor (GTF) TFIID and is an essential factor

responsible for promoter recognition during assembly of the preinitiation complex (PIC)

[68, 199–203]. TAF1 contains tandem bromodomains which are known to bind acetylated

histone H4 tails, is suggested to form a heterodimer with TAF7 that recognizes repressive

histone tail modifications, and has been shown to have histone acetyl transferase (HAT) and

kinase activity [19, 204–206]. Evidence for these activities is primarily from in vitro data

and the biological relevance is yet to be thoroughly characterized. Since the SVA insertion

does not directly change the CDS of TAF1, it is possible that XDP is a TAF1 insufficiency

disorder associated with one or more of the functions described above. Another possibility

is that alternative TAF1 transcripts caused by the SVA insertion encode a truncated TAF1

protein isoform with a deleterious gain of function.

85



Here we provide evidence for an SVA-dependent premature transcription termination

event near the site of insertion which gives rise to a stable XDP-specific TAF1 isoform

(xTAF1 ). xTAF1 is predicted to contain exons 1-32 and the entire first half of intron 32

up to the site of the SVA insertion. The xTAF1 transcript has potential to be translated

into an xTAF1 protein which would replace the 288 C-terminal residues of cTAF1 with 17

intronically-encoded residues. The xTAF1 protein product completely lacks the predicted

C-terminal kinase domain and replaces the last helix of the second bromodomain (BD2) with

the intronically encoded residues. AlphaFold predicts that the binding pocket of xTAF1

BD2 is intact but enlarged relative to cTAF1 BD2.

We profiled the transcriptional landscape in XDP patient-derived cells and the TAF1-

expressing cells with our suite of nucleotide-recoding RNA-seq methods (TimeLapse-seq

[97], TT-TL-seq [97, 132], and STL-seq [50]). We found that RNA synthesis is perturbed

in XDP and xTAF1-expressing cells, and promoter-proximal paused RNA polymerase II

(RNAPII) is similarly redistributed in both cell models relative to controls. To assess the

consequences of an altered BD2 pocket on TAF1 promoter-binding activity, we performed

ChIP-seq in cTAF1- and xTAF1-expressing human cells and found that xTAF1 binds pro-

moters in a manner similar to but distinct from cTAF1. Our data suggest that BD2 activity

is inhibitory to TAF1 binding at some promoters. The truncation mutation causes xTAF1

to associate with promoters more strongly, and this could be the gain of function responsi-

ble for XDP. This work proposes a model for XDP pathogenisis, and in doing so, provides

biological relevance for TAF1 BD2.

5.4 Results

5.4.1 Early steps in RNA synthesis are perturbed in XDP cells

Previously, patient derived cell lines were developed as a model system to study X-Linked

Dystonia Parkinsonism [125]. This work revealed that XDP patient-derived cells have hun-

dreds of differentially expressed genes when compared to control and the sets of differentially

expressed genes vary widely across development stages. This suggests that XDP may have

very cell-type specific affects that cannot be dissected with traditional RNA-seq experi-
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Figure 5.1: RNA synthesis is perturbed in XDP patient-derived cells (A & B) MA
plots for total RNA TL-seq data comparing XDP patient-derived cells versus controls at
the iPSC (A) or NPC (B) stage. Transcripts are highlighted if the DESeq2 padj < 0.05. (C)
Heatmaps of the log2 fold change in ksyn, total RNA, or kdeg of significantly differentially
expressed transcripts in total RNA in iPSCs (left) or NPCs (right). Genes are highlighted if
the DESeq2 padj < 0.05. (D) MA plots for TT-TL-seq data comparing XDP patient-derived
cells versus controls at the NPC stage. (E) Scatter plot comparing the log2 fold change of
read counts in TL-seq and TT-TL-seq at the NPC stage. The color represents the density
of plotted points where yellow and purple correspond to high and low density, respectively.
The y=x line is plotted and the Pearson correlation coefficient is shown. (F) The log2 fold
change of the proportion of total reads in STL-seq data comparing XDP patient-derived
cells versus controls at the NPC stage. scRNA reads were grouped by their absolute length.

ments. Furthermore, it is unclear if the affects on expression are due to altered stability

of the mature transcripts or perturbations to transcription. To probe mRNA degradation

and synthesis, we performed TimeLapse-seq in patient-derived induced pluripotent stem

cells (iPSCs) and neural progenitor cells (NPCs). Consistent with the previous report, by

total read counts, we observed hundreds of significantly upregulated and downregulated

transcripts in both data sets when comparing XDP to control cell lines, and there was no

strong correlation between cell types (Figures 5.1A,B and 5.2A). We took advantage of the
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Figure 5.2: RNA synthesis and not RNA degradation drives changes in gene
expression in XDP cells (A-C) Scatter plots comparing the log2 fold change of TL-
seq read counts (A), kdeg (B), or ksyn (C) between patient-derived cells at the iPSC and
NPC stages. The color represents the density of plotted points where yellow and purple
correspond to high and low density, respectively. The y=x line is plotted and the Pearson
correlation coefficient is shown. (D & E) Scatter plots comparing the log2 fold change of
TT-TL-seq read counts against log2 fold change in TL-seq kdeg (D) or ksyn (E). The color
represents the density of plotted points where yellow and purple correspond to high and
low density, respectively. The y=x line is plotted and the Pearson correlation coefficient is
shown. (F & G) Metaplots of STL-seq 5´ and 3´ read ends. The single-nucleotide location
of the TSS (blue, 5´ end of read) and pausing position (grey and red, 3´ end of read) are
depicted separately. The 3´ ends are colored by the read’s mutational content. Read ends
at each distance from the TSS for control (F) and XDP (G) NPCs are shown as a proportion
of the total number of reads. The proportion of 5´ ends corresponds to the left y-axis scale
and the proportion of 3´ ends corresponds to the right y-axis scale.

temporal information captured by TimeLapse-seq to determine if changes in total RNA are

driven by RNA synthesis or degradation. Using the hybrid model implementation of bakR

(Vock et al., in prep). We examined the changes in RNA synthesis (ksyn) and degrada-

tion (kdeg) rate constants and found that expression changes in XDP patient-derived cells
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are primarily due to changes in ksyn across developmental stages (Figure 5.1C). Similar to

changes in total RNA, the effects on kdeg or ksyn do not strongly correlate between cell

types. This suggests that XDP is related to some perturbation during RNA synthesis that

is highly cell-type specific.

To further dissect the effects on RNA synthesis, we performed Transient-Transcriptome-

TimeLapse-seq (TT-TL-seq) to probe the activity of RNAPII across the genome in patient-

derived NPCs [97,132]. We found many genes to be differentially transcribed, in agreement

with TimeLapse-seq which revealed that RNA synthesis is perturbed in SVA-containing

cell lines (Figure 5.1D). In addition, changes in nascent RNA correlate well with changes

in total RNA and ksyn but not kdeg, suggesting that a perturbation in an early step of

transcription is the major cause for differential expression at the total RNA level (Figures

5.1E and 5.2D,E).

Finally, we performed Start-TimeLapse-seq (STL-seq) on patient cell lines at the NPC

stage to directly observe the behavior of RNAPII during initiation and promoter-proximal

pausing [50]. While the TimeLapse T-to-C mutation rate is not high enough to estimate

the kinetics of promoter-proximal pausing, we used the data as a single-molecule approach

to determine the positions of initiation and pausing. Each read in STL-seq data captures

the single-nucleotide position of the site of initiation and pausing (Figure 5.2F,G). When we

compared the proportion of read lengths in STL-seq data from SVA-containing patient cell

lines to that of controls we found that SVA cell lines lose reads shorter than 30 bp and gain

reads of lengths between 30 and 60 bp (Figure 5.1F). This observation could be explained in

three ways; RNAPII transcribes farther on average before pausing, RNAPII paused 20-30

bp downstream of the TSS is destabilized, or RNAPII paused beyond 30 bp downstream of

the TSS is stabilized in XDP patient cells relative to control cells. In any case, the insight

provided by our RNA metabolic labeling approaches and nucleotide-recoding chemistry

point towards an XDP-specific perturbation of early steps in transcription, and in particular

promoter-proximal pausing genome wide may be directly affected.
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5.4.2 The SVA insertion gives rise to a stable, intron-retained XDP-

specific TAF1 transcript

TAF1 is known to play an important role in promoter recognition and DNA binding as

a TFIID subunit, and DNA motifs known to be bound by TAF1 have been shown to

be related to the duration of RNAPII promoter-proximal pausing [50, 68, 178, 199–203].

Several mutations in TAF1 have been linked to intellectual disability and developmental

delays [121, 128, 195–197]. While this body of work establishes TAF1 as an important

factor in human neurodevelopment, we lack an understanding for the role of TAF1 in the

pathogenisis of these disorders. XDP is unique in that the causal mutation of the SVA

insertion does not directly change the coding sequence, but has been shown to give rise to

at least two novel TAF1 transcripts through partial retention of intron 32 or inclusion of a

novel exon in intron 32 (TAF1-32i) [125]. We thought to further characterize the affect of

the SVA insertion on the TAF1 locus with a targeted analysis of our TimeLapse-seq and

TT-TL-seq data.

We began by examining TAF1 in our TimeLapse-seq data from XDP and control

patient-derived cells at the iPSC and NPC stages, as well as XDP patient-derived NPCs

from which the SVA has been deleted with CRISPR/cas9 excision (Figure 5.3A,B). As

part of our differential expression and kinetic analyses, we defined three additional TAF1

features: the region of TAF1 intron 32 upstream of the SVA insertion, exons upstream of

intron 32 (exons 1-32), and exons downstream of intron 32 (exons 33-38). Consistent with

previous results, TAF1 is modestly downregulated in XDP cells relative to controls, and

the intron retention event is stronger at earlier developmental stages (Figure 5.3C) [125].

We also found that exons 33-38 are more affected by the presence of the SVA insertion than

exons 1-32, and deletion of the SVA insertion rescues the downregulation of exons 33-38

in NPCs. Next, we took advantage of TimeLapse data to demonstrate that the effect on

the downstream exons is primarily attributable to a decrease in synthesis, suggesting that

cells containing the SVA insertion do not produce transcripts containing exons 33-38 as

frequently (Figure 5.3D). This effect is reversed in NPCs by deleting the SVA insertion,

showing that this effect on exon synthesis is SVA-dependent. Finally, we found intron 32
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Figure 5.3: The SVA insertion perturbs transcription of the TAF1 locus (A &
B) Representative of TL-seq tracks of TAF1 from patient-derived iPSCs (A) or NPCs (B).
(C-E) The log2 fold change in total RNA (C), degradation rates (kdeg, D), or synthesis rates
(ksyn, E) from TL-seq data between XDP and control patient cells in iPSCs and NPCs and
between ∆SVA and XDP cells in NPCs. Values are separately determined for the region of
TAF1 intron 32 upstream from the SVA insertion, full-length TAF1, and exons upstream
or downstream of intron 32. Significance was assessed by DESeq2 or bakR and the standard
error is shown. (F) The log2 fold change in TT-TL-seq coverage over the TAF1 gene from
the transcription start site (TSS) to the cleave and polyadenylation site (PAS). Comparisons
from NPCs between XDP and control cells and between ∆SVA and XDP cells are depicted.
(G) Model for the predicted xTAF1 transcript and protein that would arise from a cleavage
and polyadenylation event introduced near the site of the SVA insertion. The predicted
xTAF1 truncation replaces the last six exons with the first half of intron 32 and substitutes
288 C-terminal amino acids with 17 different residues.
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upstream of the SVA insertion is stabilized in XDP cells relative to controls, and deletion of

the SVA destablizes the same region (Figure 5.3E). These data are consistent with the pre-

viously observed intron retention event, and suggest that the intron-containing transcript is

stable and does not contain exons 33-38. In addition, published polyA-enriched data from

XDP neural stem cells (NSCs) suggests that intron 32 upstream of the SVA insertion is

included in a polyadenylated transcript [125].

Next, we compared coverage over TAF1 in our TT-TL-seq data from NPCs to determine

the effect of the SVA insertion on transcription over the gene. When comparing XDP

NPCs to controls, coverage begins to drop off near the site of the SVA insertion (Figure

5.3F), consistent with a premature transcription termination event. Comparing coverage

in TT-TL-seq data between ∆SVA and XDP NPCs, we find that the deletion rescues the

apparent loss of nascent RNA downstream of the SVA insertion (Figure 5.3F). Therefore, the

transcriptional effect is also SVA-dependent and is consistent with a premature transcription

termination event caused by the SVA insertion. When considering the previous polyA-

enriched RNA-seq data, we propose that the SVA insertion introduces or activates a cryptic

cleavage and polyadenylation site (PAS) in intron 32. This cryptic PAS does not cause

termination of all polymerases, but would give rise to a truncated XDP-specific TAF1

transcript (xTAF1 ). As xTAF1 would have the same 5´ untranslated region as cTAF1,

it would have a high translation potential. The predicted truncation of TAF1 substitutes

288 C-terminal amino acids of cTAF1 with 17 intronically-encoded residues before the first

in-frame stop codon (Figure 5.3G). This truncation deletes the second annotated TAF1

kinase domain and replaces a small piece of the second TAF1 bromodomain (BD2).

5.4.3 The XDP truncation of TAF1 affects the structure and function of

BD2

The cTAF1 tandem bromodomains are known to bind acetylated histone H4 tails and

are thought to aid in TAF1/TFIID recruitment to promoters [19]. Interestingly, a point

mutation which causes a serine-to-glycine missense mutation in the penultimate helix of

BD2 has already been implicated in a rare intellectual disability syndrome [197]. In this

case, the mutation does not directly change the residues which shape the binding pocket
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Figure 5.4: xTAF1 binds chromatin in a similar but distinct pattern as cTAF1 (A)
AlphaFold predictions of cTAF1 BD2 and xTAF1 BD2 overlayed to show major differences
between the structures. The most important residues related to changes in the binding
pocket surface are shown: a tyrosine in cTAF1 BD2 and a phenylalanine in xTAF1 BD2.
(B) Western blots using whole-cell lysates from cells expressing GFP-cTAF1 or GFP-xTAF1
using an antibody raised against GFP (top) or TAF1 (bottom). A total of two clones were
generated for each TAF1 isoform. (C) Western blot of H4 tail peptide pull-downs using
an antibody raised against GFP. Pull-downs were performed in the absence of H4 peptides
or with unmodified H4 peptide tails (H4) or H4 peptide tails acetylated at lyseines 5 and
12 (H4Kac).The TAF1 isoform expressed in cells from which lysates were prepared are
indicated. (D) GFP ChIP-seq metaplots from cells expressing GFP-cTAF1 (top) or GFP-
xTAF1 (bottom) centered on the annotated TSS of all expressed genes. (E) Metaplots of
the fold enrichment in GFP ChIP-seq data from GFP-cTAF1 and GFP-xTAF1 expressing
cells centered on the TSS of promoters identified to be bound by cTAF1 or xTAF1. (F &
G) Metaplots of H4Kac (F) and H3K4me3 (G) CUT&RUN fold enrichment data from cells
expressing GFP-cTAF1 or GFP-xTAF1 centered on the annotated TSS of all expressed
genes.

but was speculated to affect the flexibility and binding preferences of BD2. Because of

this precedence for the importance of BD2 in neurodevelopment, we decided to determine

how the XDP-specific truncation of TAF1 affects the domain and its function. We used

AlphaFold to predict the structure of cTAF1 BD2 (BD2) and xTAF1 BD2 (xBD2) [207].

The overall structure predictions of BD2 does not differ significantly between the two TAF1
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Figure 5.5: Expressing xTAF1 does not globally perturb the chromatin landscape
(A) AlphaFold predictions of the complete BD2 of cTAF1 and xTAF1 overlayed to show
major differences between the structures. (B) Overlayed AlphaFold predictions of cTAF1
BD2 and xTAF1 BD2 looking up into the binding pocket to illustrate the expansion of the
binding pocket and shift of the substituted helix. (C) Overlayed AlphaFold predictions of
cTAF1 BD2 and xTAF1 BD2 with an expanded view of the P>S mutation which causes
a conformational shift in the predicted xTAF1 structure. (D & E) The full Western blots
shown in 5.4B (D) and 5.4C (E). (F) GFP ChIP-seq heatmaps from cells expressing GFP-
cTAF1 or GFP-xTAF1 centered on the annotated TSS of all expressed genes and ordered by
decreasing average signal. (G & H) Heatmaps of H4Kac (G) and H3K4me3 (H) CUT&RUN
fold enrichment data from cells expressing GFP-cTAF1 or GFP-xTAF1 centered on the
annotated TSS of all expressed genes and ordered by decreasing average signal.

isoforms (RMSD=0.374, Figure 5.5A). Interestingly, the xBD2 differs from BD2 in sequence

and structure only in the last helix of the bromodomain. A proline between the last two
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helices of BD2 introduces a loop which delays the formation of a helix by three additional

positions, allowing the last helix to wrap around and form the final side of the bromodomain

binding pocket (Figure 5.5B,C). In xBD2, this proline is replaced with a glycine, which

AlphaFold predicts to allow the helix to form prematurely and considerably enlarge the

xBD2 binding pocket (Figure 5.4A). The tyrosine gatekeeping residue of BD2 is replaced

with an equally bulky phenylalanine, but this is not predicted to be sufficient to close off

this side of the xBD2 pocket.

We developed 293T cells stably expressing GFP fused to the N-terminus of cTAF1 or

xTAF1 to facilitate studies of the functional consequences of expressing xTAF1 in vivo (Fig-

ures 5.4B and 5.5D). We synthesized biotinylated H4 peptides which were either unmodified

or acetylated at lysines 5 and 12 (H4K5ac/12ac) and performed an in vitro pull-down with

whole-cell lysate. As expected GFP-cTAF1 associated with H4K5ac/12ac peptides and not

unmodified peptides, but GFP-xTAF1 signal was not detected above background for either

peptide (Figures 5.4C and 5.5E). This confirms that the binding preference of xBD2 differs

from BD2 and motivated us to check how the genome-wide distribution may differ between

cTAF1 and xTAF1.

We performed ChIP-seq with an antibody raised against GFP to characterize the chro-

matin binding pattern of cTAF1 and xTAF1. We found that xTAF1 is distributed similarly

across the genome and is most frequently observed in promoter regions, demonstrating that

xTAF1 has the capability to bind promoter DNA and association to acetylated H4 tails is

not required for TAF1 recruitment (Figure 5.5F). Interestingly, we observed a minor up-

stream peak in cTAF1 ChIP-seq data that was not present in xTAF1 data (Figure 5.4D).

The TAF1 bromodomains are generally thought to associate with the +1 nucleosome, but

our results suggest that TAF1 bromodomains associate with acetylated histones upstream

from the promoter. Next, we used MACS2 to call peaks over promoters bound by cTAF1

or xTAF1 and found that xTAF1 ChIP-seq signal is similar over both promoter sets. On

the other hand, cTAF1 ChIP-seq signal is weaker than over promoters bound by xTAF1

than over promoters bound by cTAF1 (Figure 5.4E). Next, we performed CUT&RUN for

histone H3 lysine 4 trimethylation (H3K4me3) and histone H4 lysine 5, 8, or 12 acetyla-

tion (H4K5ac/8ac/12ac) but found no major differences, suggesting that changes in histone
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modification patterns are not responsible for the observed changes in TAF1 binding (Figures

5.4F,G and 5.5G,H). Together, these data suggest that xTAF1 binds a subset of promoters

more strongly than cTAF1, and this could be facilitated through a relief of an inhibitory

effect enforced by TAF1 BD2 binding activity.

5.4.4 xTAF1 perturbs early steps of RNA synthesis
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Figure 5.6: Perturbations in early transcription caused by xTAF1 expression are
associated with distinct chromatin states (A-C) MA plots comparing expression of
mature transcripts (RNA-seq, A), nascent RNA (TT-TL-seq, B), and scRNA at promoters
(STL-seq, C) in xTAF1-expressing cells against cTAF1-expressing cells. Transcripts, genes,
or promoters are highlighted if the DESeq2 padj < 0.05. (D) Genes were grouped by
their change in TT-TL-seq data as in B. The log2 fold change of in scRNA reads from
STL-seq data of all TSSs associated with the gene are plotted. (E) Metaplots of cTAF1
or xTAF1 ChIP-seq data centered on the TSS of genes determined by STL-seq data and
separated by whether the read counts at the TSS are upregulated, not significantly changed,
or downregulated in STL-seq data. (F) Metaplots of H3K4me3 CUT&RUN data centered
on the the TSS of genes determined by STL-seq data and separated by whether the gene is
upregulated, not significantly changed, or downregulated in TT-TL-seq data.

To better understand the consequences of mutating the TAF1 BD2 binding pocket on

the function of TAF1 as a TFIID subunit, we performed a comprehensive characterization

96



A B C

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cTAF1

1.1

cTAF1
1.2

cTAF1
2.1

cTAF1
2.2

xTAF1
1.1

xTAF1
1.2

xTAF1
2.1

xTAF1
2.2

0.98

0.97

0.97

0.96

0.97

0.97

0.97

0.97

0.97

0.96

0.97

0.96

0.96

0.97

0.97

0.97

0.96

0.97

0.96

0.97

0.96

0.96

0.97

0.96

0.97

0.97

0.97 0.97
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cTAF1

1.1

cTAF1
1.2

cTAF1
2.1

cTAF1
2.2

xTAF1
1.1

xTAF1
1.2

xTAF1
2.1

xTAF1
2.2

0.95

0.94

0.95

0.94

0.93

0.95

0.95

0.98

0.98

0.97

0.97

0.96

0.96

0.99

0.98

0.98

0.97

0.97

0.98

0.97

0.97

0.97

0.98

0.97

0.97

0.96

0.97 0.99
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cTAF1

1.1

cTAF1
1.2

cTAF1
2.1

cTAF1
2.2

xTAF1
1.1

xTAF1
1.2

xTAF1
2.1

xTAF1
2.2

0.74

0.85

0.84

0.78

0.79

0.82

0.77

0.70

0.69

0.63

0.64

0.68

0.63

0.95

0.90

0.90

0.88

0.88

0.91

0.90

0.89

0.89

0.95

0.91

0.94

0.91

0.93 0.92

Total RNA TT-TL-seq STL-seq

−4

−2

0

2

−3 −2 −1 0 1 2

L2FC total RNA
(xTAF1/cTAF1)

L2
FC

 n
as

ce
nt

 R
N

A
(x

TA
F1

/c
TA

F1
)

Total vs nascent RNA

D

-5 kb TSS 5 kb

0.5

1.0

1.5

2.0

2.5

3.0

cTAF1 1

-5 kb TSS 5 kb

cTAF1 2

-5 kb TSS 5 kb

xTAF1 1

-5 kb TSS 5 kb

xTAF1 2

Change in
TT-TL-seq

0.5

1.0

1.5

2.0

2.5

3.0

F

Fo
ld

 e
nr

ic
he

d
Fo

ld
 e

nr
ic

he
d

-5 kb TSS 5 kb
0

2

4

6

8

cTAF1

-5 kb TSS 5 kb

xTAF1
-5 kb TSS 5 kb

0.5

1.0

1.5

2.0

2.5
cTAF1 1

-5 kb TSS 5 kb

cTAF1 2

-5 kb TSS 5 kb

xTAF1 1

-5 kb TSS 5 kb

xTAF1 2

E

0

2

4

6

8

0.5

1.0

1.5

2.0

2.5

Change in scRNA
Change in scRNA

G

Fo
ld

 e
nr

ic
he

d
Fo

ld
 e

nr
ic

he
d

Fo
ld

 e
nr

ic
he

d
Fo

ld
 e

nr
ic

he
d

Up
Unchanged

Down

Up
Unchanged

Down

Up
Unchanged

Down

Figure 5.7: Characterizing the transcriptome of cells expressing cTAF1 and
xTAF1 (A-C) Correlation plots of total read counts in total RNA-seq (A), TT-TL-seq
(B), and STL-seq (C) data. (D) Scatter plot comparing the log2 fold change in read counts
from total RNA-seq and TT-TL-seq data. (E) Metaplots of H3K4me3 CUT&RUN data
centered on the TSS determined by STL-seq data of genes and separated by whether scRNA
read counts are upregulated, not significantly changed, or downregulated over the promoter
in STL-seq data (F & G) Metaplots of H4Kac CUT&RUN data centered on the TSS of
genes determined by STL-seq data and separated by whether read counts are upregulated,
not significantly changed, or downregulated over the gene body in TT-TL-seq data (F) or
the promoter in STL-seq data (G).
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of RNA synthesis in cTAF1- and xTAF1-expressing cells with RNA-seq, TT-TL-seq, and

STL-seq. We found good correlation across samples in all experiments (Figure 5.7A-C).

At the level of total RNA, hundreds of transcripts are differentially expressed between cells

expressing xTAF1 and cTAF1 (Figure 5.6A). xTAF1 expression leads to the same degree

of differential transcriptional activity as measured by TT-TL-seq (Figure 5.6B), and we

found agreement between changes in total and nascent RNA (Figure 5.7D). Similar to the

patient-derived cell lines, this suggests that changes in early transcription causally lead to

altered expression in total RNA. Considering read counts from STL-seq data to probe how

promoter-proximal paused RNAPII is distributed across the genome, we found thousands

of alternatively used TSSs (Figure 5.6C). While the strongest affects resulted in a loss of

scRNA, most promoters gained scRNA and this affect was strongest at the TSSs of tran-

scriptionally induced genes (Figure 5.6D). This indicates that the frequency of transcription

initiation in cells expressing xTAF1 is slightly larger than in cells expressing only cTAF1

and the increased initiation frequency leads to more RNAPII entering elongation.

Next, we explored how the local chromatin environment is related to the changes ob-

served in RNAPII behavior at promoters. First, we asked if the distinct binding profiles

of cTAF1 and xTAF1 could lead to changes in early transcription. Binning by change in

STL-seq read counts, promoters which gain scRNA upon xTAF1 expression show the most

prominent upstream peak in cTAF1 ChIP-seq data while the profiles are identical in xTAF1

data (Figure 5.6E). Promoters which lose the upstream peak are therefore associated with an

increased frequency of transcription initiation upon xTAF1 expression. Next, we reasoned

that if TAF1 mediating TFIID recruitment to acetylated H4 histones is an important PIC

assembly mechanism, ablation of this recruitment mechanism may alter the transcriptional

program depending on the landscape of H4Kac or other histone modifications. We binned

promoters by the change in their transcriptional output in TT-TL-seq data and generated

metaplots of H3K4me3 CUT&RUN data (Figure 5.6F). Interestingly, the H3K4me3 profiles

of each group differed in a similar manner independent of the expressed TAF1 isoform. A

strong peak associated with the +1 nucleosome is ubiquitously present, but transcriptional

downregulation upon xTAF1 expression is associated with a stronger H3K4me3 peak imme-

diately downstream the +1 nucleosome peak. Similar H3K4me3 profiles were also observed
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when performing the same analysis with STL-seq read counts (Figure 5.7E). The same

trends were observed to a lesser degree in H4Kac CUT&RUN data from cells, and we also

found that upregulated promoters/genes present with a minor peak upstream of the TSS

(Figure 5.7F,G). Given the in vitro pull-down and cTAF1 ChIP-seq results, it is tempting

to speculate that cTAF1 BD2 associates with this population of acetylated H4 histones.

Taken together, these results suggest that the cTAF1 binding profile and local chromatin

environment impact how genes are differentially regulated when xTAF1 is expressed. This

provides preliminary evidence that TAF1 BD2 binding activity has an inhibitory effect on

gene expression at the level of initiation. While we observe a general increase in initiation,

we did not observe a global bias in one direction for transcription or expression. Therefore,

xTAF1 must have a separate effect on the kinetics of promoter-proximal pausing which

further complicates the transcriptional response.

5.4.5 xTAF1 destabilizes and redistributes the position of promoter-proximal

paused RNAPII

Finally, we performed a more in-depth analysis of our STL-seq data in xTAF1-expressing

cells to determine the effects of the TAF1 BD2 mutant on promoter-proximal pausing. bakR

analysis of more nearly 3,500 promoters revealed a general upregulation in the observed first

order rate constant (kSTL) of promoter-proximal paused RNAPII turnover (Figure 5.8A).

Promoters which lost scRNA were also much more likely to be associated with the increase

in kSTL (Figure 5.8B). As promoters with upregulated initiation rates were associated with

an increase in transcriptional activity, it is unlikely that this increase in turnover can be

attributed to an increase in release into elongation. Therefore, the most likely explanation

is that this increase in turnover is attributed to an increase in premature termination of

RNAPII.

Next, we sought to determine if xTAF1 expression could recapitulate the redistribution

of RNAPII pausing position that was found in XDP patient-derived cells. We found that

xTAF1 expression produces a similar pausing phenotype relative to cTAF1-expressing cells

in which a relative loss of scRNA shorter than 30 nts is observed (Figure 5.8C). Furthermore,

normalization of these data with Drosophila RNA spike ins allows us to quantitatively de-
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Figure 5.8: xTAF1 perturbs RNAPII promoter-proximal pausing (A) Volcano plot
the log2 fold change in the observed first order rate constant (kSTL) for promoters in STL-
seq data as measured by bakR. Points are highlighted if padj < 0.1. A histogram for the
log2 fold change values is shown above. (B) Promoters were grouped by their change in
STL-seq read count data as in 5.6C. The log2 fold change of in kSTL from STL-seq data are
plotted. (C) The log2 fold change of absolute read counts in STL-seq comparing xTAF1-
expressing cells to cTAF1-expressing cells. scRNA reads were grouped by their absolute
length. (D) The log2 fold change of kSTL from STL-seq comparing xTAF1-expressing cells
to cTAF1-expressing cells. scRNA reads were grouped by their absolute length.

termine that the relative shift is attributable to an absolute loss of the shortest transcripts.

This phenomenon could be caused by a downstream shift in the pause position or desta-

bilization of RNAPII paused less than 30 bp from the TSS. We used bakR to analyze the

pause site turnover dependent on the length of the read rather than individual promoters.

This analysis revealed that scRNAs up to 60 nts in length are similarly destabilized in

xTAF1-expressing cells relative to cTAF1-expressing cells (Figure 5.8D). Therefore, xTAF1

expression leads to RNAPII transcribing farther on average before undergoing promoter-

proximal pausing.

100



5.5 Discussion

Here we provide evidence that the X-Linked Dystonia Parkinsonism (XDP) causal SVA

retrotransposon insertion in intron 32 of TAF1 gives rise to a truncated TAF1 transcript

(xTAF1 ) with translation potential. It is clear that canonical, full-length TAF1 isoform

(cTAF1 ) is repressed in XDP patient-derived cell lines, but is downregulated only up to

50% depending on the patient and cell-type. Importantly, our data indicate that RNAPII

is not differentially initiated from the TAF1 promoter, suggesting that the downregulation

of TAF1 can be attributed to loss of coverage over exons 33-38. It is possible that cTAF1

insufficiency may produce a similar phenotype; however, our data suggest that total copy

numbers of TAF1 transcripts may be unchanged in XDP patient-derived cells. To date, a

consensus molecular model for the disease mechanism of XDP does not exist beyond the

SVA insertion. We propose that XDP is a transcriptomopathy caused by an insufficiency of

TAF1 BD2 activity. This model provides direction to improve our understanding of XDP

pathogenicity and reveals a new fundamental role for TAF1/TFIID function.

Many challenges in studying XDP are derived from the lack of a model system. Es-

tablishing XDP-patient derived cell lines was an important step for XDP researchers and

facilitated the work presented here, but did not immediately reveal how the SVA insertion

gives rise to XDP [125]. In combination with polyA+ sequencing data from Aneichyk et

al. (2018), our TimeLapse-seq and TT-TL-seq data provide evidence for a cryptic cleavage

and polyadenylation site (PAS) that is either activated or introduced by the SVA insertion.

Interestingly, the cryptic PAS does not induce transcription termination for the major-

ity of RNAPII elongation complexes (ECs) that transcribe over the region. It is known

that a longer SVA hexanucleotide repeat sequence is associated with younger age at on-

set [124, 189]. It may be that the hexanucleotide repeats slow RNAPII elongation and

increase the opportunity for a cleavage event to occur. If this is the case, more repeats

would also be associated with a larger proportion of the total TAF1 population that is

truncated, and this could lead to manifestation of XDP symptoms at a younger age. It is

unclear why cleavage would be induced for a subset of transcriptional events but this would

be an interesting line of investigation for future work.
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We developed a cell model coexpressing xTAF1 and the endogenous cTAF1. Excitingly,

the xTAF1-expressing cells recapitulated the promoter-proximal paused RNAPII redistri-

bution observed in XDP-patient derived cells. If found to reproduce across other stages

of development, and if the effect is more severe at early stages of development where the

SVA has a larger impact on synthesis of the cTAF1 transcript, this would be the first

XDP-specific molecular phenotype. Utilizing this phenotype as a readout of other XDP

model systems may prove to be a valuable tool. Recapitulating the pausing phenotype

with xTAF1 expression in human cells also gives credence to our proposal that the xTAF1

protein is expressed in XDP patients. AlphaFold predicts that the xBD2 binding pocket

is significantly enlarged relative to that of wild type BD2. This presents an opportunity

to leverage the unique binding pocket as a therapeutic target. We predict that the lack of

xTAF1 BD2 affinity for histone modification bound by cTAF1 BD2 relieves an inhibitory

effect on transcription initiation (Figure 5.9). Therefore, in order to target the pathogenic

protein as a therapy, inhibition is not sufficient and degradation or deletion would be re-

quired. Designing a Protein Targeting Chimera (PROTAC) small molecule that specifically

recognizes the xBD2 pocket would be an efficient strategy to prevent the protein from

causing a dysregulation of pausing and transcription in patients [208].

xTAF1 provides insight into the biological relevance for cTAF1 BD2 histone binding ac-

tivity (Figure 5.9). It has been previously shown, and we confirmed, that the cTAF1 tandem

bromodomains bind acetylated lysines on histone H4 tails (H4Kac), but the relevance for

this activity has never been pursued further [19]. The field assumes that TAF1 association

with histone acetylation is a mechanism of recruitment and promoter recognition for the

TFIID complex. However, counter to this conventional line of thinking, TAF1 binding to

promoters is stronger and initiation rates globally increase when TAF1 H4Kac binding ac-

tivity is destroyed. Furthermore, we found evidence for the association of cTAF1 BD2 with

histones upstream of the TSS, another result contrary to the traditionally assumed behavior

of TAF1 [209]. Strikingly, we found that the strongest changes in TAF1 binding profiles at

upregulated promoters, raising the possibility that BD2 plays a role in fine-tuning the ki-

netics associated with early steps of transcription. We found a unique chromatin signature

depending on the promoter response, suggesting that the xTAF1-associated phenotypes
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Figure 5.9: Model for XDP pathogenesis and TAF1 BD2 function. In XDP-affected
cells, we propose that a novel TAF1 isoform (xTAF1) is expressed as a result of the SVA
insertion in intron 32 of TAF1 which encodes the canonical TAF1 isoform (cTAF1). TAF1
contains two tandem bromodomains (BD) near the C-terminus, and in xTAF1 the binding
pocket of BD2 is mutated. This mutation ablates TAF1 binding activity towards acetylated
histone H4 tails (blue flags) upstream of the promoter and perturbs the normal behavior
of RNAPII in early transcription. Loss of BD2 binding activity results in an increased
initiation rate, faster turnover at the pause site attributed to an increase in premature ter-
mination, and a lengthening of the average distance RNAPII transcribes before undergoing
promoter-proximal pausing.

are related to specific TAF1-chromatin interactions. As the chromatin landscape is highly

cell type specific, this may explain why it has been difficult to detect correlations in XDP-

induced expression changes across stages of development in patient-derived cell lines. Lastly,

the redistribution of promoter-proximal paused RNAPII in xTAF1-expressing cells suggests

that BD2 association with histones coordinates the pause site. Therefore, this leads us to

conclude that a matrix of information sharing is facilitated by a network of contacts between

DNA upstream of the TSS, nucleosomes, TAF1/TFIID, RNAPII, and DNA downstream of

the TSS to determine exactly where RNAPII will pause following transcription initiation.

It has never been shown if the single base pair position of the pause site is an important

determinant of the RNA synthesis pathway, but our results suggest it is tightly controlled.

Finally, our work on XDP exemplifies the value in investing in studies of rare human

genetic disorders. By the nature of essential factors such as members of the preinitiation

complex (PIC), mutations in these genes are not associated with common medical condi-

tions. Unfortunately, this results in small patient populations with untreatable conditions
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and represents missed opportunities to reveal new, fundamental biology. More than a dozen

mutations in TAF1 alone give rise to neurodevelopmental phenotypes, most commonly in-

tellectual disability [121,128,195–198]. Many of these mutations are not within the tandem

bromodomains or the DNA-binding domains of TAF1 suggesting that other domains play

important roles in cells. Considering the shear number of individual proteins in the PIC,

the transcription field has likely overlooked many other essential functions. Moving for-

ward, addressing the needs of patient populations afflicted with rare genetic disorders while

deeply investigating the molecular phenotypes would be an impactful approach to advance

biology and medicine simultaneously.
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Chapter 6

Methods and data analysis

6.1 Methods

6.1.1 Cell lines and s4U metabolic labeling

Metabolic labeling of cells was performed as described previously [97]. For STL-seq in

Drosophila, S2 cells were grown to approximately 3-4 million cells/mL and spiked with s4U (1

mM). Cells were incubated at 27°C for the appropriate labeling time, fully resuspended and

transferred to 4-5 volumes of ice-cold PBS in an ice bath. Cells were pelleted by centrifuging

at 500Xg for 5 min. PBS was removed, cells were resuspended in 1 mL TRIzol, and frozen

at -80°C. For STL-seq and TT-TL-seq, HEK293T cells were grown to approximately 70%

confluency when the media was spiked with s4U (1 mM). For all NR-seq experiments,

HEK293T cells were grown to approximately 70% confluency when the media was spiked

with s4U (100 µM). For all STL-seq and TT-TL-seq experiments and NR-seq experiments

with improved handling conditions, plates were immediately placed on ice and washed

with ice-cold PBS. Cells were scraped from plates, transferred to low nucleotide-binding

tubes, and pelleted by centrifuging at 500Xg for 5 min. PBS was removed and cells were

resuspended in 1 mL TRIzol and frozen at -80°C. For all NR-seq experiments with dropout

handling conditions, ice cold TRIzol was added directly to plates, pipetted up and down to

spread across the plate, and left on ice for 5 min to fully lyse the cells. Cellular lysate was

then transferred to a separate tube and frozen at -80°C.
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When spike ins were performed for STL-seq and TT-TL-seq, HEK293T cells were spiked

into S2 TRIzol samples at 5% by cell count. Total Drosophila RNA was spiked into total

human RNA at 5% by mass.

6.1.2 Generation of cell lines expressing GFP-TAF1

The GFP-TAF1 plasmid was a gift from Kyle Miller (Addgene plasmid # 65395). The

GFP-TAF1 plasmid was modified to remove the C-terminal V5 tag and then introduce

the xTAF1 truncation. Wild type HEK293T cells were transfected with plasmid encoding

either GFP-cTAF1 or GFP-xTAF1 using the Lipofectamine 3000 reagent. Cells were grown

at 37°C for 48 h when blasticidin was introduced at a final concentration of 2 ng/µL. Cells

were allowed to further expand until stably expressing colonies appeared. These colonies

were picked and allow to expand in separate culture dishes and sorted by FACS.

6.1.3 Immunoblots

Cells were lysed in RIPA buffer. 1 µL of benzonase was added to the lysate and incubated

at 4°C for 1 h with rotation. The lysate was cleared by spinning at max for 10 min at

4°C. The supernatant was transferred to a fresh 1.5 mL tube. Lysate was electrophoresed

on an SDS-PAGE gel for 45 min at 200 V and transferred to a PVDF membrane. The

membranes were blocked with 5% milk for 1 h with shaking, incubated with primary for 1

h at room temperature or overnight at 4°C, incubated with secondary antibody for 1 h at

room temperature or overnight at 4°C. The membranes were washed 3X with TBST buffer

and 1X with PBST. The Western blot was developed with ECL reagent and imaged with

chemiluminescence.

6.1.4 In vitro histone tail pull-down assays

Cells were lysed in RIPA buffer. 1 µL of benzonase was added to the lysate and incubated

at 4°C for 1 h with rotation. The lysate was cleared by spinning at max for 10 min at 4°C.

Per reaction, 55 µL MyOne C1 streptavidin resin was loaded with 25 µg H4 tail peptide in

PBS and incubated at room temperature for 30 min with rotation. Beads were washed

4X with 200 µL PBS and resuspended in 55 µL PBS per reaction. 50 µL of beads were
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aliquoted into separate PCR tubes and washed once with 200 µL bead wash buffer (20 mM

HEPES, pH 8.4, 5% glycerol, 0.2 mM EDTA, 0.1% Triton X-100, 150 mM NaCl, protease

inhibitors). The beads were captured on a magnet, the supernatant was removed, 50 µg of

protein extract was loaded onto each sample, and reactions were incubated overnight at 4°C

with rotation. Beads were washed 5X with 1 mL wash buffer (20 mM HEPES, pH 8.4, 5%

glycerol, 0.2 mM EDTA, 0.1% Triton X-100, 350 mM NaCl, protease inhibitors) and eluted

in two round by adding 25 µL SDS loading buffer and heating at 95°C for 5 min.

6.1.5 Drug and KCl treatments

For STL-seq and TT-TL-seq, D. melanogaster S2 cells were treated with 42 µM 20-hydroxyecdysone

or DMSO for 30 min. S2 were treated with either 10 µM Triptolide for 10 min, 500 nM

Flavopiridol for 40 min, or DMSO for the same time as a control. For combined Flavopiri-

dol and 20-hydroxyecdysone treatments, S2 cells were pretreated with 500 nM Flavopiridol

for 10 min before adding 20-hydroxyecdysone directly to cell media. Labeling times were

always the last 5 min of any treatment.

To induce hyperosmotic stress, HEK293T cells were treated with 80 mM KCl for a total

of 1 h as described in [146]. Metabolic labeling was performed during the last 5 min of

stress.

6.1.6 NR-seq (TimeLapse-seq, SLAM-seq, TUC-seq)

Genomic DNA was depleted by treating with TURBO DNase and total RNA was extracted

with one equivalent volume of Agencourt RNAClean XP beads according to manufacturer’s

instructions. 5 µg of total RNA was subjected to TimeLapse, SLAM, or TUC chemistry as

previously described with some modifications [97–99].

For TimeLapse-seq, RNA was mixed with 600mM TFEA or NH3, 1mM EDTA and

100mM sodium acetate pH 5.2 or 100mM Tris pH 7.4. Then, NaIO4 or mCPBA was

added to 10mM final and the reaction was incubated at 45°C for 1 h. RNA was purified

with one volume of Agencourt RNAClean XP beads and eluted with nuclease-free water.

RNA was mixed with 10mM DTT, 10mM Tris pH 7.4, 5mM EDTA, and 50mM NaCl and

incubated at 37°C for 30 min. RNA was purified with one volume of Agencourt RNAClean
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XP beads and eluted with nuclease-free water.

For SLAM-seq, RNA was mixed with 50% DMSO, 50mM sodium phosphate buffer pH

8.0 and 10mM IAA and incubated at 50°C for 15 min. The reaction was stopped by adding

excess DTT. RNA was purified with one volume of Agencourt RNAClean XP beads and

eluted with nuclease-free water.

For TUC-seq, RNA was mixed with 180mM NH4Cl and 450 µM OsO4 and incubated

at 25°C for 3 h. RNA was purified with one volume of Agencourt RNAClean XP beads and

eluted with nuclease-free water.

For each sample, 10 ng of RNA input was used to prepare sequencing libraries from

the Clontech SMARTer Stranded Total RNA-Seq kit (Pico Input) with ribosomal cDNA

depletion. Libraries were sequenced on a NovaSeq 6000 2X100bp.

6.1.7 STL-seq

Total RNA from S2 and 293T cells suspended in TRIzol was purified as described previ-

ously with minor changes [97]. Following TRIzol extraction, RNA was precipitated with

one volume of isopropanol supplemented with 1 mM DTT. Extracted RNA was immedi-

ately subjected to TimeLapse chemistry as previously described with minor modifications.

The oxidant used was meta-chloroperoxybenzoic acid (mCPBA) to avoid modifying the

3´ ends of RNA and interfering with downstream ligations. All purifications with Agen-

court RNAClean XP beads were performed with 2 volumes of beads and supplemented

with isopropanol to improve recovery of short RNA. Start-seq was performed on total RNA

essentially as previously described with minor modifications [57]. Briefly, total RNA was

electrophoresed on a 15% denaturing Urea-PAGE gel for 1 h at 200 V. RNA between the

sizes of ∼20 and ∼80 nt was excised, extracted from the gel with a crush-soak method, and

ethanol precipitated. The short RNA was then treated successively with RNA 5´ polyphos-

phatase (VWR), Terminator 5´-phosphate-dependent exonuclease (Lucigen), and ligated

to a custom, pre-adenylated DNA adapter with T4 RNA ligase 2 truncated (NEB). Short,

capped RNA was then electrophoresed on a 15% denaturing Urea-PAGE gel for 1 h at

200 V. RNA between the sizes ∼40 and ∼100 nt was excised, extracted, and ethanol pre-

cipitated. Ligated RNA was treated successively with calf intestinal alkaline phosphatase
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(NEB), RNA 5´ Pyrophosphohydrolase with ThermoPol buffer (NEB), and T4 RNA ligase

1 (NEB) to ligate a custom RNA oligo. RNA was reverse transcribed with SuperScript

RT III and finally amplified with Phusion polymerase. Amplified libraries were purified

by electrophoresis on a 6% native TBE PAGE gel, extraction, and ethanol precipitation.

Libraries were sequenced either on a NovaSeq 6000 2X100bp or HiSeq 4000 2X150bp.

6.1.8 TT-TL-seq

Where paired STL-seq and TT-TL-seq data exists, RNA previously collected for STL-seq

was used for TT-TL-seq. Genomic DNA was depleted by treating with TURBO DNase

and total RNA was extracted with one equivalent volume of Agencourt RNAClean XP

beads according to manufacturer’s instructions. 50 µg of total RNA was subjected to MTS

chemistry and biotinylation followed by streptavidin enrichment essentially as previously

described [97]. TimeLapse chemistry was performed as described above. For each sample,

10 ng of RNA input was used to prepare sequencing libraries from the Clontech SMARTer

Stranded Total RNA-Seq kit (Pico Input) with ribosomal cDNA depletion. Libraries were

sequenced on a NovaSeq 6000 2X100bp.

6.1.9 ChIP-seq

30 million HEK293T cells grown to ∼75% confluency were used to perform ChIP-seq for

every sample. Formaldehyde was added to media to 1% final and cells were crosslinked for

10 min. Formaldehyde was quenched with 125 mM glycine for 5 min, followed by 2 rinses

with cold PBS. Cells were scraped from plates in 5 mL cold PBS and pelleted by spinning at

500Xg for 5 min at 4°C. Supernatant was removed and pellets were frozen at -80°C. Pellets

were thawed and cell were resuspended in 4 mL lysis buffer (50 mM HEPES pH 7.9, 140

mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100), incubated on

ice for 10 min, and pelleted at 4°C for 5 min at 4,000 RPM. The upernatant was removed

and the pellet was washed twice with 3 mL wash buffer (10 mM Tris-Cl pH 8.1, 200 mM

NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0). Samples were spun at 4,000 RPM at

4°C after each wash. The pellet was gently washed without resuspension twice with 1.5 mL

shearing buffer (0.1% SDS, 1 mM EDTA, 10 mM pH 8.1). The pellet was then resuspended
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in 1 mL shearing buffer and sheared in a 1 mL Covaris tube at 140 W, 5% duty cycle, and

200 burst/cycle for 12 min. 115 µL 10% Triton X-100 and 34.5 µL 5 M NaCl and spun in

1.5 mL Eppendorf tubes at max speed for 10 min at 4°C. 5 µg GFP antibody was added

to each sample. Samples were incubated at 4°C overnight, then added to 30 ul Protein

G DynaBeads that had been pre-equilibrated with 0.5 ml ChIP Shearing Buffer. Then,

samples were incubated at 4°C for 1.5 h. The beads were washed with 1 mL for 5 min for

each of the following steps: 2x ChIP low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM

EDTA, 20 mM Hepes-KOH pH 7.9, 150 mM NaCl), 2x high salt buffer (0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Hepes-KOH pH 7.9, 500 mM NaCl), 1x LiCl buffer

(100 mM Tris-HCl pH 7.5, 0.5 M LiCl, 1% NP-40, 1% Sodium deoxycholate), 1x TE buffer.

Beads were resuspended in 100 µL PK buffer (20 mM HEPES pH 7.9, 1 mM EDTA, 0.5%

SDS) and 2 µL proteinase K was added. Samples were incubated at 50°C for 30 min with

shaking. Beads were captured with a magnet, the supernatant was collected, and 3 µL 5M

NaCl and 0.5 µL RNase A were added. Samples were incubated overnight at 65°C. 1.5 µL

proteinase K was added and samples were incubated for 1 h at 50°C with shaking. DNA

was purified using a Qiaquick PCR purification kit and eluted in 100 µL water.

Eluted DNA was mixed with 13 µL NEB T4 ligase buffer (M0202S), 5 µL 10 mM dNTPs,

5 µL NEB T4 polynucleotide kinase (M0201L), 5 µL NEB T4 DNA polymerase (M0210S),

1 µL NEB DNA Polymerase I, Large Klenow fragment (M0203S). The sample was mixed

and incubated at 20°C for 30 min. DNA was purified using a Qiaquick PCR purification

kit and eluted in two rounds of 16 µL water. Next, purified DNA was mixed with 5 µL NEB

buffer #2, 10 µL 1 mM dATP (N0440S), 3 µL NEB Klenow fragment (M0212S). Samples

were incubated at 37°C for 25 min. 1 µL of RNase (DNase free, Roche 11119915001) and

incubated at 37°C for 5 min. DNA was then purified with 90 µL SPRI beads and eluted

in 8 µL water. Purified DNA was mixed with 12.5 µL NEB blunt/TA ligase mastermix

(M0367L), 2 µL 1 µM of each Illumina adapter, and 2.5 µL water and incubate at 25°C for

15 min. DNA was then purified with 40 µL SPRI beads and eluted in 15 µL water. Finally,

5 µL of each sample was mixed with 25 µL 2X Phusion mastermix (M0531S), 2 µL 10 µM

Illumina universal primer, 2 µL 10 µM Illumina index primer, and 16 µL and samples were

PCR amplified for a total of 12 cycles. The final libraries were purified with 75 µL SPRI
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beads and eluted in 15 µL water. Libraries were sequenced on a NovaSeq 6000 2X100bp.

6.1.10 CUT&RUN

CUT&RUN was performed according to manufacturer’s instructions provided in the CU-

TANA™ ChIC/CUT&RUN Kit (EpiCypher, 14-1048). Briefly, 11 µL of ConA beads were

activated per reaction washing beads twice in 100 µL cold bead activation buffer per reaction

and resuspending in 11 µL cold bead activation buffer per reaction. Per reaction, 500,000

cells grown to 75% confluency were washed with 5 mL room temperature PBS, scraped,,

pelleted by spinning at 600Xg for 3 min at room temperature, transferred to a fresh 1.5 mL

tube in 1 mL PBS, pelleted again, and the supernatant was removed. Cells were washed

twice with 100 µL wash buffer per reaction and resuspended in 100 µL wash buffer per

reaction. 10 µL of ConA beads were added to cells per reaction and incubated at room tem-

perature for 10 min. The celll/bead slurry was captured on magnets, the supernatant was

removed, 50 µL antibody buffer was quickly added per reaction, and samples were gently

vortexed. Reactions were split into separate PCR tubes, 0.5 µg of primary antibody was

added to each reaction, and samples were incubated at 4°C overnight with nutation. The

cell/bead slurry was captured on a magnet, the supernatant was removed, and washed twice

with 200 µL cold digitonin buffer. The slurry was resuspended in 50 µL cold digitonin buffer

by gently vortexing. Next, 2.5 µg pAG-MNase was added to each reaction, the samples were

gently vortexed, and incubated at room temperature for 10 min. The slurry was captured

on magnets, washed twice with 200 µL cold digitonin buffer, resuspended in 50 µL cold digi-

tonin buffer, and gently vortexed to resuspend. Next, 1 µL of 100 mM CaCl2 was added

to each reaction, samples were gently vortexed, and incubated at 4°C 2 h with nutation.

To stop the reaction, 33 µL stop buffer was added to each reaction, samples were vortexed,

and reactions were incubated at 37°C for 10 min. Samples were spun briefly, captured on

magnets, and the supernatant was transferred to fresh PCR tubes. DNA was purified with

provided cleanup columns and eluted in 12 µL water.

Sequencing libraries were prepared from CUT&RUN DNA were prepared according to

manufacturer’s instructions prepared in CUTANA™ CUT&RUN Library Prep Kit (EpiCypher,

14-1001). Briefly, end repair was performed by mixing 5 ng of CUT&RUN DNA with 0.1X
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TE buffer up to 25 µL, 4.2 µL end prep buffer, and 1.8 µL end prep and incubating at 20°C

for 20 min followed by 65°C for 30 min. Adapter ligation and U-excision was performed by

adding 1.25 µL adapter, 16.5 µL ligation mix, and 0.55 µL ligation enhancer to each sample

and incubating at 20°C for 15 min. Then, 1 µL U-excision enzyme was mixed with each

sample and incubated at 37°C for 15 min. DNA was purified with 47.75 µL SPRI beads and

eluted in 12 µL TE buffer. 10.5 µL of each elution was transferred to a fresh tube and to

each 1 µL if i7 primer, 1 µL of i5 primer, and 12.5 µL high fidelity 2X PCR master mix was

added to each sample. Libraries were amplified for a total of 14 cycles, DNA was purified

with 25 µL SPRI beads, and eluted in 12 µL water. Libraries were sequenced on a NovaSeq

6000 2X100bp.

6.2 Data analysis

6.2.1 NR-seq and TT-TL-seq alignment and mutation calling

Filtering and alignment to the human GRCh38 genome version 26 (Ensembl 88) or the

Drosophila dm6 genome (or a combined genome when using spike ins for normalization)

were performed as described above for STL-seq with some differences. Reads were trimmed

of adaptor sequences with Cutadapt v1.16 [210] and aligned to GRCh38 or dm6 using

HISAT-3N [107] with default parameters and --base-change T,C (or HISAT2 [211] with

--mp 4,2 where mentioned). Reads aligning to transcripts were quantified with HTSeq [212]

htseq-count. SAMtools v1.5 [213] was used to collect only read pairs with a mapping quality

greater than 2 and concordant alignment (sam FLAG = 99/147 or 83/163). Mutation calling

was performed essentially as described previously [97]. Briefly, T-to-C mutations were only

considered if they met several conditions. Mutations must have a base quality score greater

than 40 and be more than 3 nucleotides from the read’s end. Sites of likely single-nucleotide

polymorphisms (SNPs) and alignment artifacts were identified with bcftools or from sites of

high mutation levels in the non-s4U treated controls (binomial likelihood of observation p ¡

0.05). These sites were not considered in mutation calling. Browser tracks were made using

STAR v2.5.3a [214]. Normalization scale factors were calculated with edgeR [215] using

read counts from the spike-in species (calcNormFactors using method = ‘upperquartile’). If
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using spike ins for normalization, only reads aligning to the genome of the spike in species

were used for normalization with edgeR.

6.2.2 Alignment of new and previously published sequencing data

PRO-seq sequencing data was filtered and aligned in the same manner as TT-TL-seq data

except to use HISAT2 [211] with the default mismatch penalties, and mutation calling was

not performed.

All ChIP-seq, CUT&RUN, ATAC-seq, and STARR-seq data were treated identically.

Reads were filtered to remove duplicate sequences with FastUniq [216], trimmed of adaptor

sequences with Cutadapt v1.16 and aligned to the Drosophila dm6 genome using the Bowtie

2 v2.2.9 [141]. SAMtools v1.5 was used to collect reads with a mapping quality greater than

2 and concordant alignment (sam FLAG = 0/16 for single-end data and 147/99 or 83/163

for paired-end data). MACS2 was used to call peaks [217].

Previously published Start-seq data was processed identically to STL-seq data to align

reads and normalize counts.

6.2.3 STL-seq alignment, mutational analysis, and TSS calling

For STL-seq, filtering and alignment to the human GRCh38 genome version 26 (Ensembl

88) or the Drosophila dm6 genome were performed as described previously with some modi-

fications [97]. Paired-end sequencing formats with 100 bp reads or longer caused low quality

score for most second reads in each pair. Consequently, data was treated as single-end data

by using only the first read in each pair. Reads were trimmed of adaptor sequences with

Cutadapt v1.16 [210] and aligned to GRCh38 or dm6 using the Bowtie 2 option of Bis-

mark v0.22.2 [140] with default parameters except --local. Bismark was used in concert

with Bowtie 2 v2.2.9 [141]. Bismark alignment was a critical step as standard alignment

software does not efficiently align short reads with one or more T-to-C mutations. Reads

aligning to transcripts were quantified with HTSeq [212] htseq-count. SAMtools v1.5 [213]

was used to collect only read pairs with a mapping quality greater than 2 and concordant

alignment (sam FLAG = 0/16). Mutation calling was performed essentially as described

previously [97]. Briefly, T-to-C mutations were only considered if they met several con-
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ditions. Mutations must have a base quality score greater than 40 and be more than 3

nucleotides from the read’s end. Sites of likely single-nucleotide polymorphisms (SNPs) and

alignment artifacts were identified with bcftools or from sites of high mutation levels in the

non-s4U treated controls (binomial likelihood of observation p ¡ 0.05). These sites were not

considered in mutation calling. Browser tracks were made using STAR v2.5.3a [214]. Reads

which did not align in the initial alignment step were aligned to either the dm6 or GRCh38

genome (according to the spike-in species) in the same manner as above. Normalization

scale factors were calculated with edgeR [215] using read counts from the spike-in species

(calcNormFactors using method = ‘upperquartile’).

TSS calling was performed with TSScall to identify annotated (obsTSS) and unanno-

tated (uTSS) transcription start sites [57]. Aligned sequencing reads from all samples of

one species were pooled and analyzed with the TSScall pipeline. For Drosophila data, de-

fault settings were used except --annotation search window 500, --annotation join distance

100, and --call method global. For human data, default settings were used except --

annotation search window 1000, --annotation join distance 200, and --call method big winner.

BEDTools [218] was used to assign reads to the nearest TSS within a 200bp window up-

stream and downstream of the read’s ends. TSSs are considered to be promoters if they are

classified as an obsTSS. See STARR-seq methods below for eTSS calling.

6.2.4 Estimation of RNA decay and synthesis kinetics

For all kinetic analyses of NR-seq data, the bakR R package was used to estimate RNA

degradation rates and the change in these rates upon treatment (Vock et al., in prep).

Default settings were used with the MCMC model (StanFit = TRUE). RNA synthesis

rates and changes in synthesis rates were determined as outlined in the bakR manual using

DESeq2 to estimate changes in total RNA.

6.2.5 Estimation of Pol II turnover with previous data under triptolide

inhibition

To estimate scRNA half-lives from previously published Start-seq data under Trp inhibition,

TSSs with low read counts in the uninhibited control samples were removed and all samples
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were normalized to the control. The data were transformed to the log scale and each TSS

was fit with a linear model. We found that normalized Start-seq signal increases at many

TSSs upon Trp treatment, suggesting that Trp affects the kinetics of Pol II at the promoter-

proximal pause site and making it an unreliable approach. This artifact produced negative

k̂obs estimates which are biologically impossible. TSSs demonstrating this behavior and

were calculated to have a negative rate constant were removed from our analysis.

For previously published ChIP-nexus data under Trp inhibition, pausing half-lives were

published with the associated transcript isoform.

6.2.6 Estimation of the new fraction of scRNA and kinetic parameters of

scRNA

For data collected from xTAF1- and cTAF1-expressing cells, kinetic parameters from STL-

seq were estimated using bakR with settings Ucut = 0.25, AvgU = 3, totcut = 100, and

HybridFit = TRUE (Vock et al., in prep). For all other STL-seq samples treated with 5-min

s4U feeds were modeled with the same Binomial model. For each treatment, the number of

uridines (nu) and T-to-C mutations (TCi) in each read is determined and reads are grouped

by the TSS to which they map. The s4U-untreated samples were used as unlabeled controls

(c) to determine the background mutation rate attributed to reverse transcription mistakes,

sequencing error, or other sources. The new fraction of scRNA (θ) and mutation rate were

modeled as a mixture of two binomial distributions of either true TimeLapse or background

mutations parametrized on the logistic scale. The probability mass function of the model

is:

f (tc|nu, pn, po) = θBinomialLogit (tc|nu, pn) + (1− θ) BinomialLogit (tc|nu, po) (6.1)

where pn is the TimeLapse mutation rate in new transcripts and po is the background

mutation rate. Under normal steady-state conditions, we assume an exponential model

relating the new fraction of transcripts at the sth TSS and the observed turnover rate
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constant for scRNA (k̂obs[s]) such that

θss[s] = 1− e(−k̂obs[s]t) (6.2)

where t is the s4U labeling time of the experiment. To estimate termination and release,

the termination rate constant at each TSS (k̂term[s]) was defined with an upper boundary

of the total observed rate constant such that

k̂term[s] =
k̂obs[s]

ea[s]
(6.3)

where a is a real value with lower limit of 0. The new fraction of transcripts under FP

inhibition was related to k̂ term in the same manner as k̂obs.

θFP [s] = 1− e(−k̂term[s]t) (6.4)

The TSS specific pause release rate constant (k̂rel[s]) was calculated as the difference between

k̂obs[s] and k̂term[s]. This parameterization of k̂ term and k̂ rel avoided cases where release is

very slow, and the tail of the posterior distribution may extend into the negative range due

to an unrestricted model.

To estimate these parameters, we used a Bayesian hierarchical modeling approach using

RStan software (Version 2.19.3, [174]) that implements no-U-turn Markov Chain Monte

Carlo (MCMC) sampling. We designed non-centered hierarchical models to estimate global

TimeLapse mutation rate (p̄n[j]) for the jth treatment condition while also allowing for

variability by estimating TSS-specific mutation probabilities (pn[j,s]). For the background

mutation rate, we estimated a single global parameter (p̄o) while allowing for local variation

among TSSs by estimating TSS-specific mutation probabilities (po[s]). We used weakly

informative priors for global mutation rates on the logistic scale which covered the range

of previously observed mutation rates that could be reasonably expected. The TSS-specific

mutation rates were found by estimating a standard deviation (σ) for each global parameter

and a TSS-specific z-score (z). Finally, s4U-labeled and unlabeled control samples are

indicated by I where if sample c is labeled with s4U I = 1 and zero if the sample is
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unlabeled.

Global parameter priors:

p̄o ∼ Normal(−6, 0.5) (6.5)

p̄n[j] ∼ Normal(−2.5, 0.5) (6.6)

σo ∼ HalfCauchy(0, 1) (6.7)

σn[j] ∼ HalfCauchy(0, 1) (6.8)

I[c] =


0, if c ∈ controls

1, otherwise

(6.9)

s ∈ {1, 2, . . . , nTSS} (6.10)

j ∈ {1, 2, . . . , ntreatment} (6.11)

(6.12)

Local parameter priors:

zo[s] ∼ Normal(0, 1) (6.13)

zn[j,s] ∼ Normal(0, 1) (6.14)

po[s] = p̄o + σozo[s] (6.15)

pn[j,s] = p̄n[j] + σn[j]zn[j,s] (6.16)

k̂obs[j,s] ∼ Gamma(0.5, 1.75) (6.17)

a[j,s] ∼ HalfNormal(0, 2) (6.18)

For reads i ∈ {1, 2, . . . , n[s]}:

f
(
tc[i]

∣∣∣θ[j,s], nu[i]
, pn[j,s], po[s]

)
=

n[s]∏
i = 1

(
I[c]θ[j,s]BinomialLogit

(
y[i]|nu[i], pn[j,s]

)
+
(
1 − I[c]θ[j,s]

)
BinomialLogit

(
y[i]

∣∣nu[i], po[s]
))

(6.19)
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The definition of θ in terms of k̂obs and k̂ term is included in the model which allows retrieval

of posterior distributions of all parameters. Similarly, k̂ rel is calculated within the model

as a generated quantity thereby generating a posterior distribution of estimates. Fits from

these models converged well at all TSSs when run on the complete dataset with a minimum

average read cutoff in the s4U-untreated controls (50 reads from fly cells and 100 reads from

human cells). We limited our analysis to TSSs with an 80% CI size for k̂obs was smaller

than 1 on the natural log scale to avoid TSSs where we could not make a precise estimate.

To identify the high confidence TSSs, we further limited our analysis to TSSs with an 80%

CI that was smaller than 0.5 on the natural log scale. We only consider k̂ rel estimates to be

high confidence if both k̂obs and k̂ term for the TSS qualified as high confidence. In all cases,

we report estimates of the parameters using the median value of the posterior distribution.

6.2.7 Estimation of the global effect of flavopiridol on premature termi-

nation

To assess if flavopiridol influences k̂ term, we developed a model designed to test for flavopiridol-

induced changes in turnover. This model is similar to the model described above. We defined

a TSS-specific effect parameter (f[s]) such that the turnover at a TSS under FP inhibition

depends on k̂obs[s] and f[s] as defined below

k̂term[s] = ef[s] k̂obs[s] (6.20)

where f is unrestricted and the scaled value of k̂obs[s]] is guaranteed to be greater than zero.

Therefore, the definition of θFP is

θFP [s] = 1− e

(
e
f[s] k̂obs[s]t

)
(6.21)

While the definition of θSS is unchanged in this model. In addition, a hierarchical parameter

for the effect of FP (fg) was defined so that the prior for the local effect at each TSS depends

on the global effect of FP and the standard deviation of the global effect (σf ).
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Global parameter priors:

fg ∼ Normal(0, 1) (6.22)

σf ∼ HalfNormal(0, 1) (6.23)

Local parameter prior:

f[s] ∼ Normal(fg, σf ) (6.24)

Parameterizations and definitions for the other parameters described above remain un-

changed. Estimates for all kinetic parameters were made within the same model and f[s] was

transformed into the log2 fold change within the generated quantities of the model. This

model converged well when run on the complete dataset with a minimum average read cut-

off of 50 reads in the s4U-untreated controls. We performed the same filtering as described

above to determine high confidence TSSs under uninhibited and inhibited conditions. We

identified TSSs where k̂ rel should be very close to zero by those whose gene-body coverage

in TT-TL-seq was in the bottom 10% of all genes. As previously, the median value for the

FP-induced log2 fold change at each TSS was used as a point estimate for the true value.

6.2.8 Simulation of STL-seq data

Local TSS-specific mutation rates were randomly chosen from a normal distribution cen-

tered on 0.1 and 0.0025 on the logistic scale for true TimeLapse (pn) and background (po)

mutations, respectively. The mean values were chosen based on observed mutation rates

observed in previous TimeLapse data. For nreads as defined in the text, we simulated
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scRNA reads from a TSS with half-life hl using the following model:

i ∈ {1, 2, . . . , nreads} (6.25)

l[i] ∼ ceiling
(
Normal(35, 6)

)
(6.26)

nu[i] ∼ ceiling

(
l[i]

nt

)
(6.27)

θ = 1− e
−log(2)

hl
t (6.28)

X[i] ∼ Bernoulli(θ) (6.29)

TC [i] ∼


Binomial(nu[i], pn), if X[i] = 1

Binomial(nu[i], po), otherwise

(6.30)

where the ith read contains nu[i] uridines which are evenly spaced along the read every

nt nucleotides. The uridine frequency was chosen this way because scRNA initiated from

the same TSS will contain identical sequences which only vary by the distance transcribed

(l[i]). The mean length and standard deviation were selected to closely reflect the true

distribution of read lengths across all scRNA reads. The new fraction of reads (θ) depends

on the half-life (hl) of scRNA and the s4U labeling time (t) of the experiment. Whether

a read is new was randomly assigned with a Bernoulli distribution with probability θ. If

a read is new, the mutation rate and the number of mutations observed in a read (TC[i])

is determined according to a binomial distribution with nu[i] trials and probability pn. If a

read is old, the number of mutations is determined similarly but with probability po. Five

TSSs with half-lives 1, 2.5, 5, 7.5, and 10 min were simulated together with varying degrees

of coverage (25 to 1000 reads) and treated as data from a STL-seq experiment. These

data were modeled with the same binomial model described above to estimate the scRNA

half-life. The estimated turnover rates were compared to the true values used as input to

the simulation.

6.2.9 TT-TL-seq data analysis

RPKM was calculated with the total length of each transcript isoform. TSScall identified

transcript isoforms associated with each called TSS. If a single isoform cannot be unam-
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biguously assigned to a TSS, the longest isoform was chosen. Transcripts were grouped

into equal quartiles by kinetic parameters of their TSS or subsets as defined in the text.

Metaplots and heatmaps were produced with deepTools2 [219].

6.2.10 PRO-seq data analysis

As a measure of promoter-proximal pausing, PRO-seq reads were counted within the first

250bp downstream of every TSS called from STL-seq. To determine transcriptional activity

over the gene body, PRO-seq reads were counted in the range of 251-1250bp downstream

of every TSS called from STL-seq.

6.2.11 ChIP-seq and ATAC-seq data analysis

Aligned ChIP-seq reads for all datasets were counted within the first 500bp downstream of

all TSSs identified in STL-seq data. Aligned ATAC-seq reads within the window of -200 to

+100 around each TSS were counted. TSSs were grouped into equal quartiles by kinetic

parameters and deepTools2 was used to generate metaplots and heatmaps.

6.2.12 STARR-seq data analysis and eTSS identification

To identify STARR-seq peaks from previously published data, aligned bam files of STARR-

seq biological replicates from either a developmental core promoter (dCP) or housekeeping

core promoter (hkCP) were merged and analyzed with the STARRpeaker tool using default

parameters (except --mincov 1). Resulting peak calls for dCP and hkCP were merged and

TSSs were assigned as a STARR-seq active TSS if they were within 500 bp of a peak. TSSs

were considered to be enhancer TSSs (eTSS) if they are classified as a uTSS by TSScall

and have STARR-seq enhancer activity.

6.2.13 Identification of Promoter motifs

PWMTools was used to search for consensus sequences of each motif within the specified

window around annotated promoter TSSs identified in STL-seq data. Matches to the con-

sensus sequence were not allowed to contain any mismatches.
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Drosophila motif Consensus motif TSS search window
TATA box STATAWAWR [220] -110 to +1

Initiator +G (InrG) TCAGTY [177,220] -5 to -1
Initiator -G (Inr) TCAHTY [177,178,220] -5 to -1

TCT motif YYCTTTYY [183] -5 to -1
Downstream promoter element (DPE) KCGGTTSK [220] +1 to +50

Motif ten element (MTE) CSARCSSA [221] +1 to +50
Pause Button (PB) KCGRWCG [177] +1 to +50

Table 6.1: Drosophila promoter motif sequences and the window searched around the TSS
for the motif

Human motif Consensus motif TSS search window
TATA box TATAWAAR [186,222,223] -110 to +1
Initiator YYANWYY [224] -5 to -1

TCT motif YCTYTYY [183] -5 to -1
Downstream promoter element (DPE) RGWYV [225] +1 to +50

Motif ten element (MTE) CSARCSSA [221] +1 to +50

Table 6.2: Human promoter motif sequences and the window searched around the TSS for
the motif
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Appendix A

Start-TimeLapse-seq (STL-seq)

protocol

A.1 Important notes to be aware of before beginning

1. DNase treatment is not necessary as genomic DNA is selected against in the size-

selection step.

2. It is recommended to start with >10 million cells.

3. CRITICAL! Use mCPBA as oxidant during TimeLapse chemistry. NaIO4 modifies

RNA such that 3´ ligations cannot be performed.

A.2 s4U treatment and cell harvesting

1. Plate and grow cells to ∼70% confluence

2. Supplement media with 1mM s4U and incubate cells for a time determined based on

desired application (typically 5 min for STL-seq but can vary 1.5-10 min).

Note: s4U is photosensitive, keep solutions wrapped in foil and minimize exposure of

samples to light.
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3. After incubation period, immediately place cell culture plates on ice. Aspirate media

from plate, gently rinse plate once with ice cold PBS and aspirate again.

4. Add 1mL ice cold PBS to cells. Gently scrape cells from plate using a cell scraper,

and transfer cell suspension to a 1.5mL loBind epi tube.

5. Pellet cells in a pre-chilled (4°C) centrifuge at 700 x g for 3 min. Carefully aspirate

PBS from cell pellet.

6. Resuspend pellet in 1mL Trizol by gently pipetting up and down ∼10 times.

Note: Trizol is toxic, use with care and in well ventilated area.

7. Trizol samples can be stored overnight at -80°C or kept on ice for RNA isolation.

A.3 RNA isolation

1. Thaw Trizol samples at room temperature. Once completely thawed, keep samples at

room temperature for 5 min in the dark.

2. Add 200 µL chloroform to the 1mL Trizol samples. Shake the tubes vigorously for 15

sec and let sit for 2 min in the dark (drawer is fine).

3. Optional – For easier separation of phases, transfer sample to pre-spun heavy phase-

lock tubes.

4. Centrifuge the tubes for 5 min at 12,000 × g, 4°C. Transfer aqueous phase (∼500 µL)

to new DNA loBind tubes with 1 µL RNase-free glycogen (20 µg).

5. To each aqueous phase from step 2, add 500 µL (1 eq) of 100% isopropanol with

1mM DTT final concentration (*make 10mL isopropanol + 10 µL of 1M DTT master

mix using freshly dissolved DTT). Invert tube ∼10 times or until thoroughly mixed.

Incubate samples at room temperature for 10 min.

Note: The s4U -RNA is light sensitive and prone to oxidation. While these steps

can be performed under standard laboratory lighting, try to minimize the time of
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light exposure. The DTT is included to help minimize oxidation of the s4U and

reduce disulfides. DTT will oxidize over time. To be safe either make a fresh 1M

stock from solid DTT or aliquot a 1M stock and only freeze thaw each aliquot 1-2

times.

6. Centrifuge samples 20 min at 20,000 × g, 4°C. Carefully remove the supernatant from

the RNA/glycogen pellet.

7. Add 1mL of room temperature freshly prepared 75% ethanol to the pellet, vortex

quickly and centrifuge 3 min at 12,000 × g, 4°C.

8. Remove the ethanol completely from the RNA/glycogen pellet. First remove most

of the ethanol with a 1000-µL (P1000) pipet tip, then spin the tubes again on a

countertop microcentrifuge. Use a gel-loading/10 µL tip to remove the remaining

ethanol. Let the pellet air-dry for 2 min. Be careful not to overdry, which will result

in loss of RNA.

9. Resuspend each pellet in 16 µL (or desired volume) of nuclease-free (i.e., DEPC-treated

water). Measure the RNA concentrations using a Nanodrop spectrophotometer.

A.4 TimeLapse chemistry (25 µL volume, scalable if needed)

1. Prepare RNA into 15 µL nuclease-free water.

2. Prepare TimeLapse master mix in the order shown (8.7 µL per sample).

0.84 µL 3M sodium acetate pH 5.2

0.2 µL 500m/molar EDTA

6.36 µL nuclease-free water

1.3 µL Trifluoroethylamine (TFEA)

Note: TFEA is volatile, use care when pipetting to ensure adding proper volume.

Pipetting TFEA up and down a few times will equilibrate the vapor pressure.
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3. To each sample, add 8.7 µL TimeLapse master mix. Flick tubes to combine well and

briefly spin to collect sample at bottom of tube.

4. Add freshly prepared 1.3 µL of 200mM mCPBA.

Note: mCPBA must be used as oxidant (mCPBA is soluble in ethanol)

5. Close PCR tubes and flick tubes to mix well and spin down.

6. Incubate in PCR cycler at 45°C for 1h.

7. Add 2 µL of 1M DTT, mix well, and spin down.

8. Incubate in PCR cycler at 37°C for 30 min.

9. Bring total volume to 200 µL with nuclease free H2O.

10. Add 20 µL 3M NaOAc, 1 µL glycoblue. Mix. Add 250 µL isopropanol (or 550 µL

EtOH). Mix by inversion and freeze at -80°C for 2 h or overnight.

11. Spin at max, 4°C for 30 min. Wash with 1mL 75% EtOH. Air dry pellet for at least

2 min or until no EtOH is visible.

12. Resuspend pellet in 10-20 µL 1X RNA loading dye.

A.5 Size selection

1. Prepare 15% 10-well Urea-PAGE gel (1 gel per 4 or 5 samples).

2. Prerun gel for ∼30 min at 200V prior to running samples.

3. Prepare RNA samples for running.

(a) Add 10 µL 2X RNA loading dye to each sample.

(b) Mix 1 µL low range ssRNA ladder with 4 µL H2O and 5 µL loading dye.

(c) Heat all samples at 70°C for 5 min and ice immediately prior to loading.

4. Clean wells of gel and load samples with empty well between each sample. Run gel

at 200V for 60-75 min.
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5. With a hot 22G needle poke a hole in the bottom of a 0.5mL tube for each sample.

Place them in a 1.5mL tube.

6. Carefully remove and wash gel with buffer and water. Incubate gel in 1X gelgreen for

10-15 min in dark with rotation. Image with typhoon on SYBR green setting.

7. Cut smallest possible piece of gel to extract RNA from ∼20 nt to ∼80 nt (about

halfway between dyes and just below smallest prominent band, respectively). Place

gel slices in 0.5mL tubes with hole.

8. Spin 0.5mL tubes in 1.5mL tubes at max for 2 min. If some gel remains in tube, use

clean forceps to crush and transfer to 1.5mL tube.

9. Add 400 µL H2O and 40 µL 3M NaOAc. Vortex briefly to mix. Shake @ RT, 1000

RPM for 2.5 h or 4°C with rotation O/N.

10. Vortex for 30 sec at medium intensity. Cut off tip of 1mL pipette tip and transfer

slurry to spin filter. Spin at 1000 Xg for 2 min.

11. Add 1 µL glycoblue and 500 µL isopropanol (1150 µL EtOH is acceptable but requires

-80°C storage). Mix by inversion.

12. Pellet by spinning at max, 4°C for 30 min. Remove supernatant and wash with 1mL

75% EtOH. Air dry pellet for at least 2 min or until no EtOH is visible.

A.6 Cap selection

1. Resuspend pellet in 17.5 µL H2O and add 2 µL 10X 5´ polyphosphatase buffer and

1 µL 5´ polyphosphatase (removes γ and β phosphates from RNA). Mix by pipetting.

Incubate for 30 min at 37°C.

2. To stop reaction, add 180 µL H2O, transfer to heavy phase lock tubes, add 200 µL

phenol-chloroform, shake vigorously for 15 sec, and spin at max for 2 min.

3. Transfer aqueous phase to new 1.5 mL tube and add 20 µL 3M NaOAc, 1 µL glycoblue.

Mix. Add 250 µL isopropanol (550 µL EtOH is acceptable but requires -80°C storage.
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Better if leaving overnight). Mix. Spin at max, 4°C for 30 min. Wash with 1mL 75%

EtOH. Air dry.

4. Resuspend in 17.5 µL H2O and add 2 µL 10X 5´ Terminator buffer A and 1 µL 5´

Terminator exonuclease (degrades uncapped RNA species). Mix pipetting. Incubate

at 30°C for 1 h.

5. Phenol-chloroform extract as previously. Isopropanol or ethanol precipitate as previ-

ously.

A.7 3´ ligation

1. Resuspend in 4 µL H2O and 1 µL pre-adenylated 5´ adapter (∼15 µM). In parallel run

a positive control ligation with an RNA of known length.

2. Incubate at 70°C for 2 min. Ice 2 min.

3. Add 1 µL T4 10X RNA ligase buffer, 1 µL RNase inhibitor, 2 µL 50% PEG, 1 µL T4

RNA ligase 2 truncated (specifically adds pre-adenylated adapter to 5´ end of RNA).

Mix by pipetting. Spin briefly. Incubate at 28°C for 60 min or longer.

4. Add 10 µL of 2X RNA loading dye to stop the reaction.

5. Separate samples on a 15% 10-well Urea-PAGE gel as previously. Image and extract

RNA (∼40 nt to ∼150) as previously.

A.8 5´ ligation

1. Resuspend in 17.5 µL H2O. Add 2 µL 10X Cutsmart buffer and 1 µL CIP alkaline phos-

phatase (removes all phosphates from RNA ends. Removes phosphates from leftover

5´ adapters). Mix by pipetting. Incubate at 37°C for 10 min.

2. Phenol-chloroform extract and precipitate as previously. Resuspend in 5.7 µL H2O,

0.5 µL RNase inhibitor, and 0.8 µL 10X ThermoPol buffer and transfer to fresh PCR

tubes.
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3. Add 1 µL RppH (5´ pyrophosphohydrolase. Removes 5´ cap from RNA and leaves a

monophosphate). Mix by pipetting. Incubate at 37°C for 1 h.

4. Add 1.2 µL 10X T4 RNA ligase buffer. Mix by pipetting and keep on ice.

5. Incubate 1 µL 5´ adapter (20 µM) per sample at 70°C for 2 min. Ice 2 min. Per

sample, add 1 µL 10 mM ATP. Mix. Per sample add 1 µL T4 RNA ligase 1 (ligates

5´ monophosphorylated RNA to 3´ end of RNA adapter). Mix (include 10% extra).

6. Add 3 µL of adapter/ATP/enzyme mix to RNA/buffer/RNase mix. Mix by pipetting.

Spin briefly. Incubate at 28°C for 60 min or longer (or 16°C overnight).

A.9 RT and library amplification

1. Add 1 µL RT primer (20 µM). Mix by pipetting. Incubate at 70°C 2 min. Ice 2 min.

2. In a separate tube, mix the following volumes per sample: 4 µL 5X FS buffer, 1 µL

0.1M DTT, 1 µL SSRT III, 0.5 µL 12.5mM dNTP, 0.5 µL RNase inhibitor (Include

10% extra). Mix by pipetting.

3. Add 7 µL of RT mix to each sample. Mix by pipetting. Incubate at 55°C for 60 min.

4. Use 2 µL cDNA to perform qPCR to determine number of cycles to run in PCR. Prep

PCR mix containing the following volumes per sample: 8 µL H2O, 12.5 µL 2X Phusion

mix, 0.5 µL 50X SYBR Green (include 10% extra). Add 1 µL of each primer.

5. Prep PCR mix containing the following volumes per sample: 13 µL H2O, 25 µL 2X

Phusion mix (include 10% extra).

6. Take 8 µL cDNA and add 2 µL of each indexing primer and 38 µL of Phusion mix.

Mix by pipetting. PCR amplify for determined cycles (14 is default if step 4 not

performed).

1 cycle

98°C – 30 sec
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X cycles

98°C – 10 sec

65°C – 30 sec

72°C – 15 sec

1 cycle

72°C – 10 min

7. Perform SPRI purification with 90 µL beads. Elute in 20 µL H2O and 4 µL 6X DNA

loading dye. Run each sample in 2 lanes of a 6% TBE gel with 1 µL Ultra Low Range

DNA ladder.

8. Run gel for 45 min at 200V.

9. Image and extract as previously except to use EtOH instead of IPA. Adapter-adapter

ligation is expected at ∼140 bp. Cut just above adapter-adapter product up to ∼250.

See example gel 3.

10. Run a bioanalyzer to assess concentration and adapter-adapter ligation product con-

tamination.
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D. Dressler, P. Bauer, A. Rolfs, A. Münchau, F. J. Kaiser, L. J. Ozelius, R. D.

Jamora, R. L. Rosales, C. C. E. Diesta, K. Lohmann, I. R. König, N. Brüggemann,
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B. Castelijns, C. Fernandez-Cerado, G. P. Legarda, M. S. Velasco-Andrada, E. L.
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